1
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
2
|
Davis CG, Weaver SJ, Taylor EN. Cutaneous Evaporative Water Loss in Lizards Changes Immediately with Temperature. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:118-128. [PMID: 38728691 DOI: 10.1086/730423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractCutaneous evaporative water loss (CEWL) makes up a significant portion of total evaporative water loss in many terrestrial vertebrates. CEWL changes on evolutionary and acclimatory timescales in response to temperature and humidity. However, the lability of CEWL on acute timescales is unknown. To examine this, we increased or decreased body temperatures of western fence lizards (Sceloporus occidentalis) over a 15-min period while continuously recording CEWL with a handheld evaporimeter. CEWL increased in response to heating and decreased in response to cooling on the order of seconds. However, CEWL was different between heating and cooling groups at a common body temperature. We observed the same positive relationship between CEWL and body temperature, as well as the difference in CEWL between treatments, for deceased lizards that we opportunistically measured. However, deceased lizards had more extreme CEWL values for any given body temperature and treatment. Overall, our results suggest that both structural traits and active physiological processes likely influence the rates and plasticity of CEWL.
Collapse
|
3
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Nagasawa K, Kitano T. Pseudogenization of the Hair-Related Genes PADI3 and S100A3 in Cetaceans and Hippopotamus amphibius. J Mol Evol 2023; 91:745-760. [PMID: 37787841 DOI: 10.1007/s00239-023-10133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Hair-related genes in mammals play important roles in the development and maintenance of hair and other keratinous structures in mammals. The peptidyl arginine deiminase 3 (PADI3) gene encodes an enzyme that catalyzes the conversion of arginine residues to citrulline. The S100 calcium binding protein A3 (S100A3) gene encodes a protein that is highly expressed in the hair cuticle and contains arginine residues that are converted to citrullines by PADI enzymes. In this study, we investigated the pseudogenization events of PADI3 and S100A3 in cetaceans and Hippopotamus amphibius. We found that PADI3 underwent three independent pseudogenization events during cetacean evolution, in baleen whales, toothed cetaceans other than Physeter catodon, and P. catodon. Notably, the entire PADI3 gene is absent in the baleen whales. Pseudogenization of S100A3 occurred independently in cetaceans and H. amphibius. Interestingly, we found that in cetaceans S100A3 underwent pseudogenization before PADI3, suggesting that differential selection pressures were acting on the two genes. Our findings provide valuable insights into the molecular evolution of these genes in cetaceans and hippopotamuses, highlighting their importance for understanding the evolution of hair-related genes.
Collapse
Affiliation(s)
- Kyomi Nagasawa
- Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-Cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Takashi Kitano
- Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa-Cho, Hitachi, Ibaraki, 316-8511, Japan.
| |
Collapse
|
5
|
Dall'Olmo L, Papa N, Surdo NC, Marigo I, Mocellin S. Alpha-melanocyte stimulating hormone (α-MSH): biology, clinical relevance and implication in melanoma. J Transl Med 2023; 21:562. [PMID: 37608347 PMCID: PMC10463388 DOI: 10.1186/s12967-023-04405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) and its receptor, melanocortin 1 receptor (MC1R), have been proposed as potential target for anti-cancer strategies in melanoma research, due to their tissue specific expression and involvement in melanocyte homeostasis. However, their role in prevention and treatment of melanoma is still debated and controversial. Although a large body of evidence supports α-MSH in preventing melanoma development, some preclinical findings suggest that the α-MSH downstream signalling may promote immune escape and cancer resistance to therapy. Additionally, in metastatic melanoma both MC1R and α-MSH have been reported to be overexpressed at levels much higher than normal cells. Furthermore, targeted therapy (e.g. BRAF inhibition in BRAFV600E mutant tumours) has been shown to enhance this phenomenon. Collectively, these data suggest that targeting MC1R could serve as an approach in the treatment of metastatic melanoma. In this review, we explore the molecular biology of α-MSH with particular emphasis into its tumor-related properties, whilst elaborating the experimental evidence currently available regarding the interplay between α-MSH/MC1R axis, melanoma and antitumor strategies.
