1
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Zuo J, Yan T, Tang X, Zhang Q, Li P. Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B 1 in Maize. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2771-2780. [PMID: 36598495 DOI: 10.1021/acsami.2c20269] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent years, dual-modal immunosensors based on synthetic nanomaterials have provided accurate and sensitive detection. However, preparation of nanomaterial probes can be time-consuming, laborious, and not limited to producing inactive and low-affinity antibodies. These challenges can be addressed through the multifunction nanobody without conjugation. In this study, a nanobody-enhanced green fluorescent (Nb26-EGFP) was novel produced with a satisfactory affinity and fluorescent properties. Then, a dual-modal fluorescent/colorimetric immunosensor was constructed using the Nb26-EGFP-gold nanoflowers (AuNFs) composite as a probe, to detect the aflatoxin B1 (AFB1). In the maize matrix, the proposed immunosensor showed high sensitivity with a limit of detection (LOD) of 0.0024 ng/mL and a visual LOD of 1 ng/mL, which is 20-fold and 325-fold compared with the Nb26-EGFP-based single-modal immunosensor and original nanobody Nb26-based immunoassay. The performance of the dual-modal assay was validated by a high-performance liquid chromatography method. The recoveries were between 83.19 and 108.85%, with the coefficients of variation below 9.43%, indicating satisfied accuracy and repeatability. Overall, the novel Nb26-EGFP could be used as the detection probe, and the dual-modal immunosensor could be used as a practical detection method for AFB1 in real samples.
Collapse
Affiliation(s)
- Jiasi Zuo
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Tingting Yan
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei430062, China
- Hubei Hongshan Laboratory, Wuhan, Hubei430062, China
| |
Collapse
|
3
|
Collon K, Gallo MC, Bell JA, Chang SW, Rodman JCS, Sugiyama O, Kohn DB, Lieberman JR. Improving Lentiviral Transduction of Human Adipose-Derived Mesenchymal Stem Cells. Hum Gene Ther 2022; 33:1260-1268. [PMID: 35859364 PMCID: PMC9808795 DOI: 10.1089/hum.2022.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 01/25/2023] Open
Abstract
Lentiviral transduction of human mesenchymal stem cells (MSCs) induces long-term transgene expression and holds great promise for multiple gene therapy applications. Polybrene is the most commonly used reagent to improve viral gene transfer efficiency in laboratory research; however, it is not approved for human use and has also been shown to impair MSC proliferation and differentiation. Therefore, there is a need for optimized transduction protocols that can also be adapted to clinical settings. LentiBOOST (LB) and protamine sulfate are alternative transduction enhancers (TEs) that can be manufactured to current Good Manufacturing Practice standards, are easily applied to existing protocols, and have been previously studied for the transduction of human CD34+ hematopoietic stem cells. In this study, we investigated these reagents for the enhancement of lentiviral transduction of adipose-derived MSCs. We found that the combination of LB and protamine sulfate could yield comparable or even superior transduction efficiency to polybrene, with no dose-dependent adverse effects on cell viability or stem cell characteristics. This combination of TEs represents a valuable clinically compatible alternative to polybrene with the potential to significantly improve the efficiency of lentiviral transduction of MSCs for gene therapy applications.
Collapse
Affiliation(s)
- Kevin Collon
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jennifer A. Bell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Stephanie W. Chang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John Croom Sueiro Rodman
- Southern California Clinical and Translational Science Institute, University of Southern California, Los Angeles, California, USA; and
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Cunningham ME, Kelly NH, Rawlins BA, Boachie-Adjei O, van der Meulen MCH, Hidaka C. Lumbar spine intervertebral disc gene delivery of BMPs induces anterior spine fusion in lewis rats. Sci Rep 2022; 12:16847. [PMID: 36207369 PMCID: PMC9547004 DOI: 10.1038/s41598-022-21208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Minimally invasive techniques and biological autograft alternatives such as the bone morphogenetic proteins (BMPs) can reduce morbidity associated with spinal fusions. This study was a proof-of-concept for gene-therapy-mediated anterior spine fusion that could be adapted to percutaneous technique for clinical use. Isogeneic bone marrow stromal cells genetically programmed to express b-galactosidase (LACZ, a marker gene), BMP2, BMP7, a mixture of BMP2 and BMP7 infected cells (homodimers, HM), or BMP2/7 heterodimers (HT) were implanted into the discs between lumbar vertebrae 4 and 5 (L4/5) and L5/6 of male Lewis rats. Spine stiffening was monitored at 4, 8 and 12 weeks using noninvasive-induced angular displacement (NIAD) testing. At 12 weeks isolated spines were assessed for fusion and bone formation by palpation, biomechanical testing [four-point bending stiffness, moment to failure in extension, and in vitro angular displacement (IVAD)], faxitron x-rays, microCT, and histology. Progressive loss of NIAD occurred in only the HT group (p < 0.001), and biomechanical tests correlated with the NIAD results. Significant fusion occurred only in the HT group (94% of animals with one or both levels) as assessed by palpation (p < 0.001), which predicted HT bone production assessed by faxitron (p ≤ 0.001) or microCT (p < 0.023). Intervertebral bridging bone was consistently observed only in HT-treated specimens. Induced bone was located anterior and lateral to the disc space, with no bone formation noted within the disc. Percutaneous anterior spine fusions may be possible clinically, but induction of bone inside the disc space remains a challenge.
Collapse
Affiliation(s)
- Matthew E Cunningham
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA. .,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA. .,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| | - Natalie H Kelly
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| | - Bernard A Rawlins
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA.,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Oheneba Boachie-Adjei
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA
| | - Marjolein C H van der Meulen
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chisa Hidaka
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| |
Collapse
|
5
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
6
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Hu T, Liu L, Lam RWM, Toh SY, Abbah SA, Wang M, Ramruttun AK, Bhakoo K, Cool S, Li J, Cho-Hong Goh J, Wong HK. Bone marrow mesenchymal stem cells with low dose bone morphogenetic protein 2 enhances scaffold-based spinal fusion in a porcine model. J Tissue Eng Regen Med 2021; 16:63-75. [PMID: 34687157 DOI: 10.1002/term.3260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
High doses bone morphogenetic protein 2 (BMP-2) have resulted in a series of complications in spinal fusion. We previously established a polyelectrolyte complex (PEC) carrier system that reduces the therapeutic dose of BMP-2 in both rodent and porcine spinal fusion models. This study aimed to evaluate the safety and efficacy of the combination of bone marrow mesenchymal stem cells (BMSCs) and low dose BMP-2 delivered by PEC for bone regeneration in a porcine model of anterior lumbar interbody spinal fusion (ALIF) application. Six Yorkshire pigs underwent a tri-segmental (L2/L3; L3/L4; L4/L5) ALIF in four groups, namely: (a) BMSCs + 25 μg BMP-2/PEC (n = 9), (b) 25 μg BMP-2/PEC (n = 3), (c) BMSCs (n = 3), and (d) 50 μg BMP-2/absorbable collagen sponge (n = 3). Fusion outcomes were evaluated by radiography, biomechanical testing, and histological analysis after 12 weeks. Mean radiographic scores at 12 weeks were 2.7, 2.0, 1.0, and 1.0 for Groups 1 to 4, respectively. μ-CT scanning, biomechanical evaluation, and histological analysis demonstrated solid fusion and successful bone regeneration in Group 1. In contrast, Group 2 showed inferior quality and slow rate of fusion, and Groups 3 and 4 failed to fuse any of the interbody spaces. There was no obvious evidence of seroma formation, implant rejection, or any other complications in all groups. The results suggest that the combination of BMSCs and low dose BMP-2/PEC could further lower down the effective dose of the BMP-2 and be used as a bone graft substitute in the large animal ALIF model.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Ling Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sunny Akogwu Abbah
- Department of Obstetrics and Gynaecology, Portiuncula University Hospital Ballinasloe, Galway, Ireland.,CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Kumarsing Ramruttun
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Simon Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Programme (NUSTEP), Life Sciences Institute, Singapore, Singapore
| |
Collapse
|
8
|
Abstract
» Orthopaedics pioneered the expansion of gene therapy beyond its traditional scope of diseases that are caused by rare single-gene defects. Orthopaedic applications of gene therapy are most developed in the areas of arthritis and regenerative medicine, but several additional possibilities exist. » Invossa, an ex vivo gene therapeutic for osteoarthritis, was approved in South Korea in 2017, but its approval was retracted in 2019 and remains under appeal; a Phase-III clinical trial of Invossa has restarted in the U.S. » There are several additional clinical trials for osteoarthritis and rheumatoid arthritis that could lead to approved gene therapeutics for arthritis. » Bone-healing and cartilage repair are additional areas that are attracting considerable research; intervertebral disc degeneration and the healing of ligaments, tendons, and menisci are other applications of interest. Orthopaedic tumors, genetic diseases, and aseptic loosening are additional potential targets. » If successful, these endeavors will expand the scope of gene therapy from providing expensive medicines for a few patients to providing affordable medicines for many.
