1
|
Maul K, Gradstein SR, Quandt D, Kessler M. Temperature dependence of liverwort diversification reveals a cool origin and hot hotspots. Sci Rep 2025; 15:3225. [PMID: 39863681 PMCID: PMC11762728 DOI: 10.1038/s41598-025-87206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band. In addition, we reconstructed the ancestral temperature preferences of the genera. We found that diversification rates increase linearly with temperature, and hence decrease with elevation. This pattern is mainly driven by epiphytic genera. In contrast, overall genus age is highest at intermediate elevations where liverwort species richness peaks and decreases towards both ends of the elevational and thermal gradient. Our results further indicate that the ancestral lineages from which the extant liverwort genera descended had a preference for cool and humid habitats. We conclude that the extant liverwort species diversity accumulated over long time under these climatic conditions, which are today prevailing at mid-elevations of the world's mountains. Subsequently, liverworts expanded their ranges from these temperate areas towards warm (with high diversification rates) and cold regions (with low diversification rates), located in contemporaneous (tropical) lowlands and high mountains, respectively. The conserved preference for temperate climates shared by the majority of liverwort lineages gives reason to the assumption that they will not be able to cope with the conditions induced by rapid climate warming, whereas the current low-elevation radiation may be less affected by climate change.
Collapse
Affiliation(s)
- Karola Maul
- Bonn Institute of Organismic Biology (BIOB), University of Bonn, Bonn, Germany.
| | | | - Dietmar Quandt
- Bonn Institute of Organismic Biology (BIOB), University of Bonn, Bonn, Germany
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Qian H, Wang J, Qian S, Kessler M. Geographic patterns and climatic drivers of the mean genus age of liverworts in North America. PLANT DIVERSITY 2024; 46:723-731. [PMID: 39811810 PMCID: PMC11726028 DOI: 10.1016/j.pld.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 01/16/2025]
Abstract
Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions, which has been broadly tested for lineages originating in tropical climates but has been rarely tested for lineages that originated and diversified in temperate climates. Liverworts are thought to originate in temperate climates. Mean lineage age reflects evolutionary history of biological communities. Here, using regional liverwort floras across a long latitudinal gradient from tropical to arctic climates in North America, we test the age-component of the temperate niche conservatism hypothesis. Mean genus age (MGA) was estimated for each of 76 regional floras of liverworts. We related MGA to climatic variables for North America as a whole and for its eastern and western parts separately, and used variation partitioning analysis to assess the relative importance of temperature- versus precipitation-related variables and of climate extremes versus seasonality on MGA. We found that older genera of liverworts tend to concentrate in humid regions of intermediate temperatures in the range of 10 °C-20 °C, from which liverworts have adapted to and diversified into more arid, colder, and hotter regions, supporting the temperate niche conservatism hypothesis. We also found that across North America the MGA of liverwort assemblages is more strongly affected by precipitation-related variables than by temperature-related variables, and is more strongly affected by climate extremes than by climate seasonality. Geographic patterns of the MGA of liverworts are consistent with the temperate niche conservatism hypothesis, rather than the tropical niche conservatism hypothesis, the latter of which is broadly supported by angiosperms.
Collapse
Affiliation(s)
- Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Jian Wang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
3
|
Qian H, Vanderpoorten A, Dai Z, Kessler M, Kasprzyk T, Wang J. Spatial patterns and climatic drivers of phylogenetic structure of regional liverwort assemblages in China. ANNALS OF BOTANY 2024; 134:427-436. [PMID: 38795069 PMCID: PMC11341670 DOI: 10.1093/aob/mcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIMS Latitudinal diversity gradients have been intimately linked to the tropical niche conservatism hypothesis, which posits that there has been a strong filter due to the challenges faced by ancestral tropical lineages to adapt to low temperatures and colonize extra-tropical regions. In liverworts, species richness is higher towards the tropics, but the centres of diversity of the basal lineages are distributed across extra-tropical regions, pointing to the colonization of tropical regions by phylogenetically clustered assemblages of species of temperate origin. Here, we test this hypothesis through analyses of the relationship between macroclimatic variation and phylogenetic diversity in Chinese liverworts. METHODS Phylogenetic diversity metrics and their standardized effect sizes for liverworts in each of the 28 regional floras at the province level in China were related to latitude and six climate variables using regression analysis. We conducted variation partitioning analyses to determine the relative importance of each group of climatic variables. KEY RESULTS We find that the number of species decreases with latitude, whereas phylogenetic diversity shows the reverse pattern, and that phylogenetic diversity is more strongly correlated with temperature-related variables compared with precipitation-related variables. CONCLUSIONS We interpret the opposite patterns observed in phylogenetic diversity and species richness in terms of a more recent origin of tropical diversity coupled with higher extinctions in temperate regions.