Collapse
Affiliation(s)
- Luigi Dall'Olmo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy.
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy.
| | - Nicole Papa
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Nicoletta Concetta Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121, Padua, Italy
- Veneto Institute of Molecular Medicine VIMM, Foundation for Advanced Biomedical Research, 35129, Padua, Italy
| | - Ilaria Marigo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Simone Mocellin
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| |
Collapse
|
6
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
7
|
Pinto B, Valente R, Caramelo F, Ruivo R, Castro LFC. Decay of Skin-Specific Gene Modules in Pangolins. J Mol Evol 2023:10.1007/s00239-023-10118-z. [PMID: 37249590 DOI: 10.1007/s00239-023-10118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.
Collapse
Affiliation(s)
- Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Filipe Caramelo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
8
|
Liang S, Hu X, Guo Z, Luo D, Tang J, Ji Z, Xie M, Hou S. Comparative transcriptome reveals the effect of IFITM1 on differential resistance to duck hepatitis A virus genotype 3 in Pekin ducks. Virus Res 2022; 322:198930. [PMID: 36130655 DOI: 10.1016/j.virusres.2022.198930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Duck viral hepatitis (DVH) has a significant economic impact on duck industry, and duck hepatitis A virus genotype 3 (DHAV-3) is the most prevalent pathogen of DVH in Asian duck industry. The detailed study connecting differentially expressed genes (DEGs) and the differential resistance to DHAV-3 have not been accurately described, although a large numbers of DEGs have been identified by transcriptomic studies. RESULTS Here, a resistant Pekin duck line (Z8R) and a susceptible Pekin duck line (Z8S) as models, high mortality and dramatically increased aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the expression of immune-related genes of Z8S group were shown to be noticeable signs of cases caused by DHAV-3 infection. Compared with the control (Con) group, 1117 down-regulated DEGs and 612 up-regulated DEGs were found in the Z8S group and 37 down-regulated DEGs and 82 up-regulated DEGs were found in the Z8R group. Ultimately, the expression patterns of 10 DEGs were found to be diametrically opposite in Z8R and Z8S group. Functional analysis revealed that IFITM1 was associated with cell growth suppression, which was considered a key candidate gene. Results of flow cytometry showed that the conserved regions of IFITM1 (213-317 bp) could affected the cell cycle of duck embryo fibroblast (DEF) cells after infection with DHAV-3. Transcriptome and western blot analysis suggested that the CCND1, CCNE1 and CDK6 were significantly up-regulated in susceptible ducks by comparing with Con group. CONCLUSIONS The hepatic injury and pathogenic outcomes caused by DHAV-3 infection were more severe in Z8S group compared to Z8R. Results of transcriptomics analysis and flow cytometry suggested that DHAV-3 infection can induce cell cycle changes that may be associated with IFITM1 expression level. These data will greatly enhance our understanding of the pathogenesis of DHAV-3 infection in ducklings and have implications for development of resistance breeding.
Collapse
Affiliation(s)
- Suyun Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Xiaoyang Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanbao Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Dawei Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Jing Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Zhanqing Ji
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Ming Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian district, Beijing 100193, China.
| |
Collapse
|
9
|
Melanocortin-5 Receptor: Pharmacology and Its Regulation of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23158727. [PMID: 35955857 PMCID: PMC9369360 DOI: 10.3390/ijms23158727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.