Collapse
|
9
|
Kang HP, Ihn H, Robertson DM, Chen X, Sugiyama O, Tang A, Hollis R, Skorka T, Longjohn D, Oakes D, Shah R, Kohn D, Jakus AE, Lieberman JR. Regional gene therapy for bone healing using a 3D printed scaffold in a rat femoral defect model. J Biomed Mater Res A 2021; 109:2346-2356. [PMID: 34018305 DOI: 10.1002/jbm.a.37217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/07/2022]
Abstract
At the present time there are no consistently satisfactory treatment options for some challenging bone loss scenarios. We have previously reported on the properties of a novel 3D-printed hydroxyapatite-composite material in a pilot study, which demonstrated osteoconductive properties but was not tested in a rigorous, clinically relevant model. We therefore utilized a rat critical-sized femoral defect model with a scaffold designed to match the dimensions of the bone defect. The scaffolds were implanted in the bone defect after being loaded with cultured rat bone marrow cells (rBMC) transduced with a lentiviral vector carrying the cDNA for BMP-2. This experimental group was compared against 3 negative and positive control groups. The experimental group and positive control group loaded with rhBMP-2 demonstrated statistically equivalent radiographic and histologic healing of the defect site (p > 0.9), and significantly superior to all three negative control groups (p < 0.01). However, the healed defects remained biomechanically inferior to the unoperated, contralateral femurs (p < 0.01). When combined with osteoinductive signals, the scaffolds facilitate new bone formation in the defect. However, the scaffold alone was not sufficient to promote adequate healing, suggesting that it is not substantially osteoinductive as currently structured. The combination of gene therapy with 3D-printed scaffolds is quite promising, but additional work is required to optimize scaffold geometry, cell dosage and delivery.
Collapse
Affiliation(s)
- H Paco Kang
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Hansel Ihn
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Djani M Robertson
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Xiao Chen
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Amy Tang
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | | | - Tautis Skorka
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, University of Southern California; Los Angeles, California, USA
| | | | - Donald Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | | | | |
Collapse
|
10
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Ren H, Huo F, Wang Z, Liu F, Dong X, Wang F, Fan X, Yuan M, Jiang X, Lan J. Sdccag3 Promotes Implant Osseointegration during Experimental Hyperlipidemia. J Dent Res 2020; 99:938-948. [PMID: 32339468 DOI: 10.1177/0022034520916400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperlipidemia adversely affects bone metabolism, often resulting in compromised osseointegration and implant loss. In addition, genetic networks associated with osseointegration have been proposed. Serologically defined colon cancer antigen 3 (Sdccag3) is a novel endosomal protein that functions in actin cytoskeleton remodeling, protein trafficking and secretion, cytokinesis, and apoptosis, but its roles in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in implant osseointegration under hyperlipidemic conditions have not been uncovered. Here, we performed microarray and RNA sequencing analysis to determine the differential expression of the Sdccag3 gene and related noncoding RNAs (ncRNAs) and to assess the long noncoding RNA (lncRNA) MSTRG.97162.4-miR-193a-3p-Sdccag3 coexpression network in bone tissues within the region 0.5 mm around implants in hyperlipidemic rats. In this experiment, we found that Sdccag3 and the previously uncharacterized lncRNA-MSTRG.97162.4 were downregulated during hyperlipidemia, while miR-193a-3p was upregulated. Sdccag3 overexpression increased new trabecular formation, the bone volume/total volume (BV/TV) (1.24-fold), and bone-implant combination ratio (BIC%) (1.26-fold). An RNA pulldown experiment revealed that Sdccag3 protein targeted lncRNA-MSTRG.97162.4 nucleotides 361 to 389. In addition, lncRNA-MSTRG.97162.4 overexpression significantly enhanced Sdccag3 (2.78-fold) expression and increased BV/TV (1.45-fold) and BIC% (1.07-fold) at the bone-implant interface. Taken together, these findings indicate that Sdccag3 overexpression enhances implant osseointegration under hyperlipidemic conditions by binding to lncRNA-MSTRG.97162.4. Furthermore, miR-193a-3p overexpression inhibited lncRNA-MSTRG.97162.4 (0.63-fold) and Sdccag3 (0.88-fold) expression and induced poor implant osseointegration (BV/TV, 0.86-fold; BIC%, 0.82-fold), while miR-193a-3p downregulation produced the opposite results (lncRNA-MSTRG.97162.4, 10.69-fold; Sdccag3, 6.96-fold; BV/TV, 1.20-fold; BIC%, 1.26-fold). Therefore, our findings show that Sdccag3 promotes implant osseointegration, and its related lncRNA-MSTRG.97162.4 and miR-193a-3p play an important role in osseointegration during hyperlipidemia, which might be a promising therapeutic target for improving dental implantation success rates.
Collapse
Affiliation(s)
- H Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Z Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - X Dong
- State Key Laboratory Breeding Base of Basic Science of Stomotology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomotology, Wuhan University, Wuhan, Hubei, China
| | - F Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Fan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - M Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - J Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
12
|
Deng J, Pan J, Han X, Yu L, Chen J, Zhang W, Zhu L, Huang W, Liu S, You Z, Liu Y. PDGFBB-modified stem cells from apical papilla and thermosensitive hydrogel scaffolds induced bone regeneration. Chem Biol Interact 2019; 316:108931. [PMID: 31874163 DOI: 10.1016/j.cbi.2019.108931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Bone defects caused by cancer surgery or trauma have a strong negative impact on human health. Treatment with cell and material-based complexes provides an alternative strategy for the regeneration of damaged bone tissue. The good physical properties and suitable biodegradability of a thermosensitive hydrogel has been shown to act as a valuable scaffold. Platelet derived growth factor BB (PDGFBB) is mainly secreted by platelets and promotes the migration and angiogenesis of mesenchymal stem cells (MSCs). Although PDGFBB is known to indirectly enhance bone repair in vivo, the effects of PDGFBB on stem cells from apical papilla (SCAPs) require further investigation. In our study, the proliferation of cells was investigated by the cell counting kit-8 and live/dead staining methods. The results indicated that PDGFBB promoted the proliferation of SCAPs. Real-time polymerase chain reaction and Western blot experiments were used to detect osteogenic genes and proteins. Moreover, calvarial defects were created in Sprague-Dawley rats and different complexes implanted. The results shown by micro-CT and hematoxylin and eosin analysis demonstrated that the hydrogel combined with lentiviral supernatant-green fluorescent protein-PDGFBB significantly improved new bone formation and mineralization compared with the other three groups. In summary, our research showed that a thermosensitive hydrogel can be used as a scaffold for 3D cell culture, and PDGFBB gene-modified SCAPs can improve bone formation in calvarial defects.
