1
|
Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. RUSS J GENET+ 2022; 58:491-506. [DOI: 10.1134/s1022795422040020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2025]
|
2
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
3
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Reichardt W, von Elverfeldt D. Preclinical Applications of Magnetic Resonance Imaging in Oncology. Recent Results Cancer Res 2020; 216:405-437. [PMID: 32594394 DOI: 10.1007/978-3-030-42618-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolving possibilities of molecular imaging (MI) are fundamentally changing the way we look at cancer, with imaging paradigms now shifting away from basic morphological measures toward the longitudinal assessment of functional, metabolic, cellular, and molecular information in vivo. Recent developments of imaging methodology and probe molecules utilizing the vast number of novel animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anticancer treatments. While preclinical molecular imaging offers a whole palette of excellent methodology to choose from, we will focus on magnetic resonance imaging (MRI) techniques, since they provide excellent molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values, and limitations of MRI as molecular imaging modality and comment on its high potential to non-invasively assess information on metabolism, hypoxia, angiogenesis, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dominik von Elverfeldt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Si Y, Kim S, Zhang E, Tang Y, Jaskula-Sztul R, Markert JM, Chen H, Zhou L, Liu XM. Targeted Exosomes for Drug Delivery: Biomanufacturing, Surface Tagging, and Validation. Biotechnol J 2020; 15:e1900163. [PMID: 31595685 DOI: 10.1002/biot.201900163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/28/2019] [Indexed: 01/07/2023]
Abstract
Exosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer-targeted exosomes for drug delivery. Specifically, a scalable, robust, high-yield, cell line based exosome production process is created in a stirred-tank bioreactor, and an efficient surface tagging technique is developed to generate monoclonal antibody (mAb)-exosomes. The in vitro characterization using transmission electron microscopy, NanoSight, and western blotting confirm the high quality of exosomes. Flow cytometry and confocal laser scanning microscopy demonstrate that mAb-exosomes have strong surface binding to cancer cells. Furthermore, to validate the targeted drug delivery efficiency, romidepsin, a histone deacetylase inhibitor, is loaded into mAb-exosomes. The in vitro anti-cancer toxicity study shows high cytotoxicity of mAb-exosome-romidepsin to cancer cells. Finally, the in vivo study using tumor xenograft animal model validates the cancer targeting specificity, anti-cancer efficacy, and drug delivery capability of the targeted exosomes. In summary, new techniques enabling targeted exosomes for drug delivery are developed to support large-scale animal studies and to facilitate the translation from research to clinics.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Eric Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | | | - James M Markert
- Department of Neurosurgery, UAB, 510 20th Street South, Birmingham, AL, 35294, USA
| | - Herbert Chen
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lufang Zhou
- Department of Medicine, UAB, 703 19th Street South, Birmingham, AL, 35294, USA
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| |
Collapse
|
7
|
Basnet H, Tian L, Ganesh K, Huang YH, Macalinao DG, Brogi E, Finley LWS, Massagué J. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 2019; 8:e43627. [PMID: 30912515 PMCID: PMC6440742 DOI: 10.7554/elife.43627] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Metastasis-initiating cells dynamically adapt to the distinct microenvironments of different organs, but these early adaptations are poorly understood due to the limited sensitivity of in situ transcriptomics. We developed fluorouracil-labeled RNA sequencing (Flura-seq) for in situ analysis with high sensitivity. Flura-seq utilizes cytosine deaminase (CD) to convert fluorocytosine to fluorouracil, metabolically labeling nascent RNA in rare cell populations in situ for purification and sequencing. Flura-seq revealed hundreds of unique, dynamic organ-specific gene signatures depending on the microenvironment in mouse xenograft breast cancer micrometastases. Specifically, the mitochondrial electron transport Complex I, oxidative stress and counteracting antioxidant programs were induced in pulmonary micrometastases, compared to mammary tumors or brain micrometastases. We confirmed lung metastasis-specific increase in oxidative stress and upregulation of antioxidants in clinical samples, thus validating Flura-seq's utility in identifying clinically actionable microenvironmental adaptations in early metastasis. The sensitivity, robustness and economy of Flura-seq are broadly applicable beyond cancer research.
Collapse
Affiliation(s)
- Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Karuna Ganesh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of MedicineSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lydia WS Finley
- Cell Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
8
|
Galbán CJ, Hoff BA, Chenevert TL, Ross BD. Diffusion MRI in early cancer therapeutic response assessment. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3458. [PMID: 26773848 PMCID: PMC4947029 DOI: 10.1002/nbm.3458] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 05/05/2023]
Abstract
Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | - B. D. Ross
- Correspondence to: B. D. Ross, University of Michigan School of Medicine, Center for Molecular Imaging and Department of Radiology, Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Tcheudji JK, Cannet C, Gérard C, Curdy C, Beckmann N. Long-term distribution of biodegradable microparticles in rat muscle quantified noninvasively by MRI. Magn Reson Med 2016; 75:1736-1742. [DOI: 10.1002/mrm.25779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jacques Kameni Tcheudji
- Novartis Institutes for BioMedical Research, Drug Metabolism and Pharmacokinetics; Basel Switzerland
| | - Catherine Cannet
- Novartis Institutes for BioMedical Research, Analytical Sciences & Imaging; Basel Switzerland
| | - Christelle Gérard
- Novartis Institutes for BioMedical Research, Analytical Sciences & Imaging; Basel Switzerland
| | - Catherine Curdy
- Novartis Institutes for BioMedical Research, Novartis Pharma Development; Basel Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for BioMedical Research, Analytical Sciences & Imaging; Basel Switzerland
| |
Collapse
|
10
|
Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein. Cancer Gene Ther 2015; 22:215-21. [PMID: 25837665 PMCID: PMC4409539 DOI: 10.1038/cgt.2015.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.
Collapse
|
11
|
Galbán CJ, Ma B, Malyarenko D, Pickles MD, Heist K, Henry NL, Schott AF, Neal CH, Hylton NM, Rehemtulla A, Johnson TD, Meyer CR, Chenevert TL, Turnbull LW, Ross BD. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 2015; 10:e0122151. [PMID: 25816249 PMCID: PMC4376686 DOI: 10.1371/journal.pone.0122151] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 02/18/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate diffusion weighted MRI (DW-MR) as a response metric for assessment of neoadjuvant chemotherapy (NAC) in patients with primary breast cancer using prospective multi-center trials which provided MR scans along with clinical outcome information. MATERIALS AND METHODS A total of 39 patients with locally advanced breast cancer accrued from three different prospective clinical trials underwent DW-MR examination prior to and at 3-7 days (Hull University), 8-11 days (University of Michigan) and 35 days (NeoCOMICE) post-treatment initiation. Thirteen patients, 12 of which participated in treatment response study, from UM underwent short interval (<1hr) MRI examinations, referred to as "test-retest" for examination of repeatability. To further evaluate stability in ADC measurements, a thermally controlled diffusion phantom was used to assess repeatability of diffusion measurements. MRI sequences included contrast-enhanced T1-weighted, when appropriate, and DW images acquired at b-values of 0 and 800 s/mm2. Histogram analysis and a voxel-based analytical technique, the Parametric Response Map (PRM), were used to derive diffusion response metrics for assessment of treatment response prediction. RESULTS Mean tumor apparent diffusion coefficient (ADC) values generated from patient test-retest examinations were found to be very reproducible (|ΔADC|<0.1x10-3mm2/s). This data was used to calculate the 95% CI from the linear fit of tumor voxel ADC pairs of co-registered examinations (±0.45x10-3mm2/s) for PRM analysis of treatment response. Receiver operating characteristic analysis identified the PRM metric to be predictive of outcome at the 8-11 (AUC = 0.964, p = 0.01) and 35 day (AUC = 0.770, p = 0.05) time points (p<.05) while whole-tumor ADC changes where significant at the later 35 day time interval (AUC = 0.825, p = 0.02). CONCLUSION This study demonstrates the feasibility of performing a prospective analysis of DW-MRI as a predictive biomarker of NAC in breast cancer patients. In addition, we provide experimental evidence supporting the use of sensitive analytical tools, such as PRM, for evaluating ADC measurements.