Collapse
|
10
|
Kwok-Shing Wong M, Dores RM. Analyzing the Hypothalamus/Pituitary/Interrenal axis of the neopterygian fish, Lepisosteus oculatus: Co-localization of MC2R, MC5R, MRAP1, and MRAP2 in interrenal cells. Gen Comp Endocrinol 2022; 323-324:114043. [PMID: 35447133 DOI: 10.1016/j.ygcen.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
RT-PCR analysis indicated that steroidogenic tissues are located along the length of the kidney of the neopterygian fish, Lepisosteus oculatus (spotted gar; g). However, RT-PCR analysis of the distribution of mc2r mRNA and mrap1 mRNA, critical components of the gar hypothalamus/pituitary/interrenal (HPI) axis, was only associated with the anterior and medial regions of the kidney. Steroidogenic cells were designated as interrenal cells that possess star mRNA (in situ hybridization) and lipid vesicles (histological analysis) within the kidney. RT-PCR also detected mc5r mRNA along the length of the tissues associated with the kidney. In situ hybridization analysis of the putative interrenal cells revealed co-expression of mc2r, and mc5r mRNAs in the same steroidogenic cells. Co-expression of gar Mc2r (gMc2r) and Mrap1 (gMrap1) in Chinese Hamster Ovary (CHO) cells stimulated with ACTH(1-24) resulted in activation with an EC50 value of 1.0 × 10-11M +/- 4.6 × 10-11); whereas stimulation of CHO cells co-expressed with gar Mc5r (gMc5r) and gMrap1 and stimulated with ACTH(1-24) resulted in an EC50 value that was 3 orders of magnitude lower (2.1 × 10-8 M +/- 3.5 × 10-9). Interesting, when CHO cells were co-transfected with gMc2r, gMc5r, and gMrap1 there was a decline in activation as measured by the Vmax values for CHO cells stimulated with either ACTH(1-24) or α-MSH. These results suggest that some interaction may occur between gMc2r and gMc5r when both receptors are expressed in the same cells. Phylogenetic and selection pressure analyses of vertebrate mc2r and mc5r genes concluded that the two genes are evolving at different rates after duplication from a proposed common ancestral gene.
Collapse
Affiliation(s)
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, USA.
| |
Collapse
|
11
|
Differential MC5R loss in whales and manatees reveals convergent evolution to the marine environment. Dev Genes Evol 2022; 232:81-87. [PMID: 35648215 DOI: 10.1007/s00427-022-00688-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023]
Abstract
Melanocortin 5 receptor (MC5R), which is expressed in the terminally differentiated sebaceous gland, is a G protein-coupled receptor (GPCR). MC5R exists mostly in mammals but is completely lost in whales; only the relic of MC5R can be detected in manatees, and phenotypically, they have lost sebaceous glands. Interestingly, whales and manatees are both aquatic mammals but have no immediate common ancestors. The loss of MC5R and sebaceous glands in whales and manatees is likely to be a result of convergent evolution. Here, we find that MC5R in whales and manatees are lost by two different mechanisms. Homologous recombination of MC5R in manatees and the insertion of reverse transcriptase in whales lead to the gene loss, respectively. On one hand, in manatees, there are two "TTATC" sequences flanking MC5R, and homologous recombination of the segments between the two "TTATC" sequences resulted in the partial loss of the sequence of MC5R. On the other hand, in whales, reverse transcriptase inserts between MC2R and RNMT on the chromosome led to the loss of MC5R. Based on these two different mechanisms for gene loss in whales and manatees, we finally concluded that MC5R loss might be the result of convergent evolution to the marine environment, and we explored the impact on biological function that is significant to environmental adaptation.