Collapse
Affiliation(s)
- Jiajia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Xinxin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Jing Chen
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Luying Zhu
- Xiangya School of Stomatology, Xiangya Stomatology Hospital, Central South University, Changsha, China
| | - Wei Huang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, PR China.
| |
Collapse
|
13
|
Song Y, Lv S, Wang F, Liu X, Cheng J, Liu S, Wang X, Chen W, Guan G, Liu G, Peng C. Overexpression of BMP‑7 reverses TGF‑β1‑induced epithelial‑mesenchymal transition by attenuating the Wnt3/β‑catenin and TGF-β1/Smad2/3 signaling pathways in HK‑2 cells. Mol Med Rep 2019; 21:833-841. [PMID: 31974602 PMCID: PMC6947920 DOI: 10.3892/mmr.2019.10875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Tubular epithelial cells undergoing epithelial-mesenchymal transition (EMT) is a crucial event in the progression of renal interstitial fibrosis (RIF). Bone morphogenetic protein-7 (BMP-7) has been reported to exhibit anti-fibrotic functions in various renal diseases. However, the function of BMP-7 in regulating EMT and the progression of RIF remains largely unknown. The aim of the present study was to examine the potential effect of BMP-7 on transforming growth factor β1 (TGF-β1)-induced EMT and the underlying mechanisms by which BMP-7 exerted its effects. Human renal proximal tubular epithelial cells (HK-2) were treated with TGF-β1 for various time periods and at various concentrations and lentiviral vectors were used to overexpress BMP-7. Cell Counting Kit-8 and Transwell assays were used to evaluate the viability and migration of HK-2 cells in vitro. EMT was estimated by assessing the changes in cell morphology and the expression of EMT markers. In addition, the activation of the Wnt3/β-catenin and TGF-β1/Smad2/3 signaling pathways were analyzed using western blotting. TGF-β1 induced EMT in a time- and dose-dependent manner in HK-2 cells. Treatment with TGF-β1 induced morphological changes, decreased cell viability and the expression of E-cadherin, increased cell migration and the expression of α-smooth muscle actin, fibroblast-specific protein 1, collagen I and vimentin, and activated the Wnt3/β-catenin and TGF-β1/Smad2/3 signaling pathways in HK-2 cells. However, BMP-7 overexpression notably reversed all these effects. These results suggest that BMP-7 effectively suppresses TGF-β1-induced EMT through the inhibition of the Wnt3/β-catenin and TGF-β1/Smad2/3 signaling pathways, highlighting a potential novel anti-RIF strategy.
Collapse
Affiliation(s)
- Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shasha Lv
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jing Cheng
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shanshan Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Guangju Guan
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Changliang Peng
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Jiang ZL, Jin H, Liu ZS, Liu MY, Cao XF, Jiang YY, Bai HD, Zhang B, Li Y. Lentiviral‑mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling. Mol Med Rep 2019; 20:3265-3275. [PMID: 31432117 PMCID: PMC6755203 DOI: 10.3892/mmr.2019.10540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with diabetes tend to have an increased incidence of osteoporosis, which may be associated with hyperglycemia; however, the pathogenic mechanisms governing this interaction remain unknown. The present study sought to investigate whether elevated extracellular glucose levels of bone mesenchymal stem cells (BMSCs) could influence osteoblastic differentiation and whether the intracellular Sonic hedgehog (Shh) pathway could adjust the effects. Furthermore, to verify the results in vivo, a rat tooth extraction model was constructed. BMSCs were incubated in eight types of culture medium, including low glucose (LG), LG + lentivirus (Lenti), LG + Lenti-small interfering RNA (Lenti-siRNA), LG + Lenti-Shh, high glucose (HG), HG + Lenti, HG + Lenti-siRNA and HG + Lenti-Shh. The lentiviral transfection efficiency was observed using a fluorescence microscope; protein and mRNA expression was detected by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The matrix mineralization and alkaline phosphatase (ALP) activity of BMSCs were examined by Alizarin red staining and ALP activity assays, respectively. The expression of osteogenesis-related genes in BMSCs were quantified by RT-qPCR. The alveolar ridge reduction was measured and histological sections were used to evaluate new bone formation in the tooth socket. With high concentrations of glucose, Shh expression, matrix mineralization nodules formation, ALP activity and the levels of bone morphogenic protein 4 (BMP4), bone sialoprotein (BSP) and osteopontin (OPN) expression were greatly reduced compared with LG and corresponding control groups. Whereas activated Shh signaling via Lenti-Shh could increase the number of matrix mineralization nodules, ALP activity, and the expression levels of BMP4, BSP and OPN in BMSCs. Additionally, in vivo assays demonstrated that Lenti-Shh induced additional bone formation. Collectively, the results of the present study indicated that HG inhibited the Shh pathway in osteoblasts and resulted in patterning defects during osteoblastic differentiation and bone formation, while the activation of Shh signaling could suppress these deleterious effects.
Collapse
Affiliation(s)
- Zhu-Ling Jiang
- Department of Implantology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhong-Shuang Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming-Yue Liu
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Fang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang-Yang Jiang
- Department of Dentistry, The Affiliated Hospital, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China
| | - Hong-Dan Bai
- Feiyang Dental Clinic, Heihe, Heilongjiang 164300, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
15
|
Efficient in vivo bone formation by BMP-2 engineered human mesenchymal stem cells encapsulated in a projection stereolithographically fabricated hydrogel scaffold. Stem Cell Res Ther 2019; 10:254. [PMID: 31412905 PMCID: PMC6694509 DOI: 10.1186/s13287-019-1350-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Stem cell-based bone tissue engineering shows promise for bone repair but faces some challenges, such as insufficient osteogenesis and limited architecture flexibility of the cell-delivery scaffold. Methods In this study, we first used lentiviral constructs to transduce ex vivo human bone marrow-derived stem cells with human bone morphogenetic protein-2 (BMP-2) gene (BMP-hBMSCs). We then introduced these cells into a hydrogel scaffold using an advanced visible light-based projection stereolithography (VL-PSL) technology, which is compatible with concomitant cell encapsulation and amenable to computer-aided architectural design, to fabricate scaffolds fitting local physical and structural variations in different bones and defects. Results The results showed that the BMP-hBMSCs encapsulated within the scaffolds had high viability with sustained BMP-2 gene expression and differentiated toward an osteogenic lineage without the supplement of additional BMP-2 protein. In vivo bone formation efficacy was further assessed using an intramuscular implantation model in severe combined immunodeficiency (SCID) mice. Microcomputed tomography (micro-CT) imaging indicated rapid bone formation by the BMP-hBMSC-laden constructs as early as 14 days post-implantation. Histological examination revealed a mature trabecular bone structure with considerable vascularization. Through tracking of the implanted cells, we also found that BMP-hBMSC were directly involved in the new bone formation. Conclusions The robust, self-driven osteogenic capability and computer-designed architecture of the construct developed in this study should have potential applications for customized clinical repair of large bone defects or non-unions. Electronic supplementary material The online version of this article (10.1186/s13287-019-1350-6) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Alluri R, Song X, Bougioukli S, Pannell W, Vakhshori V, Sugiyama O, Tang A, Park SH, Chen Y, Lieberman JR. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A 2019; 107:2174-2182. [PMID: 31112357 DOI: 10.1002/jbm.a.36727] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
The objective of the present study was to assess the ability of transduced rat bone marrow cells (RBMCs) that overexpress BMP-2 loaded on a three-dimensionally (3D) printed scaffold to heal a critical sized rat femoral defect. Tricalcium phosphate (TCP) scaffolds were 3D printed to fit a critical sized rat femoral defect. The RBMCs were transduced with a lentiviral (LV) vector expressing BMP-2 or GFP. The rats were randomized into the following treatment groups: (1) RBMC/LV-BMP-2 + TCP, (2) RBMC/LV-GFP + TCP, (3) nontransduced RBMCs + TCP, (4) TCP scaffold alone. The animals were euthanized at 12 weeks and evaluated with plain radiographs, microcomputed tomography (micro-CT), histology, histomorphometry, and biomechanically. Each LV-BMP-2 + TCP treated specimen demonstrated complete healing of the femoral defect on plain radiographs and micro-CT. No femurs healed in the control groups. Micro-CT demonstrated that LV-BMP-2 + TCP treated femoral defects formed 197% more bone volume compared to control groups (p < 0.05). Histologic analysis demonstrated bone formation across the TCP scaffold, uniting the femoral defect on both ends in the LV-BMP-2 + TCP treated specimens. Biomechanical assessment demonstrated similar stiffness (p = 0.863), but lower total energy to failure, peak torque, and peak displacement (p < 0.001) of the femurs treated with LV-BMP-2 + TCP when compared to the contralateral control femur. Regional gene therapy induced overexpression of BMP-2 via transduced RBMCs combined with an osteoconductive 3D printed TCP scaffold can heal a critically sized femoral defect in an animal model. The combination of regional gene therapy and 3D printed osteoconductive scaffolds has significant clinical potential to enhance bone regeneration.