Collapse
Affiliation(s)
- Craig J. Galbán
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bing Ma
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dariya Malyarenko
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martin D. Pickles
- Centre for MR Investigations, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Kevin Heist
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Norah L. Henry
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anne F. Schott
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Colleen H. Neal
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nola M. Hylton
- Department of Radiology, University of California San Francisco, San Francisco, California, United States of America
| | - Alnawaz Rehemtulla
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy D. Johnson
- Departments of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles R. Meyer
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Chenevert
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lindsay W. Turnbull
- Centre for MR Investigations, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Brian D. Ross
- Departments of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Penet MF, Chen Z, Li C, Winnard PT, Bhujwalla ZM. Prodrug enzymes and their applications in image-guided therapy of cancer: tracking prodrug enzymes to minimize collateral damage. Drug Deliv Transl Res 2015; 2:22-30. [PMID: 23646292 DOI: 10.1007/s13346-011-0052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many cytotoxic therapies are available to kill cancer cells. Unfortunately, these also inflict significant damage on normal cells. Identifying highly effective cancer treatments that have minimal or no side effects continues to be a major challenge. One of the strategies to minimize damage to normal tissue is to deliver an activating enzyme that localizes only in the tumor and converts a nontoxic prodrug to a cytotoxic agent locally in the tumor. Such strategies have been previously tested but with limited success due in large part to the uncertainty in the delivery and distribution of the enzyme. Imaging the delivery of the enzyme to optimize timing of the prodrug administration to achieve image-guided prodrug therapy would be of immense benefit for this strategy. Here, we have reviewed advances in the incorporation of image guidance in the applications of prodrug enzymes in cancer treatment. These advances demonstrate the feasibility of using clinically translatable imaging in these prodrug enzyme strategies.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
13
|
Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi O, Rosen B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res 2015; 74:4622-4637. [PMID: 25183787 DOI: 10.1158/0008-5472.can-14-0383] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research."
Collapse
Affiliation(s)
- Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| | - Elizabeth R Gerstner
- Neurology, Massachusetts General Hospital and Harvard Medical School, Oslo University Hospital, Oslo, Norway
| | - Kyrre E Emblem
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Ovidiu Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Departments of Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Abstract
As one targeting strategy of prodrug delivery, gene-directed enzyme prodrug therapy (GDEPT) promises to realize the targeting through its three key features in cancer therapy-cell-specific gene delivery and expression, controlled conversion of prodrugs to drugs in target cells, and expanded toxicity to the target cells' neighbors through bystander effects. After over 20 years of development, multiple GDEPT systems have advanced into clinical trials. However, no GDEPT product is currently marketed as a drug, suggesting that there are still barriers to overcome before GDEPT becomes a standard therapy. In this review, we first provide a general introduction of this prodrug targeting strategy. Then, we utilize the four most thoroughly studied systems to illustrate components, mechanisms, preclinical and clinical results, and further development directions of GDEPT. These four systems are herpes simplex virus thymidine kinase/ganciclovir, cytosine deaminase/5-fluorocytosine, cytochrome P450/oxazaphosphorines, and nitroreductase/CB1954 system. Later, we focus our discussion on bystander effects including local and distant bystander effects. Lastly, we discuss carriers that are used to deliver genes for GDEPT including virus carriers and non-virus carriers. Among these carriers, the stem cell-based gene delivery system represents one of the newest carriers under development, and may brought about a breakthrough to the gene delivery issue of GDEPT.
Collapse
Affiliation(s)
- Jin Zhang
- />The U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland 20993 USA
| | - Vijay Kale
- />College of Pharmacy, Roseman University of Health Sciences, 10920 S. Riverfront Pkwy, South Jordan, Utah 84095 USA
| | - Mingnan Chen
- />Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 USA
| |
Collapse
|
15
|
A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:75-87. [PMID: 24747178 DOI: 10.1016/j.bbcan.2014.04.005] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Exosomes denote a class of secreted nanoparticles defined by size, surface protein and lipid composition, and the ability to carry RNA and proteins. They are important mediators of intercellular communication and regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest them to be important both for diagnostic and therapeutic purposes, prompting the idea of using exosomes as drug delivery vehicles, especially for gene therapy. This review covers the current status of evidence presented in the field of exosome-based drug delivery systems. Components for successful exosome-based drug delivery, such as choice of donor cell, therapeutic cargo, use of targeting peptide, loading method and administration route are highlighted and discussed with a general focus pertaining to the results obtained in models of different cancer types. In addition, completed and on-going clinical trials are described, evaluating exosome-based therapies for the treatment of different cancer types. Due to their endogenous origin, exosome-based drug delivery systems may have advantages in the treatment of cancer, but their design needs further refinement to justify their usage on the clinical scale.
Collapse
|
16
|
Xing L, Sun X, Deng X, Kotedia K, Zanzonico PB, Ackerstaff E, Koutcher JA, Ling CC, Li GC. A triple suicide gene strategy that improves therapeutic effects and incorporates multimodality molecular imaging for monitoring gene functions. Cancer Gene Ther 2013; 20:358-65. [PMID: 23722591 PMCID: PMC3696018 DOI: 10.1038/cgt.2013.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT), or suicide gene therapy, has shown promise in clinical trials. In this preclinical study using stable cell lines and xenograft tumor models, we show that a triple-suicide-gene GDEPT approach produce enhanced therapeutic efficacy over previous methods. Importantly, all the three genes (thymidine kinase, cytosine deaminase and uracil phosphoribosyltransferase) function simultaneously as effectors for GDEPT and markers for multimodality molecular imaging (MMI), using positron emission tomography, magnetic resonance spectroscopy and optical (fluorescent and bioluminescent) techniques. It was demonstrated that MMI can evaluate the distribution and function/activity of the triple suicide gene. The concomitant expression of these genes significantly enhances prodrug cytotoxicity and radiosensitivity in vitro and in vivo.