Collapse
|
12
|
Randall JG, Gatesy J, Springer MS. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Mol Phylogenet Evol 2022; 171:107463. [PMID: 35358696 DOI: 10.1016/j.ympev.2022.107463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The loss of teeth and evolution of baleen racks in Mysticeti was a profound transformation that permitted baleen whales to radiate and diversify into a previously underutilized ecological niche of bulk filter-feeding on zooplankton and other small prey. Ancestral state reconstructions suggest that postnatal teeth were lost in the common ancestor of crown Mysticeti. Genomic studies provide some support for this hypothesis and suggest that the genetic toolkit for enamel production was inactivated in the common ancestor of living baleen whales. However, molecular studies to date have not provided direct evidence for the complete loss of teeth, including their dentin component, on the stem mysticete branch. Given these results, several questions remain unanswered: (1) Were teeth lost in a single step or did enamel loss precede dentin loss? (2) Was enamel lost early or late on the stem mysticete branch? (3) If enamel and dentin/tooth loss were decoupled in the ancestry of baleen whales, did dentin loss occur on the stem mysticete branch or independently in different crown mysticete lineages? To address these outstanding questions, we compiled and analyzed complete protein-coding sequences for nine tooth-related genes from cetaceans with available genome data. Seven of these genes are associated with enamel formation (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) whereas two other genes are either dentin-specific (DSPP) or tooth-specific (ODAPH) but not enamel-specific. Molecular evolutionary analyses indicate that all seven enamel-specific genes have inactivating mutations that are scattered across branches of the mysticete tree. Three of the enamel genes (ACP4, KLK4, MMP20) have inactivating mutations that are shared by all mysticetes. The two genes that are dentin-specific (DSPP) or tooth-specific (ODAPH) do not have any inactivating mutations that are shared by all mysticetes, but there are shared mutations in Balaenidae as well as in Plicogulae (Neobalaenidae + Balaenopteroidea). These shared mutations suggest that teeth were lost at most two times. Shared inactivating mutations and dN/dS analyses, in combination with cetacean divergence times, were used to estimate inactivation times of genes and by proxy enamel and tooth phenotypes at ancestral nodes. The results of these analyses are most compatible with a two-step model for the loss of teeth in the ancestry of living baleen whales: enamel was lost very early on the stem Mysticeti branch followed by the independent loss of dentin (and teeth) in the common ancestors of Balaenidae and Plicogulae, respectively. These results imply that some stem mysticetes, and even early crown mysticetes, may have had vestigial teeth comprised of dentin with no enamel. Our results also demonstrate that all odontocete species (in our study) with absent or degenerative enamel have inactivating mutations in one or more of their enamel genes.
Collapse
Affiliation(s)
- Jason G Randall
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| | - Mark S Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Wu T, Deme L, Zhang Z, Huang X, Xu S, Yang G. Decay of TRPV3 as the genomic trace of epidermal structure changes in the land-to-sea transition of mammals. Ecol Evol 2022; 12:e8731. [PMID: 35342611 PMCID: PMC8931706 DOI: 10.1002/ece3.8731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The epidermis plays an indispensable barrier function in animals. Some species have evolved unique epidermal structures to adapt to different environments. Aquatic and semi-aquatic mammals (cetaceans, manatees, and hippopotamus) are good models to study the evolution of epidermal structures because of their exceptionally thickened stratum spinosum, the lack of stratum granulosum, and the parakeratotic stratum corneum. This study aimed to analyze an upstream regulatory gene transient receptor potential cation channel, subfamily V, member 3 (TRPV3) of epidermal differentiation so as to explore the association between TRPV3 evolution and epidermal changes in mammals. Inactivating mutations were detected in almost all the aquatic cetaceans and several terrestrial mammals. Relaxed selective pressure was examined in the cetacean lineages with inactivated TRPV3, which might contribute to its exceptionally thickened stratum spinosum as the significant thickening of stratum spinosum in TRPV3 knock-out mouse. However, functional TRPV3 may exist in several terrestrial mammals due to their strong purifying selection, although they have "inactivating mutations." Further, for intact sequences, relaxed selective constraints on the TRPV3 gene were also detected in aquatic cetaceans, manatees, and semi-aquatic hippopotamus. However, they had intact TRPV3, suggesting that the accumulation of inactivating mutations might have lagged behind the relaxed selective pressure. The results of this study revealed the decay of TRPV3 being the genomic trace of epidermal development in aquatic and semi-aquatic mammals. They provided insights into convergently evolutionary changes of epidermal structures during the transition from the terrestrial to the aquatic environment.