Collapse
Affiliation(s)
- Ram Alluri
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Xuan Song
- Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, Iowa
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - William Pannell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amy Tang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sang-Hyun Park
- Orthopaedic Institute for Children, J. Vernon Luck. Sr. Orthopaedic Research Center, Los Angeles, California
| | - Yong Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Bougioukli S, Saitta B, Sugiyama O, Tang AH, Elphingstone J, Evseenko D, Lieberman JR. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum Gene Ther 2019; 30:906-917. [PMID: 30773946 DOI: 10.1089/hum.2018.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an ex vivo regional gene-therapy strategy using BMP-2-transduced allogeneic UCB-MSCs to promote bone repair. To this end, human UCB-MSCs were transduced with a lentiviral vector carrying the cDNA for BMP-2 (LV-BMP-2). In vitro assays to determine the UCB-MSC osteogenic potential and BMP-2 production were followed by in vivo implantation of LV-BMP-2-transduced UCB-MSCs in a mouse hind-limb muscle pouch. Non-transduced and LV-GFP-transduced UCB-MSCs were used as controls. Transduction with LV-BMP-2 was associated with abundant BMP-2 production and induction of osteogenic differentiation in vitro. Implantation of BMP-2-transduced UCB-MSCs led to robust heterotopic bone formation 4 weeks postoperatively, as seen on radiographs and histology. These results, along with the fact that UCB-MSCs can be easily collected with no donor-site morbidity and low immunogenicity, suggest that UCB might be a preferable allogeneic source of MSCs to develop an ex vivo gene-therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Bougioukli S, Vakhshori V, Ortega B, Sugiyama O, Lieberman J. Regulated ex vivo regional gene therapy for bone repair using an inducible caspase-9 suicide gene system. Gene Ther 2019; 26:230-239. [PMID: 30962534 DOI: 10.1038/s41434-019-0069-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 12/25/2022]
Abstract
In order to adapt ex vivo regional gene therapy for clinical applications in orthopaedic surgery, safety issues must be considered. In this study we developed a suicide approach using a dual gene expression two step transcriptional amplification lentiviral vector (LV-TSTA) encoding BMP-2 and an inducible caspase 9 (iC9) system that selectively induces apoptosis upon activation with a chemical inducer of dimerization (CID). Transduction of rat bone marrow stromal cells (RBMSCs) with LV-TSTA-iC9/BMP-2 led to abundant BMP-2 production (90.3 ± 7.9 ng/24 h/106 cells) in vitro and stimulated bone formation in a mouse muscle pouch in the absence of CID. Moreover it was shown that CID could be used to selectively induce apoptosis in iC9-transduced cells both in vitro and in vivo. Double exposure to serial dilutions of CID decreased in vitro production of BMP-2 by 85-87% and Luc activity by 97-99% in iC9/BMP-2 or iC9/Luc-transduced cells respectively. Early administration of CID (Days 0-1 post-op) in mice implanted with iC9/BMP-2-transduced RBMSCs was effective in blocking bone formation, indicating that CID was toxic to the transduced cells. In iC9/Luc-implanted mice, late administration of two doses of CID (Days 27-28 post-op) significantly reduced the luciferase signal. The current study provides proof of concept for the potential clinical application of regulated gene therapy to promote bone repair.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ortega
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Successful genetic modification of porcine spermatogonial stem cells via an electrically responsive Au nanowire injector. Biomaterials 2019; 193:22-29. [DOI: 10.1016/j.biomaterials.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
|
20
|
Encarnação IC, Sordi MB, Aragones Á, Müller CMO, Moreira AC, Fernandes CP, Ramos JV, Cordeiro MMR, Fredel MC, Magini RS. Release of simvastatin from scaffolds of poly(lactic‐co‐glycolic) acid and biphasic ceramic designed for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2019; 107:2152-2164. [DOI: 10.1002/jbm.b.34311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Isis C. Encarnação
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Mariane B. Sordi
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Águedo Aragones
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | | | - Anderson C. Moreira
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Celso P. Fernandes
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Jeferson V. Ramos
- Laboratory of Porous Media and Thermophysical Properties (LMPT)Department of Mechanical Engineering, Federal University of Santa Catarina Florianópolis Brazil
| | - Mabel M. R. Cordeiro
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| | - Márcio C. Fredel
- Ceramic & Composite Materials Research Laboratories (CERMAT), Department of Mechanical EngineeringFederal University of Santa Catarina Florianópolis Brazil
| | - Ricardo S. Magini
- Center for Research on Dental Implants (CEPID), Department of DentistryFederal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
21
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
22
|
Ruan S, Deng J, Yan L, Huang W. Evaluation of the effects of the combination of BMP-2-modified BMSCs and PRP on cartilage defects. Exp Ther Med 2018; 16:4569-4577. [PMID: 30542406 PMCID: PMC6257496 DOI: 10.3892/etm.2018.6776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/20/2018] [Indexed: 01/28/2023] Open
Abstract
Articular cartilage is avascular and aneural, and has limited capacity for self-regeneration when injured. Tissue engineering has emerged as a promising approach in repairing cartilage defects. To improve the therapy of cartilage healing, the present study investigated the efficacy of the combination of lentivirus-mediated bone morphogenetic protein-2 (BMP2) in bone marrow-derived stromal cells (BMSCs) and platelet-rich plasma (PRP) on cartilage and bone healing in a cartilage defect model using the rabbit knee. The BMSCs were harvested from New Zealand rabbits and transduced with lentivirus carrying BMP-2. Standard bone defects were introduced in the femoral groove of patellofemoral joints of 48 New Zealand rabbits. The cartilage defects were subjected to synthetic scaffold mosaicplasty with chitosan/silk fibroin/nanohydroxyapatite particles tri-component scaffolds soaked in BMSCs and PRP. After 16 weeks, the tissue specimens were assessed by micro-computed tomography (micro-CT) and macroscopic examination. The results showed that lentivirus-mediated BMP-2 and PRP increased the cell viability of the BMSCs, induced the expression of associated genes and enhanced osteogenic differentiation in vitro. In vivo, the expression of BMP-2 was observed for 16 weeks. The combination of BMP-2 and PRP treatment led to optimal results, compared with the other groups on micro-CT and gross observations. The results of the present study present a novel therapy using the lentivirus-mediated BMP-2 gene together with PRP for cartilage healing.
Collapse
Affiliation(s)
- Shiqiang Ruan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Jiang Deng
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Ling Yan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Wenliang Huang
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
23
|
Kim Y, Kang BJ, Kim WH, Yun HS, Kweon OK. Evaluation of Mesenchymal Stem Cell Sheets Overexpressing BMP-7 in Canine Critical-Sized Bone Defects. Int J Mol Sci 2018; 19:ijms19072073. [PMID: 30018197 PMCID: PMC6073206 DOI: 10.3390/ijms19072073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the in vitro osteogenic capacity of bone morphogenetic protein 7 (BMP-7) overexpressing adipose-derived (Ad-) mesenchymal stem cells (MSCs) sheets (BMP-7-CS). In addition, BMP-7-CS were transplanted into critical-sized bone defects and osteogenesis was assessed. BMP-7 gene expressing lentivirus particles were transduced into Ad-MSCs. BMP-7, at the mRNA and protein level, was up-regulated in BMP-7-MSCs compared to expression in Ad-MSCs. Osteogenic and vascular-related gene expressions were up-regulated in BMP-7-CS compared to Ad-MSCs and Ad-MSC sheets. In a segmental bone-defect model, newly formed bone and neovascularization were enhanced with BMP-7-CS, or with a combination of BMP-7-CS and demineralized bone matrix (DBM), compared to those in control groups. These results demonstrate that lentiviral-mediated gene transfer of BMP-7 into Ad-MSCs allows for stable BMP-7 production. BMP-7-CS displayed higher osteogenic capacity than Ad-MSCs and Ad-MSC sheets. In addition, BMP-7-CS combined with demineralized bone matrix (DBM) stimulated new bone and blood vessel formation in a canine critical-sized bone defect. The BMP-7-CS not only provides BMP-7 producing MSCs but also produce osteogenic and vascular trophic factors. Thus, BMP-7-CS and DBM have therapeutic potential for the treatment of critical-sized bone defects and could be used to further enhance clinical outcomes during bone-defect treatment.