Collapse
Affiliation(s)
- L Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases. Transl Oncol 2013; 6:133-42. [PMID: 23544166 DOI: 10.1593/tlo.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/13/2013] [Accepted: 02/28/2013] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.
Collapse
|
18
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
19
|
Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M. Labeling cells for in vivo tracking using 19F MRI. Biomaterials 2012; 33:8830-40. [DOI: 10.1016/j.biomaterials.2012.08.048] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/11/2022]
|
20
|
Khan SN, Linetsky M, Ellingson BM, Pope WB. Magnetic Resonance Imaging of Glioma in the Era of Antiangiogenic Therapy. PET Clin 2012; 8:163-82. [PMID: 27157946 DOI: 10.1016/j.cpet.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since it supplanted computed tomography in the early 1990s, magnetic resonance (MR) imaging has remained the standard tool to evaluate disease status in patients with brain tumors. With the recent adoption of antiangiogenic therapy for gliomas, it has become increasingly clear that leakiness of the blood-brain barrier, the physiologic correlate of contrast enhancement, is affected by a multitude of pathophysiologic processes, not all of which correlate with tumor burden. To address this issue, physiologic imaging including diffusion and perfusion MR imaging has been investigated as an avenue to acquire predictive and prognostic biomarkers useful in the evaluation of high-grade gliomas.
Collapse
Affiliation(s)
- Sarah N Khan
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 757 Westwood Boulevard, Suite 1621E, Los Angeles, CA 90095, USA
| | - Michael Linetsky
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 757 Westwood Boulevard, Suite 1621E, Los Angeles, CA 90095, USA
| | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 757 Westwood Boulevard, Suite 1621E, Los Angeles, CA 90095, USA; Department of Biomedical Physics, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA; Department of Biomedical Engineering, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Boulevard, Suite 615, Los Angeles, CA 90024, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 757 Westwood Boulevard, Suite 1621E, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Suicide gene therapy in cancer: where do we stand now? Cancer Lett 2012; 324:160-70. [PMID: 22634584 DOI: 10.1016/j.canlet.2012.05.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial gene, which allows the conversion of a non-toxic compound into a lethal drug. Although suicide gene therapy has been successfully used in a large number of in vitro and in vivo studies, its application to cancer patients has not reached the desirable clinical significance. However, recent reports on pre-clinical cancer models demonstrate the huge potential of this strategy when used in combination with new therapeutic approaches. In this review, we summarize the different suicide gene systems and gene delivery vectors addressed to cancer, with particular emphasis on recently developed systems and associated bystander effects. In addition, we review the different strategies that have been used in combination with suicide gene therapy and provide some insights into the future directions of this approach, particularly towards cancer stem cell eradication.
Collapse
|
22
|
Applications of molecular imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 95:237-98. [PMID: 21075334 DOI: 10.1016/b978-0-12-385071-3.00009-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response, and new therapy development is steadily growing and has already significantly impacted on clinical management of cancer. In this chapter, we overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging), (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g., single-photon emission computed tomography (SPECT) and positron emission tomography (PET)). We review the use of molecular reporters of biological processes (e.g., apoptosis and protein kinase activity) for high-throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology.
Collapse
|
23
|
A feasibility study of parametric response map analysis of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy. Transl Oncol 2011; 2:184-90. [PMID: 19701503 DOI: 10.1593/tlo.09175] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 01/05/2023] Open
Abstract
The parametric response map (PRM) was evaluated as an early surrogate biomarker for monitoring treatment-induced tissue alterations in patients with head and neck squamous cell carcinoma (HNSCC). Diffusion-weighted magnetic resonance imaging (DW-MRI) was performed on 15 patients with HNSCC at baseline and 3 weeks after treatment initiation of a nonsurgical organ preservation therapy (NSOPT) using concurrent radiation and chemotherapy. PRM was applied on serial apparent diffusion coefficient (ADC) maps that were spatially aligned using a deformable image registration algorithm to measure the tumor volume exhibiting significant changes in ADC (PRM(ADC)). Pretherapy and midtherapy ADC maps, quantified from the DWIs, were analyzed by monitoring the percent change in whole-tumor mean ADC and the PRM metric. The prognostic values of percentage change in tumor volume and mean ADC and PRM(ADC) as a treatment response biomarker were assessed by correlating with tumor control at 6 months. Pixel-wise differences as part of PRM(ADC) analysis revealed regions where water mobility increased. Analysis of the tumor ADC histograms also showed increases in mean ADC as early as 3 weeks into therapy in patients with a favorable outcome. Nevertheless, the percentage change in mean ADC was found to not correlate with tumor control at 6 months. In contrast, significant differences in PRM(ADC) and percentage change in tumor volume were observed between patients with pathologically different outcomes. Observations from this study have found that diffusion MRI, when assessed by PRM(ADC), has the potential to provide both prognostic and spatial information during NSOPT of head and neck cancer.
Collapse
|
24
|
Optical and magnetic resonance imaging as complementary modalities in drug discovery. Future Med Chem 2011; 2:317-37. [PMID: 21426169 DOI: 10.4155/fmc.09.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Imaging has the ability to study various biological and chemical processes noninvasively in living subjects in a longitudinal way. For this reason, imaging technologies have become an integral part of the drug-discovery and development program and are commonly used in following disease processes and drug action in both preclinical and clinical stages. As the domain of imaging sciences transitions from anatomical/functional to molecular applications, the development of molecular probes becomes crucial for the advancement of the field. This review summarizes the role of two complementary techniques, magnetic resonance and fluorescence optical imaging, in drug discovery. While the first approach exploits intrinsic tissue characteristics as the source of image contrast, the second necessitates the use of appropriate probes for signal generation. The anatomical, functional, metabolic and molecular information that becomes accessible through imaging can provide invaluable insights into disease mechanisms and mechanisms of drug action.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To highlight the most recent advances in the imaging of gliomas with a focus on high-grade gliomas. In the last several years, MRI and PET imaging of the brain have moved beyond anatomic imaging and are now capable of probing different aspects of tumor biology and response to treatment. These new techniques are increasingly being incorporated into clinical trials and even into clinical practice. Therefore, it is important to be familiar with the available imaging techniques and their potential uses versus limitations. RECENT FINDINGS In 2010, updated response assessment criteria for high-grade gliomas were published. It was the first revision to imaging response criteria for gliomas since 1990 and represents an international effort to standardize criteria for clinical trials. Although this revision represents an important development, there are several promising imaging techniques on the horizon such as vascular permeability measurement, perfusion imaging, diffusion imaging, and new PET tracers that will continue to improve our understanding of tumor biology. SUMMARY Advances in neuroimaging of brain tumors are enabling investigators to noninvasively visualize tumor response to treatment over time. As these tools are validated, they will add substantially to our ability to understand glioma biology and response to therapy.