Collapse
Affiliation(s)
- Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | | | - Zun Dai
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Jian Wang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
4
|
Yu Y, Fan MY, Zhou HX, Song YQ. The global pattern of epiphytic liverwort disparity: insights from Frullania. BMC Ecol Evol 2024; 24:63. [PMID: 38741051 DOI: 10.1186/s12862-024-02254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The geographical and ecological patterns of morphological disparity are crucial to understand how species are assembled within communities in the context of the evolutionary history, morphological evolution and ecological interactions. However, with limited exceptions, rather few studies have been conducted on the global pattern of disparity, particularly in early land plants. Here we explored the spatial accumulation of disparity in a morphologically variable and species rich liverwort genus Frullania in order to test the hypothesis of latitude disparity gradient. We compiled a morphological data set consisting of eight continuous traits for 244 currently accepted species, and scored the species distribution into 19 floristic regions worldwide. By reconstructing the morphospace of all defined regions and comparisons, we identified a general Gondwana-Laurasia pattern of disparity in Frullania. This likely results from an increase of ecological opportunities and / or relaxed constraints towards low latitudes. The lowest disparity occurred in arid tropical regions, largely due to a high extinction rate as a consequence of paleoaridification. There was weak correlation between species diversity and disparity at different spatial scales. Furthermore, long-distance dispersal may have partially shaped the present-day distribution of Frullania disparity, given its frequency and the great contribution of widely distributed species to local morphospace. This study not only highlighted the crucial roles of paleoenvironmental changes, ecological opportunities, and efficient dispersal on the global pattern of plant disparity, but also implied its dependence on the ecological and physiological function of traits.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China.
| | - Mei-Ying Fan
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Hong-Xia Zhou
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Yue-Qin Song
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| |
Collapse
|
5
|
Latitudinal Diversity Gradient in the Changing World: Retrospectives and Perspectives. DIVERSITY 2022. [DOI: 10.3390/d14050334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The latitudinal diversity gradient (LDG) is one of the most extensive and important biodiversity patterns on the Earth. Various studies have established that species diversity increases with higher taxa numbers from the polar to the tropics. Studies of multicellular biotas have supported the LDG patterns from land (e.g., plants, animals, forests, wetlands, grasslands, fungi, and so forth) to oceans (e.g., marine organisms from freshwater invertebrates, continental shelve, open ocean, even to the deep sea invertebrates). So far, there are several hypotheses proposed to explore the diversity patterns and mechanisms of LDG, however, there has been no consensus on the underlying causes of LDG over the past few decades. Thus, we reviewed the progress of LDG studies in recent years. Although several explanations for the LDG have been proposed, these hypotheses are only based on species richness, evolution and the ecosystems. In this review, we summarize the effects of evolution and ecology on the LDG patterns to synthesize the formation mechanisms of the general biodiversity distribution patterns. These intertwined factors from ecology and evolution in the LDG are generally due to the wider distribution of tropical areas, which hinders efforts to distinguish their relative contributions. However, the mechanisms of LDG always engaged controversies, especially in such a context that the human activity and climate change has affected the biodiversity. With the development of molecular biology, more genetic/genomic data are available to facilitate the estimation of global biodiversity patterns with regard to climate, latitude, and other factors. Given that human activity and climate change have inevitably impacted on biodiversity loss, biodiversity conservation should focus on the change in LDG pattern. Using large-scale genetic/genomic data to disentangle the diversity mechanisms and patterns of LDG, will provide insights into biodiversity conservation and management measures. Future perspectives of LDG with integrative genetic/genomic, species, evolution, and ecosystem diversity patterns, as well as the mechanisms that apply to biodiversity conservation, are discussed. It is imperative to explore integrated approaches for recognizing the causes of LDG in the context of rapid loss of diversity in a changing world.