Collapse
Affiliation(s)
- Yongsun Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Byung-Jae Kang
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| | - Wan Hee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Hui-Suk Yun
- Powder and Ceramics Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| | - Oh-Kyeong Kweon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
24
|
In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther 2018; 25:260-268. [PMID: 29907876 DOI: 10.1038/s41434-018-0024-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023]
Abstract
In this study, we developed a lentiviral two-step transcriptional amplification (TSTA) system expressing bone morphogenetic protein-2 (BMP-2) under the control of a GAL4FF transactivator to enhance gene expression and limit toxicity for bone repair applications. To this end human MSCs, isolated from bone marrow or adipose tissue, were transduced overnight with a LV-TSTA system (GAL4FF or GAL4vp16) expressing BMP-2 or GFP and evaluated in vitro for transduction efficiency, mean fluorescence intensity, cell viability, and BMP-2 production. FACS analysis of GFP-transduced MSCs confirmed successful transduction with the GAL4FF+GFP vector. Moreover, ELISA demonstrated abundant BMP-2 production by GAL4FF+BMP2-transduced human MSCs over a period of 8 weeks, with minimal cytotoxicity at all time points. Compared to GAL4vp16, GAL4FF was superior with respect to BMP production at 1, 2, 4, 6, and 8 weeks in BMSCs. In ASCs, GAL4FF was still associated with higher BMP-2 production at weeks 2-8, but this difference was not as prominent as in BMSCs. To our knowledge, this is the first report of GAL4FF-mediated BMP-2 production by human BMSCs and ASCs. Compared to the standard GAL4vp16TSTA vector, GAL4FF was associated with lower cytotoxicity and higher in vitro gene expression in both BMSCs and ASCs.
Collapse
|
25
|
Bougioukli S, Sugiyama O, Pannell W, Ortega B, Tan MH, Tang AH, Yoho R, Oakes DA, Lieberman JR. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow. Hum Gene Ther 2018; 29:507-519. [PMID: 29212377 DOI: 10.1089/hum.2017.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ex vivo regional gene therapy strategies using animal mesenchymal stem cells genetically modified to overexpress osteoinductive growth factors have been successfully used in a variety of animal models to induce both heterotopic and orthotopic bone formation. However, in order to adapt regional gene therapy for clinical applications, it is essential to assess the osteogenic capacity of transduced human cells and choose the cell type that demonstrates the best clinical potential. Bone-marrow stem cells (BMSC) and adipose-derived stem cells (ASC) were selected in this study for in vitro evaluation, before and after transduction with a lentiviral two-step transcriptional amplification system (TSTA) overexpressing bone morphogenetic protein 2 (BMP-2; LV-TSTA-BMP-2) or green fluorescent protein (GFP; LV-TSTA-GFP). Cell growth, transduction efficiency, BMP-2 production, and osteogenic capacity were assessed. The study demonstrated that BMSC were characterized by a slower cell growth compared to ASC. Fluorescence-activated cell sorting analysis of GFP-transduced cells confirmed successful transduction with the vector and revealed an overall higher but not statistically significant transduction efficiency in ASC versus BMSC (90.2 ± 4.06% vs. 80.4 ± 8.51%, respectively; p = 0.146). Enzyme-linked immunosorbent assay confirmed abundant BMP-2 production by both cell types transduced with LV-TSTA-BMP-2, with BMP-2 production being significantly higher in ASC versus BMSC (239.5 ± 116.55 ng vs. 70.86 ± 24.7 ng; p = 0.001). Quantitative analysis of extracellular deposition of calcium (Alizarin red) and alkaline phosphatase activity showed that BMP-2-transduced cells had a higher osteogenic differentiation capacity compared to non-transduced cells. When comparing the two cell types, ASC/LV-TSTA-BMP-2 demonstrated a significantly higher mineralization potential compared to BMSC/LV-TSTA-BMP-2 7 days post transduction (p = 0.014). In conclusion, this study demonstrates that transduction with LV-TSTA-BMP-2 can significantly enhance the osteogenic potential of both human BMSC and ASC. BMP-2-treated ASC exhibited higher BMP-2 production and greater osteogenic differentiation capacity compared to BMP-2-treated BMSC. These results, along with the fact that liposuction is an easy procedure with lower donor-site morbidity compared to BM aspiration, indicate that adipose tissue might be a preferable source of MSCs to develop a regional gene therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Osamu Sugiyama
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - William Pannell
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Brandon Ortega
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Matthew H Tan
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy H Tang
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert Yoho
- 2 Cosmetic Surgery Practice , Pasadena, California
| | - Daniel A Oakes
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jay R Lieberman
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
26
|
Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, Shah R, Lieberman JR. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing. J Biomed Mater Res A 2018; 106:1104-1110. [PMID: 29266747 DOI: 10.1002/jbm.a.36310] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 01/11/2023]
Abstract
The purpose of this study was to evaluate the viability of human adipose-derived stem cells (ADSCs) transduced with a lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2) loaded onto a novel 3D printed scaffold. Human ADSCs were transduced with a LV vector carrying the cDNA for BMP-2. The transduced cells were loaded onto a 3D printed Hyperelastic "Bone" (HB) scaffold. In vitro BMP-2 production was assessed using enzyme-linked immunosorbent assay analysis. The ability of ADSCs loaded on the HB scaffold to induce in vivo bone formation in a hind limb muscle pouch model was assessed in the following groups: ADSCs transduced with LV-BMP-2, LV-green fluorescent protein, ADSCs alone, and empty HB scaffolds. Bone formation was assessed using radiographs, histology and histomorphometry. Transduced ADSCs BMP-2 production on the HB scaffold at 24 hours was similar on 3D printed HB scaffolds versus control wells with transduced cells alone, and continued to increase after 1 and 2 weeks of culture. Bone formation was noted in LV-BMP-2 animals on plain radiographs at 2 and 4 weeks after implantation; no bone formation was noted in the other groups. Histology demonstrated that the LV-BMP-2 group was the only group that formed woven bone and the mean bone area/tissue area was significantly greater when compared with the other groups. 3D printed HB scaffolds are effective carriers for transduced ADSCs to promote bone repair. The combination of gene therapy and tissue engineered scaffolds is a promising multidisciplinary approach to bone repair with significant clinical potential. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1104-1110, 2018.
Collapse
Affiliation(s)
- Ram Alluri
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| | - Adam Jakus
- Department of Materials Science and Engineering, Northwestern University, 303 E. Superior St., 11th Floor, Chicago, Illinois, 60611.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, IL, 60611
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| | - William Pannell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| | - Amy Tang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| | - Ramille Shah
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, IL, 60611.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208.,Department of Surgery, Division of Organ Transplantation, Northwestern University, 251 E Huron St., Chicago, IL, 60611
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave, HMR 702, Los Angeles, California, 90089
| |
Collapse
|
27
|
Cho TH, Kim IS, Lee B, Park SN, Ko JH, Hwang SJ. Early and Marked Enhancement of New Bone Quality by Alendronate-Loaded Collagen Sponge Combined with Bone Morphogenetic Protein-2 at High Dose: A Long-Term Study in Calvarial Defects in a Rat Model. Tissue Eng Part A 2017; 23:1343-1360. [DOI: 10.1089/ten.tea.2016.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Jae-Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, BK21 Plus Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Zhao M, Jiang Q, Geng M, Zhu L, Xia Y, Khanal A, Wang C. The role of PPAR alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-Results of in ovo gene silencing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:136-144. [PMID: 28934691 DOI: 10.1016/j.etap.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant. This study established an in ovo peroxisome proliferator-activated receptor alpha (PPAR alpha) silencing model in chicken embryo heart, and investigated the role of PPAR alpha in PFOA induced developmental cardiotoxicity. The in ovo silencing was achieved by introducing lentivirus expressing PPAR alpha siRNA into ED2 chicken embryo via microinjection (0.05ul/g egg weight). Transfection efficacy was confirmed by fluorescent microscopy and western blotting. To assess the developmental cardiotoxicity, cardiac function (heart rate) and morphology (right ventricular wall thickness) were measured in D1 hatchling chickens. 2mg/kg (egg weight) PFOA exposure at ED0 induced significant elevation of heart rate and thinning of right ventricular wall thickness in D1 hatchling chickens. PPAR alpha silencing did not prevent PFOA-induced elevation of heart rate; however, it did significantly increase the right ventricular wall thickness as compared to PFOA exposed animals. Meanwhile, PPAR alpha silencing did not abolish the protective effects exerted by exposure to 100mg/kg (egg weight) l-carnitine. In conclusion, PFOA-induced heart rate elevation is likely PPAR alpha independent, while the right ventricular wall thinning seems to be PPAR alpha dependent. The protective effects of l-carnitine do not require PPAR alpha.