Collapse
Affiliation(s)
- Elizabeth R Gerstner
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA.
| | | |
Collapse
|
26
|
Li C, Penet MF, Wildes F, Takagi T, Chen Z, Winnard PT, Artemov D, Bhujwalla ZM. Nanoplex delivery of siRNA and prodrug enzyme for multimodality image-guided molecular pathway targeted cancer therapy. ACS NANO 2010; 4:6707-16. [PMID: 20958072 PMCID: PMC2991391 DOI: 10.1021/nn102187v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability to destroy cancer cells while sparing normal tissue is highly sought after in cancer therapy. Small interfering RNA (siRNA)-mediated silencing of cancer-cell-specific targets and the use of a prodrug enzyme delivered to the tumor to convert a nontoxic prodrug to an active drug are two promising approaches in achieving this goal. Combining both approaches into a single treatment strategy can amplify selective targeting of cancer cells while sparing normal tissue. Noninvasive imaging can assist in optimizing such a strategy by determining effective tumor delivery of the siRNA and prodrug enzyme to time prodrug administration and detecting target down-regulation by siRNA and prodrug conversion by the enzyme. In proof-of-principle studies, we synthesized a nanoplex carrying magnetic resonance imaging (MRI) reporters for in vivo detection and optical reporters for microscopy to image the delivery of siRNA and a functional prodrug enzyme in breast tumors and achieve image-guided molecular targeted cancer therapy. siRNA targeting of choline kinase-α (Chk-α), an enzyme significantly up-regulated in aggressive breast cancer cells, was combined with the prodrug enzyme bacterial cytosine deaminase (bCD) that converts the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU). In vivo MRI and optical imaging showed efficient intratumoral nanoplex delivery. siRNA-mediated down-regulation of Chk-α and the conversion of 5-FC to 5-FU by bCD were detected noninvasively with (1)H MR spectroscopic imaging and (19)F MR spectroscopy. Combined siRNA and prodrug enzyme activated treatment achieved higher growth delay than either treatment alone. The strategy can be expanded to target multiple pathways with siRNA.
Collapse
Affiliation(s)
- Cong Li
- Address correspondence to: and
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 2010; 32:2-16. [PMID: 20575076 DOI: 10.1002/jmri.22167] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.
Collapse
Affiliation(s)
- Harriet C Thoeny
- Department of Radiology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | | |
Collapse
|
28
|
Galbán CJ, Bhojani MS, Lee KC, Meyer CR, Van Dort M, Kuszpit K, Koeppe RA, Ranga R, Moffat BA, Johnson TD, Chenevert TL, Rehemtulla A, Ross BD. Evaluation of treatment-associated inflammatory response on diffusion-weighted magnetic resonance imaging and 2-[18F]-fluoro-2-deoxy-D-glucose-positron emission tomography imaging biomarkers. Clin Cancer Res 2010; 16:1542-52. [PMID: 20160061 PMCID: PMC2843556 DOI: 10.1158/1078-0432.ccr-08-1812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Functional imaging biomarkers of cancer treatment response offer the potential for early determination of outcome through the assessment of biochemical, physiologic, and microenvironmental readouts. Cell death may result in an immunologic response, thus complicating the interpretation of biomarker readouts. This study evaluated the temporal effect of treatment-associated inflammatory activity on diffusion magnetic resonance imaging and 2-[(18)F]-fluoro-2-deoxy-D-glucose-positron emission tomography imaging (FDG-PET) biomarkers to delineate the effects of the inflammatory response on imaging readouts. EXPERIMENTAL DESIGN Rats with intracerebral 9L gliosarcomas were separated into four groups consisting of control, an immunosuppressive agent dexamethasone (Dex), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and BCNU+Dex. Animals were imaged using diffusion-weighted magnetic resonance imaging and FDG-PET at 0, 3, and 7 days posttreatment. RESULTS In the BCNU- and BCNU+Dex-treated animal groups, diffusion values increased progressively over the 7-day study period to approximately 23% over baseline. The FDG percentage change of standard uptake value decreased at day 3 (-30.9%) but increased over baseline levels at day 7 (+20.1%). FDG-PET of BCNU+Dex-treated animals were found to have percentage of standard uptake value reductions of -31.4% and -24.7% at days 3 and 7, respectively, following treatment. Activated macrophages were observed on day 7 in the BCNU treatment group with much fewer found in the BCNU+Dex group. CONCLUSIONS Results revealed that treatment-associated inflammatory response following tumor therapy resulted in the accentuation of tumor diffusion response along with a corresponding increase in tumor FDG uptake due to the presence of glucose-consuming activated macrophages. The dynamics and magnitude of potential inflammatory response should be considered when interpreting imaging biomarker results.
Collapse
Affiliation(s)
- Craig J. Galbán
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Mahaveer S Bhojani
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Kuei C. Lee
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Charles R. Meyer
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Marcian Van Dort
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Kyle Kuszpit
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Rajesh Ranga
- Department of Radiation Oncology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Bradford A. Moffat
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Thomas L. Chenevert
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, School of Medicine, Ann Arbor, Michigan
| | - Brian D. Ross
- Center for Molecular Imaging, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Radiology, University of Michigan, School of Medicine, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
29
|
Harry VN. Novel imaging techniques as response biomarkers in cervical cancer. Gynecol Oncol 2010; 116:253-61. [DOI: 10.1016/j.ygyno.2009.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/01/2009] [Accepted: 11/03/2009] [Indexed: 12/22/2022]
|
30
|
Doi Y, Shimmura T, Kuribayashi H, Tanaka Y, Kanazawa Y. Quantitative (19)F imaging of nmol-level F-nucleotides/-sides from 5-FU with T(2) mapping in mice at 9.4T. Magn Reson Med 2010; 62:1129-39. [PMID: 19780181 DOI: 10.1002/mrm.22075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A unique acquisition method is proposed for quantitative, high-sensitivity (19)F MR spectroscopic imaging for the study of drug distribution aiming at nmol-level metabolite information in mice. The use of fast spin echo (FSE) at 9.4T allowed us to obtain whole-body images with minimal effect of magnetic susceptibility and to acquire several metabolite signals simultaneously by the method of interleaved multifrequency selection. Modified 2-shot FSE was designed for simultaneous, high-sensitivity (19)F imaging and T(2) mapping. A time course study including all the main metabolites at 10-minute resolution was attained with an oral dose of 1-2 mmol 5-fluorouracil (5-FU) (130-260 mg)/kg in mice. With acquisition parameters optimized for in vivo T(2) of 40 ms, images of F-nucleotides/-sides, effective anabolites of the anticancer drug 5-FU, were obtained at the level of 200 nmol in the tumor for all the mice studied with a linear correlation (R = 0.96) between image intensity and the quantity determined in the excised tissue. The method exhibits potential capability of molecular imaging with a variety of (19)F-labeled compounds and drug evaluation.
Collapse
Affiliation(s)
- Yoshihiro Doi
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
31
|
Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14:4517-45. [PMID: 19924084 PMCID: PMC6255103 DOI: 10.3390/molecules14114517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/12/2022] Open
Abstract
Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.