Collapse
Affiliation(s)
- Tianzhen Wu
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
| | - Luoying Deme
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
| | - Zhenhua Zhang
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
| | - Xin Huang
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
| | - Shixia Xu
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
| | - Guang Yang
- College of Life SciencesJiangsu Key Laboratory for Biodiversity and BiotechnologyNanjing Normal UniversityNanjingChina
- Southern Marine Science and Engineering Guangdong LaboratoryGuangzhouChina
| |
Collapse
|
14
|
Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. J Mol Evol 2021; 89:565-575. [PMID: 34342686 DOI: 10.1007/s00239-021-10025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Vestigial organs are historical echoes of past phenotypes. Determining whether a specific organ constitutes a functional or vestigial structure can be a challenging task, given that distinct levels of atrophy may arise between and within lineages. The mammalian pineal gland, an endocrine organ involved in melatonin biorhythmicity, represents a classic example, often yielding contradicting anatomical observations. In Xenarthra (sloths, anteaters, and armadillos), a peculiar mammalian order, the presence of a distinct pineal organ was clearly observed in some species (i.e., Linnaeus's two-toed sloth), but undetected in other closely related species (i.e., brown-throated sloth). In the nine-banded armadillo, contradicting evidence supports either functional or vestigial scenarios. Thus, to untangle the physiological status of the pineal gland in Xenarthra, we used a genomic approach to investigate the evolution of the gene hub responsible for melatonin synthesis and signaling. We show that both synthesis and signaling compartments are eroded and were probably lost independently among Xenarthra orders. Additionally, by expanding our analysis to 157 mammal genomes, we offer a comprehensive view showing that species with very distinctive habitats and lifestyles have convergently evolved a similar phenotype: Cetacea, Pholidota, Dermoptera, Sirenia, and Xenarthra. Our findings suggest that the recurrent inactivation of melatonin genes correlates with pineal atrophy and endorses the use of genomic analyses to ascertain the physiological status of suspected vestigial structures.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE-Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM-Oceanic Observatory of Madeira, Funchal, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal. .,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
15
|
Keenan TF, McLellan WA, Rommel SA, Costidis AM, Harms CA, Thewissen 'HJ, Rotstein DS, Gay MD, Potter CW, Taylor AR, Wang Y, Pabst DA. Gross and histological morphology of the cervical gill slit gland of the pygmy sperm whale (Kogia breviceps). Anat Rec (Hoboken) 2021; 305:688-703. [PMID: 34288509 DOI: 10.1002/ar.24707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 11/11/2022]
Abstract
Odontocete cetaceans have undergone profound modifications to their integument and sensory systems and are generally thought to lack specialized exocrine glands that in terrestrial mammals function to produce chemical signals (Thewissen & Nummela, 2008). Keenan-Bateman et al. (2016, 2018), though, introduced an enigmatic exocrine gland, associated with the false gill slit pigmentation pattern in Kogia breviceps. These authors provided a preliminary description of this cervical gill slit gland in their helminthological studies of the parasitic nematode, Crassicauda magna. This study offers the first detailed gross and histological description of this gland and reports upon key differences between immature and mature individuals. Investigation reveals it is a complex, compound tubuloalveolar gland with a well-defined duct that leads to a large, and expandable central chamber, which in turn leads to two caudally projecting diverticula. All regions of the gland contain branched tubular and alveolar secretory regions, although most are found in the caudal diverticula, where the secretory process is holocrine. The gland lies between slips of cutaneous muscle, and is innervated by lamellar corpuscles, resembling Pacinian's corpuscles, suggesting that its secretory product may be actively expressed into the environment. Mature K. breviceps display larger gland size, and increased functional activity in glandular tissues, as compared to immature individuals. These results demonstrate that the cervical gill slit gland of K. breviceps shares morphological features of the specialized, chemical signaling, exocrine glands of terrestrial members of the Cetartiodactyla.