Collapse
Affiliation(s)
- Meng Zhao
- Qingdao University Medical College, China
| | | | - Min Geng
- Qingdao University Medical College, China
| | - Li Zhu
- The Affiliated Hospital of Qingdao University, China
| | - Yunqiu Xia
- Qingdao University Medical College, China
| | | | | |
Collapse
|
29
|
Varas-Godoy M, Lladser A, Farfan N, Villota C, Villegas J, Tapia JC, Burzio LO, Burzio VA, Valenzuela PDT. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization. Pigment Cell Melanoma Res 2017; 31:64-72. [DOI: 10.1111/pcmr.12615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Varas-Godoy
- Fundación Ciencia & Vida; Santiago Chile
- Center for Biomedical Research; Faculty of Medicine; Universidad de los Andes; Santiago Chile
| | | | - Nicole Farfan
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Claudio Villota
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Chemical and Biological Sciences; Faculty of Health; Universidad Bernardo O Higgins; Santiago Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Julio C. Tapia
- Cell Transformation Laboratory; Department of Basic and Clinical Oncology; Faculty of Medicine; Universidad de Chile; Santiago Chile
| | - Luis O. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Veronica A. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Pablo D. T. Valenzuela
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| |
Collapse
|
30
|
López-Cebral R, Civantos A, Ramos V, Seijo B, López-Lacomba JL, Sanz-Casado JV, Sanchez A. Gellan gum based physical hydrogels incorporating highly valuable endogen molecules and associating BMP-2 as bone formation platforms. Carbohydr Polym 2017; 167:345-355. [PMID: 28433171 DOI: 10.1016/j.carbpol.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
Physical hydrogels have been designed for a double purpose: as growth factor delivery systems and as scaffolds to support cell colonization and formation of new bone. Specifically, the polysaccharide gellan gum and the ubiquitous endogenous molecules chondroitin, albumin and spermidine have been used as exclusive components of these hydrogels. The mild ionotropic gelation technique was used to preserve the bioactivity of the selected growth factor, rhBMP-2. In vitro tests demonstrated the effective delivery of rhBMP-2 in its bioactive form. In vivo experiments performed in the muscle tissue of Wistar rats provided a proof of concept of the ability of the developed platforms to elicit new bone formation. Furthermore, this biological effect was better than that of a commercial formulation currently used for regenerative purposes, confirming the potential of these hydrogels as new and innovative growth factor delivery platforms and scaffolds for regenerative medicine applications.
Collapse
Affiliation(s)
- Rita López-Cebral
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain
| | - Ana Civantos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Viviana Ramos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | | | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Analysis of Bone Repair and Inflammatory Process Caused by Simvastatin Combined With PLGA+HA+βTCP Scaffold. IMPLANT DENT 2017; 25:140-8. [PMID: 26606285 DOI: 10.1097/id.0000000000000359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This study evaluated the tissue and inflammatory responses to the use of simvastatin and poly(lactic-co-glycolic acid) + hydroxyapatite + β-tricalcium phosphate (PLGA+HA+βTCP) scaffold for bone repair. MATERIALS AND METHODS Two defects of 5 mm in diameter were made in the calvaria of rats, which were shared into the following 6 groups: naive, sham, vehicle, PLGA+HA+βTCP scaffold, simvastatin (4 mg/mL), and simvastatin with the scaffold. Tissue samples were collected at 1, 7, 15, 30, and 60 days after surgery. Inflammation was evaluated by interleukin-1 beta and tumor necrosis factor alpha quantification and by a hemogram, whereas bone repair was evaluated using densitometry and scanning electron microscopy. Data were statistically analyzed using ANOVA followed by post hoc tests (P < 0.05). RESULTS There was an increased cytokine expression in the scaffold and simvastatin groups (P < 0.001 and P < 0.05, respectively) 1 day after surgery but no alterations on the hemogram were observed. It was found on bone tissue samples that 60 days after surgery all groups presented similar densitometry values and morphology characteristics, despite the occurrence of bone formation delay in the simvastatin group (P < 0.01). CONCLUSION The use of simvastatin and PLGA+HA+βTCP scaffold, associated or not, did not lead to improvement in bone repair.
Collapse
|
32
|
Du X, Huang F, Zhang S, Yao Y, Chen Y, Chen Y, Huang H, Bai B. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release in vitro. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1710-1720. [PMID: 28129696 DOI: 10.1080/21691401.2017.1282499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiufan Du
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Fangli Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Shujiang Zhang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yongchang Yao
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yi Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yushu Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Hongxuan Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Bo Bai
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| |
Collapse
|
33
|
Yan X, Kang D, Pan J, Jiang C, Lin Y, Qi S. Osteoblastic differentiation and cell calcification of adamantinomatous craniopharyngioma induced by bone morphogenetic protein-2. Cancer Biomark 2017; 18:191-198. [PMID: 27983534 DOI: 10.3233/cbm-161576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The calcification of adamantinomatous craniopharyngioma (ACP) often creates difficulties for surgical therapy. Nevertheless, the mechanism of ACP calcification is unclear. Our previous studies demonstrated that osteoblastic factors might play important roles in ACP calcification. OBJECTIVE We examined the effects of recombinant human Bmp2 on ACP cell differentiation by testing osteoblastic proteins and calcium deposition. METHODS The expression of osteoblastic factors including osteopontin (OPN), Runx2, and osterix in Bmp2-treated ACP cells was examined by western blot and/or real time PCR. ALP activity and calcium deposition after Bmp2 induction were also tested. RESULTS Bmp2 significantly amplified the expression of Runx2, Osterix and OPN, as well as ALP activity. Both of these effects could be repressed by noggin treatment. Bmp2 also significantly induced the calcification of ACP, and noggin inhibited this calcium deposition. CONCLUSION Our study demonstrated for the first time that ACP cells could differentiate into an osteoblastic lineage via induction by Bmp2. The mechanism of ACP calcification likely involves osteoblastic differentiation modulated by Bmp2. Further studies targeting Bmp2 cascades could result in novel therapeutic interventions for recurrent ACP.
Collapse
Affiliation(s)
- Xiaorong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changzhen Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Abstract
Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair require the coordinated expression of many molecules, including growth factors, bone morphogenetic proteins, and specific transcription factors. As will be developed in this article, future advances in bone regeneration will likely incorporate therapies that mimic critical aspects of these natural biological processes, using the tools of gene therapy and tissue engineering. This review will summarize current knowledge related to normal bone development and fracture repair, and will describe how gene therapy, in combination with tissue engineering, may mimic critical aspects of these natural processes. Current gene therapy approaches for bone regeneration will then be summarized, including recent work where combinatorial gene therapy was used to express groups of molecules that synergistically interacted to stimulate bone regeneration. Last, proposed future directions for this field will be discussed, where regulated gene expression systems will be combined with cells seeded in precise three-dimensional configurations on synthetic scaffolds to control both temporal and spatial distribution of regenerative factors. It is the premise of this article that such approaches will eventually allow us to achieve the ultimate goal of bone tissue engineering: to reconstruct entire bones with associated joints, ligaments, or sutures. Abbreviations used: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; AER, apical ectodermal ridge; ZPA, zone of polarizing activity; PZ, progress zone; SHH, sonic hedgehog; OSX, osterix transcription factor; FGFR, fibroblast growth factor receptor; PMN, polymorphonuclear neutrophil; PDGF, platelet-derived growth factor; IGF, insulin-like growth factor; TGF-β, tumor-derived growth factor β; CAR, coxsackievirus and adenovirus receptor; MLV, murine leukemia virus; HIV, human immunodeficiency virus; AAV, adeno-associated virus; CAT, computer-aided tomography; CMV, cytomegalovirus; GAM, gene-activated matrix; MSC, marrow stromal cell; MDSC, muscle-derived stem cell; VEGF, vascular endothelial growth factor.