Collapse
Affiliation(s)
- Gabi U. Dachs
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Michelle A. Hunt
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Sophie Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| |
Collapse
|
32
|
Xing L, Sun X, Deng X, Kotedia K, Urano M, Koutcher JA, Ling CC, Li GC. Expression of the bifunctional suicide gene CDUPRT increases radiosensitization and bystander effect of 5-FC in prostate cancer cells. Radiother Oncol 2009; 92:345-52. [PMID: 19433338 DOI: 10.1016/j.radonc.2009.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/09/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To test the hypothesis that, with 5-fluorocytosine (5-FC) treatment, the co-expression of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) can lead to greater radiosensitization and bystander effect than CD-expression alone. METHODS AND MATERIALS R3327-AT cell lines stably expressing CD or CDUPRT were generated. The 5-FC and 5-FU cytotoxicity, and the radiosensitivity with/without 5-FC treatment, of these cells were evaluated under both aerobic and hypoxic conditions. The bystander effect was assessed by apoptosis staining and clonogenic survival. The pharmacokinetics of 5-FU and 5-FC metabolism was monitored in mice bearing CD- or CDUPRT-expressing tumors using 19F MR spectroscopy (MRS). RESULTS CDUPRT-expressing cells were more sensitive to 5-FC and 5-FU than CD-expressing cells. CDUPRT-expression further enhanced the radiosensitizing effect of 5-FC, relative to that achieved by CD-expression alone. A 25-fold lower dose of 5-FC resulted in the same magnitude of radiosensitization in CDUPRT-expressing cells, relative to that in CD-expressing cells. The 5-FC cytotoxicity in co-cultures of parental cells mixed with 10-20% CDUPRT cells was similar to that in 100% CDUPRT cells. 19F MRS measurements showed that expression of CDUPRT leads to enhanced accumulation of fluorine nucleotide (FNuc), relative to that associated with CD-expression alone. CONCLUSION Our study suggests that CDUPRT/5-FC strategy may be more effective than CD/5-FC, especially when used in combination with radiation.
Collapse
Affiliation(s)
- Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rozel S, Galbán CJ, Nicolay K, Lee KC, Sud S, Neeley C, Snyder LA, Chenevert TL, Rehemtulla A, Ross BD, Pienta KJ. Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J Cell Biochem 2009; 107:58-64. [PMID: 19259948 PMCID: PMC4293017 DOI: 10.1002/jcb.22056] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic prostate cancer continues to be the second leading cause of cancer death in American men with an estimated 28,660 deaths in 2008. Recently, monocyte chemoattractant protein-1 (MCP-1, CCL2) has been identified as an important factor in the regulation of prostate metastasis. CCL2, shown to attract macrophages to the tumor site, has a direct promotional effect on tumor cell proliferation, migration, and survival. Previous studies have shown that anti-CCL2 antibodies given in combination with docetaxel were able to induce tumor regression in a pre-clinical prostate cancer model. A limitation for evaluating new treatments for metastatic prostate cancer to bone is the inability of imaging to objectively assess response to treatment. Diffusion-weighted MRI (DW-MRI) assesses response to anticancer therapies by quantifying the random (i.e., Brownian) motion of water molecules within the tumor mass, thus identifying cells undergoing apoptosis. We sought to measure the treatment response of prostate cancer in an osseous site to docetaxel, an anti-CCL2 agent, and combination treatments using DW-MRI. Measurements of tumor apparent diffusion coefficient (ADC) values were accomplished over time during a 14-day treatment period and compared to response as measured by bioluminescence imaging and survival studies. The diffusion data provided early predictive evidence of the most effective therapy, with survival data results correlating with the DW-MRI findings. DW-MRI is under active investigation in the pre-clinical and clinical settings to provide a sensitive and quantifiable means for early assessment of cancer treatment outcome.
Collapse
Affiliation(s)
- Stefan Rozel
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Craig J. Galbán
- Departments of Radiology and Radiation Oncology, Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Kuei C. Lee
- Departments of Radiology and Radiation Oncology, Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
| | - Sudha Sud
- Departments of Internal Medicine and Urology, University of Michigan Comprehensive Cancer Center, Michigan Center for Translational Pathology, Ann Arbor, MI 48109 (USA)
| | - Chris Neeley
- Departments of Internal Medicine and Urology, University of Michigan Comprehensive Cancer Center, Michigan Center for Translational Pathology, Ann Arbor, MI 48109 (USA)
| | - Linda A. Snyder
- Ortho Biotech Oncology Research and Development, Centocor, 145 King of Prussia Road, Radnor, PA 19087
| | - Thomas L. Chenevert
- Departments of Radiology and Radiation Oncology, Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
| | - Alnawaz Rehemtulla
- Departments of Radiology and Radiation Oncology, Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
| | - Brian D. Ross
- Departments of Radiology and Radiation Oncology, Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
| | - Kenneth J. Pienta
- Departments of Internal Medicine and Urology, University of Michigan Comprehensive Cancer Center, Michigan Center for Translational Pathology, Ann Arbor, MI 48109 (USA)
| |
Collapse
|
34
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Rodríguez I, Pérez-Rial S, González-Jimenez J, Pérez-Sánchez J, Herranz F, Beckmann N, Ruíz-Cabello J. Magnetic resonance methods and applications in pharmaceutical research. J Pharm Sci 2008; 97:3637-65. [PMID: 18228597 DOI: 10.1002/jps.21281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review presents an overview of some recent magnetic resonance (MR) techniques for pharmaceutical research. MR is noninvasive, and does not expose subjects to ionizing radiation. Some methods that have been used in pharmaceutical research MR include magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) methods, among them, diffusion-weighted MRI, perfusion-weighted MRI, functional MRI, molecular imaging and contrast-enhance MRI. Some applications of MR in pharmaceutical research include MR in metabonomics, in vivo MRS, studies in cerebral ischemia and infarction, degenerative joint diseases, oncology, cardiovascular disorders, respiratory diseases and skin diseases. Some of these techniques, such as cardiac and joint imaging, or brain fMRI are standard, and are providing relevant data routinely. Skin MR and hyperpolarized gas lung MRI are still experimental. In conclusion, considering the importance of finding and characterizing biomarkers for improved drug evaluation, it can be expected that the use of MR techniques in pharmaceutical research is going to increase in the near future.