Collapse
|
6
|
Song X, Fang W, Chi X, Shao X, Wang Q. Geographic Pattern of Bryophyte Species Richness in China: The Influence of Environment and Evolutionary History. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.680318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
How contemporary environment interacts with macroevolutionary processes to generate the geographic pattern of bryophyte species is still unresolved. China is very rich in bryophytes, with more than 3,000 bryophytes covering 70% of the families in the world. In this study, we assessed the effects of the contemporary environment (average temperature of the coldest season TCQ, precipitation of the warmest season PWQ, and elevational range) and the recent diversification rates (estimated as mean species number per genus, MSG) on the geographical pattern of species richness for bryophytes and two groups (i.e., liverworts and mosses) in China. We compiled the provincial level distribution of bryophyte species and estimated the geographic pattern of the recent diversification rate by MSG for species in China. Univariate, multivariate regressions and path model analyses were used to assess the relationships between species richness, MSG, and their potential environmental drivers. Species richness of all bryophytes and liverworts significantly increased with the increase of MSG, either in regressions or path analyses, indicating that provinces with high bryophyte richness were mainly inhabited by species (especially liverworts) from lineages with particularly high MSG. In contrast, the species richness of mosses was insignificantly decreased with MSG in univariate regression or insignificantly increased with MSG in path analysis. Both species richness and MSG of all bryophytes and liverworts increased with the increase in energy and water availability. In contrast, for mosses, the species richness significantly increased with the increase of energy and water availability, while MSG decreased with the increase of energy and water availability. The MSG of liverworts increase with the increase of elevational range but the MSG of mosses decrease with the increase of elevational range. Our study suggests that the humid tropical and subtropical mountains in China are not only diversity hotspots for bryophytes, but also cradles for high recent diversification of liverworts, and refuges for mosses to hold many monotypic and oligotypic genera.
Collapse
|
7
|
Hamilton MJ, Walker RS, Kempes CP. Diversity begets diversity in mammal species and human cultures. Sci Rep 2020; 10:19654. [PMID: 33184380 PMCID: PMC7661729 DOI: 10.1038/s41598-020-76658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
Across the planet the biogeographic distribution of human cultural diversity tends to correlate positively with biodiversity. In this paper we focus on the biogeographic distribution of mammal species and human cultural diversity. We show that not only are these forms of diversity similarly distributed in space, but they both scale superlinearly with environmental production. We develop theory that explains that as environmental productivity increases the ecological kinetics of diversity increases faster than expected because more complex environments are also more interactive. Using biogeographic databases of the global distributions of mammal species and human cultures we test a series of hypotheses derived from this theory and find support for each. For both mammals and cultures, we show that (1) both forms of diversity increase exponentially with ecological kinetics; (2) the kinetics of diversity is faster than the kinetics of productivity; (3) diversity scales superlinearly with environmental productivity; and (4) the kinetics of diversity is faster in increasingly productive environments. This biogeographic convergence is particularly striking because while the dynamics of biological and cultural evolution may be similar in principle the underlying mechanisms and time scales are very different. However, a common currency underlying all forms of diversity is ecological kinetics; the temperature-dependent fluxes of energy and biotic interactions that sustain all forms of life at all levels of organization. Diversity begets diversity in mammal species and human cultures because ecological kinetics drives superlinear scaling with environmental productivity.
Collapse
Affiliation(s)
- Marcus J Hamilton
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| | - Robert S Walker
- Department of Anthropology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|