Collapse
Affiliation(s)
- R T Franceschi
- University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
35
|
Ruan W, Xue Y, Zong Y, Sun C. Effect of BMPs and Wnt3a co-expression on the osteogenetic capacity of osteoblasts. Mol Med Rep 2016; 14:4328-4334. [DOI: 10.3892/mmr.2016.5734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2016] [Indexed: 11/06/2022] Open
|
36
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Zhang X, Zhang Z, Shen G, Zhao J. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition. Int J Nanomedicine 2016; 11:429-39. [PMID: 26869786 PMCID: PMC4734802 DOI: 10.2147/ijn.s93177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Gang Shen
- Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jun Zhao
- Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
38
|
Qi C, Yan X, Huang C, Melerzanov A, Du Y. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 2015; 6:638-53. [PMID: 26088192 PMCID: PMC4537472 DOI: 10.1007/s13238-015-0179-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Collapse
Affiliation(s)
- Chunxiao Qi
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Xiaojun Yan
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Chenyu Huang
- />Department of Plastic and Reconstructive Surgery, Beijing Tsinghua Changgung Hospital; Medical Center, Tsinghua University, Beijing, 102218 China
| | - Alexander Melerzanov
- />Cellular and Molecular Technologies Laboratory, MIPT, Dolgoprudny, 141701 Russia
| | - Yanan Du
- />Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 China
- />Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003 China
| |
Collapse
|
39
|
Liu P, Sun L, Chen H, Sun S, Zhou D, Pang B, Wang J. Lentiviral-mediated multiple gene transfer to chondrocytes promotes chondrocyte differentiation and bone formation in rabbit bone marrow-derived mesenchymal stem cells. Oncol Rep 2015; 34:2618-26. [PMID: 26328747 DOI: 10.3892/or.2015.4241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to provide a theoretical and experimental foundation on the differentiation of stem cells through the induction of multiple genes. The lentiviral vector carrying TGF-β1 and IL-10 genes was transfected to bone marrow-derived mesenchymal stem cells (BMSCs) which differentiated into chondrogenesis. Healthy New Zealand white rabbits, 2-3 months of age were used in the present study. A 6-8 ml of bone marrow was isolated from the iliac and tibial shaft of each rabbit. The BMSCs suspension was aspired following centrifugation of the bone marrow by percoll separating medium. The BMSCs were primarily cultured and subcultured in vitro, then divided into four groups according to the difference of lentivirus vectors: group A, receiving transforming growth factor β1 (TGF‑β1); group B, receiving TGF-β1 and Interleukin-10 (IL-10); group C, empty vector transfection; and group D, receiving no cell growth factor. Fluorescence expression was detected 12 h after transfecting the lentiviral vector carrying the TGF-β1 and IL-10 gene to BMSCs. The transfection efficiency was approximately 70% with a MOI=100 after 96 h. Expression of SOX-9 aggrecan and Type Ⅱ collagen in groups A-E on day 7 and 14 was detected by RT-PCR and western blot analysis. The expression level of three genes expressed in groups A and C were higher compared to the expression in groups B, D and E. The expression level of the three genes expressed in group B was higher compared to the expression in group D. The expression level of three genes expressed in group A and C showed no statistical difference. Cytokines therefore play an important role in cell proliferation and chondrogenic differentiation. TGF-β1 has a synergistic effect in the differentiation. In addition, IL-10 may have a protective role in the restoration of cartilaginous tissue.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui Chen
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shui Sun
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Pang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
Fu TS, Chang YH, Wong CB, Wang IC, Tsai TT, Lai PL, Chen LH, Chen WJ. Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model. Spine J 2015; 15:2036-44. [PMID: 25463976 DOI: 10.1016/j.spinee.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/11/2014] [Accepted: 11/05/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Mesenchymal stem cell (MSC)-based cell therapy and gene transfer have converged and show great potential for accelerating bone healing. Gene therapy can provide more sustained expression of osteogenic factors such as bone morphogenetic protein-2 (BMP-2). We previously demonstrated that low-dose BMP-2 enhanced spinal posterolateral fusion by MSCs in a rabbit model. Herein, we genetically modified rabbit MSCs with a recombinant baculovirus encoding BMP-2 (Bac-CB) and vascular endothelial growth factor (Bac-VEGF) seeded into porous scaffolds to enhance spinal fusion. PURPOSE This study evaluates the success rate of the MSC-based cell therapy and gene transfer approach for single-level posterolateral spine fusion. We hypothesize that combining three-dimensional tricalcium phosphate (TCP) scaffolds and genetically modified allogeneic MSCs with baculovirus-mediated growth factor expression would increase the success rate of spinal fusion. STUDY DESIGN The study design was based on an animal model (approved by the Institutional Animal Care and Use Committee) using 18 adult male New Zealand rabbits. METHODS This study included 18 male New Zealand rabbits, weighing 3.5 to 4 kg. Allogeneic bone marrow-derived MSCs were isolated and genetically modified with Bac-CB and Bac-CV seeded onto TCP scaffolds (MSC/Bac/TCP). The animals were divided into three groups according to the material implanted into the bilateral L4-L5 intertransverse space: TCP scaffold (n=6), MSC/TCP (n=6), and MSC/Bac/TCP (n=6). After 12 weeks, the rabbits were euthanized for radiographic examination, manual palpation, and histologic study. RESULTS Bilateral fusion areas in each animal were evaluated independently. The radiographic fusion rates at 12 sites were 0 of 12 in the TCP scaffold group, 4 of 12 in the MSC/TCP group, and 10 of 12 in the MSC/Bac/TCP group. By manual palpation, there were zero solid fusions in the TCP scaffold group, two solid fusions in the MSC/TCP group, and five solid fusions in the MSC/Bac/TCP group. Fusion rates were significantly greater in the MSC/Bac/TCP group. CONCLUSIONS The results indicate the potential of using baculovirus as a vector for gene/cell therapy approaches to improve bone healing and support the feasibility of using allogeneic MSCs for inducing bone formation and intertransverse process fusion.
Collapse
Affiliation(s)
- Tsai-Sheng Fu
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan.
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Chak-Bor Wong
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan
| | - I-Chun Wang
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Lih-Huei Chen
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Wen-Jer Chen
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|
41
|
Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, III SFEA. Bone graft substitutes for spine fusion: A brief review. World J Orthop 2015; 6:449-456. [PMID: 26191491 PMCID: PMC4501930 DOI: 10.5312/wjo.v6.i6.449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins (recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice.
Collapse
|
42
|
Guan J, Zhang J, Guo S, Zhu H, Zhu Z, Li H, Wang Y, Zhang C, Chang J. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway. Biomaterials 2015; 55:1-11. [PMID: 25934447 DOI: 10.1016/j.biomaterials.2015.03.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 01/13/2023]
Abstract
Human urine-derived stem cells (USCs) have great application potential for cytotherapy as they can be obtained by non-invasive and simple methods. Silicate bioceramics, including calcium silicate (CS), can stimulate osteogenic differentiation of stem cells. However, the effects of silicate bioceramics on osteogenic differentiation of USCs have not been reported. In this study, at first, we investigated the effects of CS ion extracts on proliferation and osteogenic differentiation of USCs, as well as the related mechanism. CS particles were incorporated into poly (lactic-co-glycolic acid) (PLGA) to obtain PLGA/CS composite scaffolds. USCs were then seeded onto these scaffolds, which were subsequently transplanted into nude mice to analyze the osteogenic differentiation of USCs and mineralization of extracellular matrix formed by USCs in vivo. The results showed that CS ion extracts significantly enhanced cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and expression of certain osteoblast-related genes and proteins. In addition, cardamonin, a Wnt/β-catenin signaling inhibitor, reduced the stimulatory effects of CS ion extracts on osteogenic differentiation of USCs, indicating that the observed osteogenic differentiation of USCs induced by CS ion extracts involves Wnt/β-catenin signaling pathway. Furthermore, histological analysis showed that PLGA/CS composite scaffolds significantly enhanced the osteogenic differentiation of USCs in vivo. Taken together, these results suggest the therapeutic potential of combining USCs and PLGA/CS scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Junjie Guan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jieyuan Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Shangchun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hongyi Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhenzhong Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jiang Chang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
43
|
The role of transduced bone marrow cells overexpressing BMP-2 in healing critical-sized defects in a mouse femur. Gene Ther 2015; 22:467-75. [DOI: 10.1038/gt.2015.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 01/12/2023]
|
44
|
Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, Zhang C. Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther 2015; 6:5. [PMID: 25567327 PMCID: PMC4417282 DOI: 10.1186/scrt539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Urine-derived stem cells (USCs) have the ability to differentiate into osteogenic lineage. Previous studies have raised the possibility that USCs could be used for bone repair. To harness the power of USCs in promoting bone regeneration, methods must be developed to induce USCs to osteogenic lineage efficiently. The present study investigates the effect of lentivirus-encoded bone morphogenetic protein 2 (BMP2) gene transduction on the osteogenic potential of USCs. METHODS USCs were isolated from voided urine and transduced with Lentiviral vector encoding BMP2. An in vitro study was performed to detect Lentiviral-BMP2 transduced USCs differentiated towards osteogenic lineage. Furthermore, Lentiviral-BMP2 transduced USCs were transplanted in vivo to examine the ectopic bone formation ability. After six weeks, retrieval samples were obtained for immunostaining and histological analysis. RESULTS The results showed that the transduction efficiencies were over 90%, and transduced USCs had high expression levels of the BMP2 gene and secreted BMP2 protein. Alkaline activity and mineral deposition staining demonstrated that transduced USCs differentiate into osteogenic lineages without the addition of osteogenic supplements. Transduced USCs also showed high expression of bone-related markers, including runt-related protein-2 (Runx2) and osteocalcin (OCN), confirming this lentiviral-BMP2 construct provides sufficient stimuli for osteogenic differentiation. Histological analysis indicated that the transduced USCs induced robust new bone formation in nude mice. Six weeks after transplantation, human derived cells were observed to participate in bone formation. CONCLUSIONS These results demonstrate that BMP2 gene transduction provides an effective method to enhance the osteogenic potential of USCs.