Collapse
Affiliation(s)
- I Rodríguez
- Grupo de Resonancia Magnética, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol 2008; 21:728-35. [DOI: 10.1097/wco.0b013e328318402a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Hamstra DA, Lee KC, Moffat BA, Chenevert TL, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: an imaging treatment response biomarker to chemoradiotherapy in a mouse model of squamous cell cancer of the head and neck. Transl Oncol 2008; 1:187-94. [PMID: 19043529 PMCID: PMC2582167 DOI: 10.1593/tlo.08166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 12/22/2022] Open
Abstract
For the treatment of squamous cell cancer of the head and neck (SCCHN), the assessment of treatment response is traditionally accomplished by volumetric measurements and has been suggested to be prognostic for an eventual response to treatment. An early evaluation response during the course of radiation therapy could provide an opportunity to tailor treatment to individual patients. Diffusion magnetic resonance imaging (MRI) allows for the quantification of tissue water diffusion values, thus treatment-induced loss of tumor cells will result in the increase in water mobility at the microscopic level, which can be detected as an increase in tumor diffusion values before any volumetric changes occur. We evaluated the use of diffusion MRI as an imaging biomarker of treatment response in an orthotopic mouse model of SCCHN. Mice with murine squamous cells expressing the yeast transgene cytosine deaminase were treated with 5-fluorocytosine (5FC), ionizing radiation, and combined therapy and were compared with control animals both during and after treatment for changes in tumor volumes, diffusion values, and survival. Radiation therapy had minimal effect on volumetric growth rate, diffusion, or survival. Although 5FC and combination treatment resulted in similar reductions in tumor volumes, the combination treatment elicited a much greater increase in tumor diffusion values, which correlated with improved survival. Thus, diffusion MRI as an imaging biomarker has a potential for early evaluation of the response to chemoradiation treatment in SCCHN.
Collapse
Affiliation(s)
- Daniel A Hamstra
- Department of Radiation Oncology, The University of Michigan Medical School, Biomedical Sciences Research Building, Room A528, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
38
|
Vuyyuri SB, Hamstra DA, Khanna D, Hamilton CA, Markwart SM, Campbell KCM, Sunkara P, Ross BD, Rehemtulla A. Evaluation of D-methionine as a novel oral radiation protector for prevention of mucositis. Clin Cancer Res 2008; 14:2161-70. [PMID: 18381958 DOI: 10.1158/1078-0432.ccr-07-1954] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oral mucositis is a common acute morbidity associated with radiation and/or chemotherapy treatment for cancer. D-Methionine (D-Met), the dextro-isomer of the common amino acid l-methionine, has been documented to protect normal tissues from a diverse array of oxidative insults. EXPERIMENTAL DESIGN We evaluated if D-Met could selectively prevent radiation-induced oral mucositis using in vitro cell culture models as well as an in vivo model of radiation injury to the oral mucosa in C3H mice. RESULTS Unlike free-radical scavengers, which protected both normal and transformed tumor cells in vitro from radiation-induced cell death, treatment with d-Met in culture protected nontransformed primary human cells from radiation-induced cell death (protective factor between 1.2 and 1.6; P<0.05) whereas it did not confer a similar protection on transformed tumor cells. D-Met treatment also provided significant protection to normal human fibroblasts, but not to tumor cell lines, from radiation-induced loss of clonogenicity (protection factor, 1.6+/-0.15). D-Met treatment did not alter DNA damage (as measured by histone phosphorylation) following irradiation but seemed to selectively mitigate the loss of mitochondrial membrane potential in nontransformed cells, whereas it did not provide a similar protection to tumor cells. Tumor control of implanted xenografts treated with radiation or concurrent cisplatin and radiation was not altered by D-Met treatment. Pharmacokinetics following administration of a liquid suspension of D-Met in rats showed 68% bioavailability relative to i.v. administration. Finally, in a murine model of mucositis, a dose-dependent increase in protection was observed with the protective factor increasing from 1.6 to 2.6 over a range of oral D-Met doses between 200 and 500 mg/kg (P<0.0003). CONCLUSIONS D-Met protected normal tissues, but not tumor cells, in culture from radiation-induced cell death; it also protected normal cells from radiation-induced mucosal injury in a murine model but did not alter tumor response to therapy. Further studies on the use of D-Met to protect from oral mucositis are warranted.
Collapse
Affiliation(s)
- Saleha B Vuyyuri
- Departments of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gade TPF, Koutcher JA, Spees WM, Beattie BJ, Ponomarev V, Doubrovin M, Buchanan IM, Beresten T, Zakian KL, Le HC, Tong WP, Mayer-Kuckuk P, Blasberg RG, Gelovani JG. Imaging transgene activity in vivo. Cancer Res 2008; 68:2878-84. [PMID: 18413756 DOI: 10.1158/0008-5472.can-07-6028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The successful translation of gene therapy for clinical application will require the assessment of transgene activity as a measure of the biological function of a therapeutic transgene. Although current imaging permits the noninvasive detection of transgene expression, the critical need for quantitative imaging of the action of the expressed transgene has not been met. In vivo magnetic resonance spectroscopic imaging (MRSI) was applied to quantitatively delineate both the concentration and activity of a cytosine deaminase-uracil phosphoribosyltransferase (CD-UPRT) fusion enzyme expressed from a transgene. MRSI enabled the generation of anatomically accurate maps of the intratumoral heterogeneity in fusion enzyme activity. We observed an excellent association between the CD-UPRT concentration and activity and the percentage of CD-UPRT(+) cells. Moreover, the regional levels of UPRT activity, as measured by imaging, correlated well with the biological affect of the enzyme. This study presents a translational imaging paradigm for precise, in vivo measurements of transgene activity with potential applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Terence P F Gade
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li C, Penet MF, Winnard P, Artemov D, Bhujwalla ZM. Image-guided enzyme/prodrug cancer therapy. Clin Cancer Res 2008; 14:515-22. [PMID: 18223227 DOI: 10.1158/1078-0432.ccr-07-1837] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The success of enzyme/prodrug cancer therapy is limited by the uncertainty in the delivery of the enzyme in vivo. This study shows the use of noninvasive magnetic resonance (MR) and optical imaging to image the delivery of a prodrug enzyme. With this capability, prodrug administration can be timed so that the enzyme concentration is high in the tumor and low in systemic circulation and normal tissue, thereby minimizing systemic toxicity without compromising therapeutic efficiency. EXPERIMENTAL DESIGN The delivery of a multimodal imaging reporter functionalized prodrug enzyme, cytosine deaminase, was detected by MR and optical imaging in MDA-MB-231 breast cancer xenografts. Stability of the enzyme in the tumor was verified by (19)F MR spectroscopy, which detected conversion of 5-fluorocytosine to 5-flurouracil. The optimal time window for prodrug injection determined by imaging was validated by immunohistochemical, biodistribution, and high-performance liquid chromatographic studies. The therapeutic effect and systemic toxicity of this treatment strategy were investigated by histologic studies and tumor/body weight growth curves. RESULTS The delivery of the functionalized enzyme in tumors was successfully imaged in vivo. The optimal time window for prodrug administration was determined to be 24 h, at which time the enzyme continued to show high enzymatic stability in tumors but was biodegraded in the liver. Significant tumor growth delay with tolerable systemic toxicity was observed when the prodrug was injected 24 h after the enzyme. CONCLUSION These preclinical studies show the feasibility of using a MR-detectable prodrug enzyme to time prodrug administration in enzyme/prodrug cancer therapy.