Collapse
Affiliation(s)
- Tiffany F Keenan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - William A McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Sentiel A Rommel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | | | - Craig A Harms
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, North Carolina
| | - 'Hans' Jgm Thewissen
- Department of Anatomy/Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | | | - Mark D Gay
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Charles W Potter
- Department of Vertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia, USA
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Ying Wang
- University of North Carolina Wilmington, Department of Chemistry and Biochemistry, Wilmington, North Carolina
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| |
Collapse
|
16
|
Zhang Z, Nikaido M. Inactivation of ancV1R as a Predictive Signature for the Loss of Vomeronasal System in Mammals. Genome Biol Evol 2021; 12:766-778. [PMID: 32315408 PMCID: PMC7290294 DOI: 10.1093/gbe/evaa082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The vomeronasal organ (VNO) plays a key role in sensing pheromonal cues, which elicits social and reproductive behaviors. Although the VNO is highly conserved across mammals, it has been lost in some species that have evolved alternate sensing systems during diversification. In this study, we investigate a newly identified VNO-specific gene, ancV1R, in the extant 261 species of mammals to examine the correlation between genotype (ancV1R) and phenotype (VNO). As a result, we found signatures for the relaxation of purifying selection (inactivating mutations and the elevation of dN/dS) on ancV1Rs in VNO-lacking mammals, such as catarrhine primates, cetaceans, the manatees, and several bat lineages, showing the distinct correlation between genotype and phenotype. Interestingly, we further revealed signatures for the relaxation of purifying selection on ancV1R in true seals, otters, the fossa, the owl monkey, and alcelaphine antelopes in which the existence of a functional VNO is still under debate. Our additional analyses on TRPC2, another predictive marker gene for the functional VNO, showed a relaxation of purifying selection, supporting the possibility of VNO loss in these species. The results of our present study invite more in-depth neuroanatomical investigation in mammals for which VNO function remains equivocal.
Collapse
Affiliation(s)
- Zicong Zhang
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
17
|
Evolution: How to evolve a thick skin. Curr Biol 2021; 31:R483-R486. [PMID: 34033772 DOI: 10.1016/j.cub.2021.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new study examines anatomy and genetics of skin in whales and hippos and reveals that adaptations to aquatic and semi-aquatic lifestyles evolved convergently in these lineages.
Collapse
|
18
|
Springer MS, Guerrero-Juarez CF, Huelsmann M, Collin MA, Danil K, McGowen MR, Oh JW, Ramos R, Hiller M, Plikus MV, Gatesy J. Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Curr Biol 2021; 31:2124-2139.e3. [PMID: 33798433 PMCID: PMC8154672 DOI: 10.1016/j.cub.2021.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The macroevolutionary transition from terra firma to obligatory inhabitance of the marine hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of Cetacea (whales, dolphins, and porpoises), molecular phylogenies provide unambiguous evidence that fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other's closest living relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in the common ancestor of Cetancodonta (Cetacea + Hippopotamidae). An alternative hypothesis is that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the integumentary system and evaluate these hypotheses by integrating new histological data for cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive genomic screens and molecular evolutionary analyses for protein-coding genes that have been inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and epidermal differentiation. However, none of these genes exhibit inactivating mutations that are shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous glands, and changes to the keratinization program occurred ∼16 Ma earlier in cetaceans (∼46.5 Ma) than in hippos (∼30.5 Ma). These results, together with histological differences in the integument and prior analyses of oxygen isotopes from stem hippopotamids ("anthracotheres"), support the hypothesis that aquatic skin adaptations evolved independently in hippos and cetaceans.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Christian F Guerrero-Juarez
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Avenue NW, Washington, DC 20560, USA
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany; Senckenberg Research Institute, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
19
|
Mu Y, Huang X, Liu R, Gai Y, Liang N, Yin D, Shan L, Xu S, Yang G. ACPT gene is inactivated in mammalian lineages that lack enamel or teeth. PeerJ 2021; 9:e10219. [PMID: 33552707 PMCID: PMC7831365 DOI: 10.7717/peerj.10219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of tooth or enamel is widespread in multiple mammal lineages. Although several studies have been reported, the evolutionary mechanisms of tooth/enamel loss are still unclear. Most previous studies have found that some tooth-related genes have been inactivated in toothless and/or enamel-less mammals, such as ENAM, ODAM, C4orf26, AMBN, AMTN, DSPP, etc. Here, we conducted evolutionary analyses on ACPT playing a key role in amelogenesis, to interrogate the mechanisms. We obtained the ACPT sequences from 116 species, including edentulous and enamel-less mammals. The results shows that variant ORF-disrupting mutations were detected in ACPT coding region among nine edentulous baleen whales and three enamel-less taxa (pygmy sperm whale, aardvark, nine-banded armadillo). Furtherly, selective pressure uncovered that the selective constraints have been relaxed among all toothless and enamel-less lineages. Moreover, our results support the hypothesis that mineralized teeth were lost or degenerated in the common ancestor of crown Mysticeti through two shared single-base sites deletion in exon 4 and 5 of ACPT among all living baleen whales. DN/dS values on transitional branches were used to estimate ACPT inactivation records. In the case of aardvark, inactivation of ACPT was estimated at ~23.60–28.32 Ma, which is earlier than oldest aardvark fossil record (Orycteropus minutus, ~19 Ma), suggesting that ACPT inactivation may result in degeneration or loss of enamel. Conversely, the inactivation time of ACPT estimated in armadillo (~10.18–11.30 Ma) is later than oldest fossil record, suggesting that inactivation of ACPT may result from degeneration or loss of enamel in these mammals. Our findings suggested that different mechanisms of degeneration of tooth/enamel might exist among toothless and enamel-less lineages during evolution. Our study further considered that ACPT is a novel gene for studying tooth evolution.