Collapse
Affiliation(s)
- Junjie Guan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhenzhong Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shangchun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Yang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
45
|
Ahn J, Park S, Cha BH, Kim JH, Park H, Joung YK, Han I, Lee SH. Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Vasiliadis ES, Pneumaticos SG, Evangelopoulos DS, Papavassiliou AG. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med 2014; 20:400-9. [PMID: 25171110 PMCID: PMC4212014 DOI: 10.2119/molmed.2014.00145] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Disc degeneration is the most common cause of back pain in adults and has enormous socioeconomic implications. Conservative management is ineffective in most cases, and results of surgical treatment have not yet reached desirable standards. Biologic treatment options are an alternative to the above conventional management and have become very attractive in recent years. The present review highlights the currently available biologic treatment options in mild and moderate disc degeneration, where a potential for regeneration still exists. Biologic treatment options include protein-based and cell-based therapies. Protein-based therapies involve administration of biologic factors into the intervertebral disc to enhance matrix synthesis, delay degeneration or impede inflammation. These factors can be delivered by an intradiscal injection, alone or in combination with cells or tissue scaffolds and by gene therapy. Cell-based therapies comprise treatment strategies that aim to either replace necrotic or apoptotic cells, or minimize cell death. Cell-based therapies are more appropriate in moderate stages of degenerated disc disease, when cell population is diminished; therefore, the effect of administration of growth factors would be insufficient. Although clinical application of biologic treatments is far from being an everyday practice, the existing studies demonstrate promising results that will allow the future design of more sophisticated methods of biologic intervention to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Elias S Vasiliadis
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Demitrios S Evangelopoulos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | | |
Collapse
|
47
|
Gong Y, Qian Y, Yang F, Wang H, Yu Y. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Eur J Oral Sci 2014; 122:190-7. [PMID: 24666017 DOI: 10.1111/eos.12122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yiming Gong
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Yanyan Qian
- Department of Biochemistry and Molecular Biology; Shanghai Medical College; Fudan University; Shanghai China
| | - Fei Yang
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Huijun Wang
- Department of Biochemistry and Molecular Biology; Shanghai Medical College; Fudan University; Shanghai China
| | - Youcheng Yu
- Department of Stomatology; Zhongshan Hospital, Fudan University; Shanghai China
| |
Collapse
|
48
|
Song-Tao Q, Xiao-Rong Y, Jun P, Yong-Jian D, Jin L, Guang-Long H, Yun-Tao L, Jian R, Xiang-Zhao L, Jia-Ming X. Does the calcification of adamantinomatous craniopharyngioma resemble the calcium deposition of osteogenesis/odontogenesis? Histopathology 2014; 64:336-47. [PMID: 24387671 DOI: 10.1111/his.12071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/23/2012] [Indexed: 11/30/2022]
Abstract
AIMS Calcification in adamantinomatous craniopharyngioma (ACP) is troublesome for surgical intervention. The aim of this study was to examine the osteogenic proteins that play important roles in the calcium deposition of the odontogenic/osteogenic tissues in craniopharyngioma. METHODS AND RESULTS Craniopharyngiomas (n = 89) were investigated for the presence and expression pattern of the osteoinductive/odontoinductive factor bone morphogenetic protein-2 (Bmp2) and two osteoblastic differentiation makers, Runt-related transcription factor-2 (Runx2) and Osterix, using immunohistochemistry and Western blotting. Our results showed that Bmp2, Runx2 and Osterix levels increased in cases with high calcification and correlated positively with the degree of calcification in ACP, whereas they showed little or no expression in squamous papillary craniopharyngioma. In ACP, Bmp2 was expressed primarily in the stellate reticulum and whorl-like array cells; Runx2 and Osterix tended to be expressed in calcification-related epithelia, including whorl-like array cells and epithelia in/around wet keratin and calcification lesions. CONCLUSIONS Our study indicated, for the first time, that osteogenic factor Bmp2 may play an important role in the calcification of ACP via autocrine or paracrine mechanisms. Given the presence of osteogenic markers (Runx2 and Osterix), craniopharyngioma cells could differentiate into an osteoblast-like lineage, and the process of craniopharyngioma calcification resembles that which occurs in osteogenesis/odontogenesis.
Collapse
Affiliation(s)
- Qi Song-Tao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei L, Lei GH, Yi HW, Sheng PY. Bone formation in rabbit's leg muscle after autologous transplantation of bone marrow-derived mesenchymal stem cells expressing human bone morphogenic protein-2. Indian J Orthop 2014; 48:347-53. [PMID: 25143636 PMCID: PMC4137510 DOI: 10.4103/0019-5413.136208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND To test whether autologous transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) expressing human bone morphogenic protein-2 (hBMP-2) can produce bone in rabbit leg muscles. MATERIALS AND METHODS MSCs were isolated from BM of the iliac crest of rabbits and then infected with lentiviral vectors (LVs) bearing hBMP-2 and green fluorescent protein under the control of the cytomegalovirus (immediate early promoter). Differentiation of transduced MSCs to osteoblasts in vitro was evaluated with an alkaline phosphatase activity assay and immuohistochemistry against osteoblast specific markers. MSCs expressing hBMP-2 were placed in an absorbable gelatin sponge, which was then transplanted into the gastrocnemius of rabbits from which MSCs were isolated. Bone formation was examined by X-ray and histological analysis. RESULTS LVs efficiently mediated hBMP-2 gene expression in rabbit BM-MSCs. Ectopic expression of hBMP in these MSCs induced osteoblastic differentiation in vitro. Bone was formed after the MSCs expressing hBMP-2 were transplanted into rabbit muscles. CONCLUSION Ectopic expression of hBMP-2 in rabbit MSCs induces them to differentiate into osteoblasts in vitro and to form a bone in vivo.
Collapse
Affiliation(s)
- Licheng Wei
- Department of Orthopaedics, The 8th Hospital, Changsha, Hunan 410008, China,Address for correspondence: Dr. Licheng Wei, Department of Orthopaedics, The 8th Hospital, Changsha, No. 22, Xin Sha Road, Changsha, Hunan 410008, China. E-mail:
| | - Guang-Hua Lei
- Department of Orthopaedics, XiangYa Hospital, Central South University, 87 XiangYa Road, Changsha, Hunan 410008, China
| | - Han-Wen Yi
- Department of Orthopaedics, The 8th Hospital, Changsha, Hunan 410008, China
| | - Pu-yi Sheng
- Department of Orthopaedics, The First Affilliated Hospital, Sun YAT-SEN University, 58 The Second ZhongShan Road, GuangZhou, GuangDong 510080, China
| |
Collapse
|
50
|
Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, Lieberman JR. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther 2013; 21:139-47. [PMID: 24285218 DOI: 10.1038/gt.2013.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.
Collapse
Affiliation(s)
- F Alaee
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - O Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - M S Virk
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - H Drissi
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - J R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|