Collapse
Affiliation(s)
- Cong Li
- Johns Hopkins University In Vivo Cellular Molecular Imaging Center Program, The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
41
|
Xing L, Deng X, Kotedia K, Ackerstaff E, Ponomarev V, Clifton Ling C, Koutcher JA, Li GC. Non-invasive molecular and functional imaging of cytosine deaminase and uracil phosphoribosyltransferase fused with red fluorescence protein. Acta Oncol 2008; 47:1211-20. [PMID: 18661431 PMCID: PMC4246416 DOI: 10.1080/02841860802256475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Increased expression of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) may improve the antitumoral effect of 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC), and thereby enhance the potential of gene-directed enzyme prodrug therapy. For the applicability of gene-directed enzyme prodrug therapy in a clinical setting, it is essential to be able to monitor the transgene expression and function in vivo. Thus, we developed a preclinical tumor model to investigate the feasibility of using magnetic resonance spectroscopy and optical imaging to measure non-invasively CD and UPRT expression and function. MATERIALS AND METHODS Expression vectors of CD or CD/UPRT fused to monomeric DsRed (mDsRed) were constructed and rat prostate carcinoma (R3327-AT) cell lines stably expressing either CD/mDsRed or CD/UPRT/mDsRed were generated. The expression of the fusion proteins was evaluated by flow cytometry, fluorescence microscopy, and Western blot analysis. The function of the fusion protein was confirmed in vitro by assessing 5-FC and 5-FU cytotoxicity. In vivo fluorine-19 magnetic resonance spectroscopy ((19)F MRS) was used to monitor the conversion of 5-FC to 5-FU in mice bearing the R3327-CD/mDsRed and R3327-CD/UPRT/mDsRed tumor xenografts. RESULTS Sensitivity to 5-FC and 5-FU was higher in cells stably expressing the CD/UPRT/mDsRed fusion gene than in cells stably expressing CD/mDsRed alone or wild-type cells. Whole tumor (19)F MRS measurements showed rapid conversion of 5-FC to 5-FU within 20 min after 5-FC was administered intravenously in both CD/mDsRed and CD/UPRT/mDsRed tumors with subsequent anabolism to cytotoxic fluoronucleotides (FNucs). CD/UPRT/mDsRed tumor was more efficient in these processes. CONCLUSION This study demonstrates the utility of these tumor models stably expressing CD or CD/UPRT to non-invasively evaluate the efficacy of the transgene expression/activity by monitoring drug metabolism in vivo using MRS, with potential applications in preclinical and clinical settings.
Collapse
Affiliation(s)
- Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee KC, Bradley DA, Hussain M, Meyer CR, Chenevert TL, Jacobson JA, Johnson TD, Galban CJ, Rehemtulla A, Pienta KJ, Ross BD. A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 2007; 9:1003-11. [PMID: 18084607 PMCID: PMC2134897 DOI: 10.1593/neo.07954] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 01/15/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in American men with a subset inevitably presenting with metastatic disease to the bone. A well-recognized limitation in evaluating new treatments for metastatic PCa is the inability to use imaging to objectively assess response therapy. In this study, we evaluated the feasibility of clinically translating the functional diffusion map (fDM) imaging biomarker for quantifying the spatiotemporal effects of bone tumor response in a patient treated for metastatic PCa with bone metastases. A patient beginning therapy was scanned using MRI before treatment and again at 2 and 8 weeks post-treatment initiation to quantify changes in tumor diffusion values. Three metastatic lesions were identified for fDM analysis, all of which all demonstrated an early increase in diffusion values at 2 weeks, which increased further at 8 weeks post-treatment initiation. This finding correlated with a decrease in the patient's prostate-specific antigen (PSA) levels suggestive of patient response. CT, bone scans, and anatomic MRI images obtained posttreatment were found to be uninformative for the assessment of treatment effectiveness. This study presents the feasibility of fDM-measurements in osseous lesions over time and shows that changes in fDM values were consistent with therapeutic response. Thus, the fDM imaging biomarker may provide a quantifiable therapeutic endpoint to assess response in patients with metastatic bone cancer.
Collapse
Affiliation(s)
- Kuei C Lee
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007; 25:4104-9. [PMID: 17827460 DOI: 10.1200/jco.2007.11.9610] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of response to oncology treatments, either on clinical protocol or as part of standard practice, is a complicated process that has evolved during the last 10 years due to the improvement of existing imaging technologies and the introduction of newer modalities. Diffusion magnetic resonance imaging is a technique that measures the mobility of water within tissues and, as such, may function as a surrogate marker for both tissue cellularity and response to treatment that occur earlier than usual measures of tumor response. This review highlights the development of this technique and the state of current clinical understanding of its utility.
Collapse
Affiliation(s)
- Daniel A Hamstra
- Department of Radiation Oncology, The Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | |
Collapse
|
45
|
McConville P, Hambardzumyan D, Moody JB, Leopold WR, Kreger AR, Woolliscroft MJ, Rehemtulla A, Ross BD, Holland EC. Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 2007; 13:2897-904. [PMID: 17504989 DOI: 10.1158/1078-0432.ccr-06-3058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The median survival for patients diagnosed with glioblastoma multiforme, the most common type of brain tumor, is less than 1 year. Animal glioma models that are more predictive of therapeutic response in human patients than traditional models and that are genetically and histologically accurate are an unmet need. The nestin tv-a (Ntv-a) genetically engineered mouse spontaneously develops glioma when infected with ALV-A expressing platelet-derived growth factor, resulting in autocrine platelet-derived growth factor signaling. EXPERIMENTAL DESIGN In the Ntv-a genetically engineered mouse model, T2-weighted and T1-weighted, contrast-enhanced magnetic resonance images were correlated with histology, glioma grade (high or low), and survival. Magnetic resonance imaging (MRI) was therefore used to enroll mice with high-grade gliomas into a second study that tested efficacy of the current standard of care for glioma, temozolomide (100 mg/kg qdx5 i.p., n=13). RESULTS The Ntv-a model generated a heterogeneous group of gliomas, some with high-grade growth rate and histologic characteristics and others with characteristics of lower-grade gliomas. We showed that MRI could be used to predict tumor grade and survival. Temozolomide treatment of high-grade tv-a gliomas provided a 14-day growth delay compared with vehicle controls. Diffusion MRI measurement of the apparent diffusion coefficient showed an early decrease in cellularity with temozolomide, similar to that observed in humans. CONCLUSIONS The use of MRI in the Ntv-a model allows determination of glioma grade and survival prediction, distribution of mice with specific tumor types into preclinical trials, and efficacy determination both by tumor growth and early apparent diffusion coefficient response.