Collapse
Affiliation(s)
- Yuan Mu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Rui Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yulin Gai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Na Liang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lei Shan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Tian R, Geng Y, Yang Y, Seim I, Yang G. Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integr Zool 2021; 16:696-711. [PMID: 33417299 DOI: 10.1111/1749-4877.12521] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular basis for adaptations to extreme environments can now be understood by interrogating the ever-increasing number of sequenced genomes. Mammals such as cetaceans, bats, and highland species can protect themselves from oxidative stress, a disruption in the balance of reactive oxygen species, which results in oxidative injury and cell damage. Here, we consider the evolution of the glutathione peroxidase (GPX) family of antioxidant enzymes by interrogating publicly available genome data from 70 mammalian species from all major clades. We identified 8 GPX subclasses ubiquitous to all mammalian groups. Mammalian GPX gene families resolved into the GPX4/7/8 and GPX1/2/3/5/6 groups and are characterized by several instances of gene duplication and loss, indicating a dynamic process of gene birth and death in mammals. Seven of the eight GPX subfamilies (all but GPX7) were under positive selection, with the residues under selection located at or close to active sites or at the dimer interface. We also reveal evidence of a correlation between ecological niches (e.g. high oxidative stress) and the divergent selection and gene copy number of GPX subclasses. Notably, a convergent expansion of GPX1 was observed in several independent lineages of mammals under oxidative stress and may be important for avoiding oxidative damage. Collectively, this study suggests that the GPX gene family has shaped the adaption of mammals to stressful environments.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Li HM, Liu P, Zhang XJ, Li LM, Jiang HY, Yan H, Hou FH, Chen JP. Combined proteomics and transcriptomics reveal the genetic basis underlying the differentiation of skin appendages and immunity in pangolin. Sci Rep 2020; 10:14566. [PMID: 32884035 PMCID: PMC7471334 DOI: 10.1038/s41598-020-71513-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Pangolin (Mains javanica) is an interesting endangered mammal with special morphological characteristics. Here, we applied proteomics and transcriptomics to explore the differentiation of pangolin skin appendages at two developmental stages and to compare gene expression profiles between abdomen hair and dorsal scale tissues. We identified 4,311 genes and 91 proteins differentially expressed between scale-type and hair-type tissue, of which 6 genes were shared by the transcriptome and proteome. Differentiation altered the abundance of hundreds of proteins and mRNA in the two types of skin appendages, many of which are involved in keratinocyte differentiation, epidermal cell differentiation, and multicellular organism development based on GO enrichment analysis, and FoxO, MAPK, and p53 signalling pathways based on KEGG enrichment analysis. DEGs in scale-type tissues were also significantly enriched in immune-related terms and pathways compared with that in hair-type tissues. Thus, we propose that pangolins have a normal skin innate immune system. Compared with the abdomen, the back skin of pangolins had more genes involved in the regulation of immune function, which may be an adaptive adjustment for the vulnerability of scaly skin to infection and injury. This investigation provides a scientific basis for the study of development and immunity of pangolin skin, which may be helpful in the protection of wild pangolin in China.