Collapse
|
46
|
Kettunen MI, Sierra A, Närväinen MJ, Valonen PK, Ylä-Herttuala S, Kauppinen RA, Gröhn OHJ. Low Spin-Lock Field T1 Relaxation in the Rotating Frame as a Sensitive MR Imaging Marker for Gene Therapy Treatment Response in Rat Glioma1. Radiology 2007; 243:796-803. [PMID: 17517934 DOI: 10.1148/radiol.2433052077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively assess the effectiveness of T1 relaxation in the rotating frame (T1 rho) dispersion and the low spin-lock radiofrequency field (B(1)) T1 rho magnetic resonance (MR) imaging relaxation time in noninvasive monitoring of gene therapy response in BT4C glioma in rats. MATERIALS AND METHODS All animal studies were approved by the ethical committee of the National Laboratory Animal Center. Rats with BT4C gliomas (n=9) were treated with herpes simplex virus thymidine kinase gene therapy and were compared with untreated rats (n=5). Absolute T1 rho at a B(1) range of 2.0 x 10(-6) to 1.4 x 10(-4) T, T1, T2, and apparent diffusion constant were measured at 4.7 T during treatment. Statistical significance was tested by using repeated-measures analysis of variance. RESULTS A significant (P<.05) lengthening of T1 rho was observed beginning on the 4th day of treatment, and T1 rho values increased to be approximately 80% higher than values observed before treatment. These changes preceded T1 and T2 changes and resembled those of water diffusion. The T1 rho was associated with a treatment-induced decrease in cell density; this was the only measured MR imaging property that provided significant (P<.05) Pearson correlation with cell density in the tumor border. T1 rho relaxation dispersion, however, did not offer additional benefits over those offered in one B(1) experiment in the early phase of treatment. CONCLUSION T1 rho with low B(1) is an excellent MR imaging marker of early gene therapy response in gliomas. The low B(1) approach is not limited by specific absorption rate restrictions; this finding suggests that spin-lock methods could be applicable in clinical settings. (
Collapse
Affiliation(s)
- Mikko I Kettunen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M. In vivo mouse imaging and spectroscopy in drug discovery. NMR IN BIOMEDICINE 2007; 20:154-85. [PMID: 17451175 DOI: 10.1002/nbm.1153] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Lee KC, Moffat BA, Schott AF, Layman R, Ellingworth S, Juliar R, Khan AP, Helvie M, Meyer CR, Chenevert TL, Rehemtulla A, Ross BD. Prospective early response imaging biomarker for neoadjuvant breast cancer chemotherapy. Clin Cancer Res 2007; 13:443-50. [PMID: 17255264 DOI: 10.1158/1078-0432.ccr-06-1888] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The American Cancer Society estimates that in 2006, 212,920 women will be diagnosed with breast cancer and that 40,970 women will die from the disease. The development of more efficacious chemotherapies has improved outcomes, but the rapid assessment of clinical benefit from these agents remains challenging. In breast cancer patients receiving neoadjuvant chemotherapy, treatment response is traditionally assessed by physical examination and volumetric-based measurements, which are subjective and require macroscopic changes in tumor morphology. In this study, we evaluate the feasibility of using diffusion magnetic resonance imaging (MRI) as a reliable and quantitative measure for the early assessment of response in a breast cancer model. EXPERIMENTAL DESIGN Mice implanted with human breast cancer (MX-1) were treated with cyclophosphamide and evaluated using diffusion MRI and growth kinetics. Histologic analyses using terminal nucleotidyl transferase-mediated nick end labeling and H&E were done on tumor samples for correlation with imaging results. RESULTS Cyclophosphamide treatment resulted in a significant reduction in tumor volumes compared with controls. The mean apparent diffusion change for treated tumors at days 4 and 7 posttreatment was 44 +/- 5% and 94 +/- 7%, respectively, which was statistically greater (P < 0.05) than the control tumors at the same time intervals. The median time-to-progression for control and treated groups was 11 and 32 days, respectively (P < 0.05). CONCLUSION Diffusion MRI was shown to detect early changes in the tumor microenvironment, which correlated with standard measures of tumor response as well as overall outcome. Moreover, these findings show the feasibility of using diffusion MRI for assessing treatment response of a breast tumor model in a neoadjuvant setting.
Collapse
Affiliation(s)
- Kuei C Lee
- Department of Radiology, Center for Molecular Imaging, University of Michigan Medical School, Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schaller BJ, Modo M, Buchfelder M. Molecular Imaging of Brain Tumors: A Bridge Between Clinical and Molecular Medicine? Mol Imaging Biol 2007; 9:60-71. [PMID: 17203238 DOI: 10.1007/s11307-006-0069-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As the research on cellular changes has shed invaluable light on the pathophysiology and biochemistry of brain tumors, clinical and experimental use of molecular imaging methods is expanding and allows quantitative assessment. The term molecular imaging is defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Molecular imaging sets forth to probe the molecular abnormalities that are the basis of disease rather than to visualize the end effects of these molecular alterations and, therefore, provides different additional biochemical or molecular information about primary brain tumors compared to histological methods "classical" neuroradiological diagnostic studies. Common clinical indications for molecular imaging contain primary brain tumor diagnosis and identification of the metabolically most active brain tumor reactions (differentiation of viable tumor tissue from necrosis), prediction of treatment response by measurement of tumor perfusion, or ischemia. The interesting key question remains not only whether the magnitude of biochemical alterations demonstrated by molecular imaging reveals prognostic value with respect to survival, but also whether it identifies early disease and differentiates benign from malignant lesions. Moreover, an early identification of treatment success or failure by molecular imaging could significantly influence patient management by providing more objective decision criteria for evaluation of specific therapeutic strategies. Specially, as molecular imaging represents a novel technology for visualizing metabolism and signal transduction to gene expression, reporter gene assays are used to trace the location and temporal level of expression of therapeutic and endogenous genes. Molecular imaging probes and drugs are being developed to image the function of targets without disturbing them and in mass amounts to modify the target's function as a drug. Molecular imaging helps to close the gap between in vitro and in vivo integrative biology of disease.
Collapse
Affiliation(s)
- B J Schaller
- Neuroscience Imaging, Department of Neurological Surgery, University of Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | | | | |
Collapse
|
50
|
Moffat BA, Chenevert TL, Meyer CR, McKeever PE, Hall DE, Hoff BA, Johnson TD, Rehemtulla A, Ross BD. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 2006; 8:259-67. [PMID: 16756718 PMCID: PMC1600674 DOI: 10.1593/neo.05844] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional diffusion map (fDM) has been recently reported as an early and quantitative biomarker of clinical brain tumor treatment outcome. This approach spatially maps and quantifies treatment-induced changes in tumor water diffusion values resulting from alterations in cell density/cell membrane function and microenvironment. This current study was designed to evaluate the capability of fDM for preclinical evaluation of dose escalation studies and to determine if these changes were correlated with outcome measures (cell kill and overall survival). Serial T2-weighted were carried out on rodents with orthotopically implanted 9L brain tumors receiving three doses of 1,3-bis(2-chloroethyl)-1-nitrosourea (6.65, 13.3, and 26.6 mg/kg, i.p.). All images were coregistered to baseline T2-weighted images for fDM analysis. Analysis of tumor fDM data on day 4 posttreatment detected dose-dependent changes in tumor diffusion values, which were also found to be spatially dependent. Histologic analysis of treated tumors confirmed spatial changes in cellularity as observed by fDM. Early changes in tumor diffusion values were found to be highly correlative with drug dose and independent biologic outcome measures (cell kill and survival). Therefore, The fDM imaging biomarker for early prediction of treatment efficacy can be used in the drug development process.
Collapse
Affiliation(s)
- Bradford A Moffat
- Center for Molecular Imaging, Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | | | | | |
Collapse
|