Collapse
Affiliation(s)
- Hui-Ming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Xiu-Juan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Hai-Ying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Hua Yan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong Province, China
| | - Fang-Hui Hou
- Guangdong Provincial Wildlife Rescue Centre, Guangzhou, Guangdong Province, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China.
| |
Collapse
|
22
|
Lopes-Marques M, Machado AM, Alves LQ, Fonseca MM, Barbosa S, Sinding MHS, Rasmussen MH, Iversen MR, Frost Bertelsen M, Campos PF, da Fonseca R, Ruivo R, Castro LFC. Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea. Mol Biol Evol 2019; 36:1270-1280. [PMID: 30895322 PMCID: PMC6526905 DOI: 10.1093/molbev/msz068] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genomes are dynamic biological units, with processes of gene duplication and loss triggering evolutionary novelty. The mammalian skin provides a remarkable case study on the occurrence of adaptive morphological innovations. Skin sebaceous glands (SGs), for instance, emerged in the ancestor of mammals serving pivotal roles, such as lubrication, waterproofing, immunity, and thermoregulation, through the secretion of sebum, a complex mixture of various neutral lipids such as triacylglycerol, free fatty acids, wax esters, cholesterol, and squalene. Remarkably, SGs are absent in a few mammalian lineages, including the iconic Cetacea. We investigated the evolution of the key molecular components responsible for skin sebum production: Dgat2l6, Awat1, Awat2, Elovl3, Mogat3, and Fabp9. We show that all analyzed genes have been rendered nonfunctional in Cetacea species (toothed and baleen whales). Transcriptomic analysis, including a novel skin transcriptome from blue whale, supports gene inactivation. The conserved mutational pattern found in most analyzed genes, indicates that pseudogenization events took place prior to the diversification of modern Cetacea lineages. Genome and skin transcriptome analysis of the common hippopotamus highlighted the convergent loss of a subset of sebum-producing genes, notably Awat1 and Mogat3. Partial loss profiles were also detected in non-Cetacea aquatic mammals, such as the Florida manatee, and in terrestrial mammals displaying specialized skin phenotypes such as the African elephant, white rhinoceros and pig. Our findings reveal a unique landscape of “gene vestiges” in the Cetacea sebum-producing compartment, with limited gene loss observed in other mammalian lineages: suggestive of specific adaptations or specializations of skin lipids.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - André M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, U. Porto-University of Porto, Porto, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - Susana Barbosa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | | | | | | | | | - Paula F Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, U. Porto-University of Porto, Porto, Portugal
| |
Collapse
|
23
|
The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. Genes (Basel) 2019; 10:genes10020121. [PMID: 30736361 PMCID: PMC6410235 DOI: 10.3390/genes10020121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin, the hormone of darkness, is a peculiar molecule found in most living organisms. Emerging as a potent broad-spectrum antioxidant, melatonin was repurposed into extra roles such as the modulation of circadian and seasonal rhythmicity, affecting numerous aspects of physiology and behaviour, including sleep entrainment and locomotor activity. Interestingly, the pineal gland—the melatonin synthesising organ in vertebrates—was suggested to be absent or rudimentary in some mammalian lineages, including Cetacea. In Cetacea, pineal regression is paralleled by their unique bio-rhythmicity, as illustrated by the unihemispheric sleeping behaviour and long-term vigilance. Here, we examined the genes responsible for melatonin synthesis (Aanat and Asmt) and signalling (Mtnr1a and Mtnr1b) in 12 toothed and baleen whale genomes. Based on an ample genomic comparison, we deduce that melatonin-related gene modules are eroded in Cetacea.
Collapse
|
24
|
Cetacea are natural knockouts for IL20. Immunogenetics 2018; 70:681-687. [DOI: 10.1007/s00251-018-1071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
|