1
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
2
|
Prangtaworn P, Chaisri U, Seesuay W, Mahasongkram K, Onlamoon N, Reamtong O, Tungtrongchitr A, Indrawattana N, Chaicumpa W, Sookrung N. Tregitope-linked Refined Allergen Vaccines for Immunotherapy in Cockroach Allergy. Sci Rep 2018; 8:15480. [PMID: 30341299 PMCID: PMC6195530 DOI: 10.1038/s41598-018-33680-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/01/2018] [Indexed: 01/17/2023] Open
Abstract
Allergen-specific immunotherapy (AIT) facilitates long-term resolution of allergic morbidity resulting in reduced drug use and increased refractoriness to new sensitization. AIT effectiveness has been demonstrated in seasonal and perennial allergies, and insect stings. However, data and studies in AIT relative to cockroach (CR) allergy are relatively scarce. In this study, mice allergic to American CR (Periplaneta americana) were treated with a liposome (L)-entrapped vaccine made of mouse Tregitope289-Per a 9 of the CR, Tregitope167-Per a 9, or Per a 9 alone - or placebo. Allergic mice that received an individual vaccine intranasally had reduced Th2 response, reduced lung inflammation, and reduced respiratory tissue remodeling. However, only L-Tregitope289-Per a 9 and L-Tregitope167-Per a 9 induced expression of immunosuppressive cytokine genes (IL-10, TGF-β, and IL-35 for L-Tregitope289-Per a 9, and IL-10 and TGF-β for L-Tregitope167-Per a 9) and increment of idoleamine-2,3-dioxygenase 1 (IDO1), indicating that these vaccines caused allergic disease suppression and reversal of respiratory tissue remodeling via generation of regulatory lymphocytes. Liposome entrapped-recombinant Per a 9 (L-Per a 9) did not cause upregulation of immunosuppressive cytokine genes and IDO1 increment; rather, L-Per a 9 induced high expression of IFN-γ in lungs of treated mice, which resulted in mitigation of allergic manifestations. This study provides compelling evidence that both liposome-entrapped vaccines made of single refined major allergen alone and single refined major allergen linked with Tregitopes are effective for reducing allergen-mediated respiratory tissue inflammation and remodeling, but through different mechanisms.
Collapse
Affiliation(s)
- Pannathee Prangtaworn
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Pizzuto M, Bigey P, Lachagès AM, Hoffmann C, Ruysschaert JM, Escriou V, Lonez C. Cationic lipids as one-component vaccine adjuvants: A promising alternative to alum. J Control Release 2018; 287:67-77. [PMID: 30110615 DOI: 10.1016/j.jconrel.2018.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Effective vaccine formulations consist of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Here, we investigated the immunostimulatory and adjuvant properties of lipopolyamines, cationic lipids used as gene carriers. We identified new lipopolyamines able to activate both TLR2 and TLR4 and showed that lipopolyamines interact with TLRs via a mechanism different from the one used by bacterial ligands, activating a strong type-I IFN response, pro-inflammatory cytokines and IL-1β secretion. The TLR and inflammasome stimulations, together with the antigen carrier properties of lipopolyamines, resulted in both humoral and cellular immunity in mice vaccinated against OVA and make lipopolyamines promising one-component vaccine adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Structure and Fonction of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Pascal Bigey
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Anne-Marie Lachagès
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Céline Hoffmann
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Jean-Marie Ruysschaert
- Structure and Fonction of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Virginie Escriou
- CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, F-75006 Paris, France; INSERM, UTCBS U 1022, F-75006 Paris, France; Université Paris Descartes, Sorbonne-Paris-Cité University, UTCBS, F-75006 Paris, France; Chimie ParisTech, PSL Research University, UTCBS, F-75005 Paris, France
| | - Caroline Lonez
- Structure and Fonction of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium; Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
4
|
Thakur R, Shankar J. In silico Identification of Potential Peptides or Allergen Shot Candidates Against Aspergillus fumigatus. Biores Open Access 2016; 5:330-341. [PMID: 27872794 PMCID: PMC5116691 DOI: 10.1089/biores.2016.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is capable of causing invasive aspergillosis or acute bronchopulmonary aspergillosis, and the current situation is alarming. There are no vaccine or allergen shots available for Aspergillus-induced allergies. Thus, a novel approach in designing of an effective vaccine or allergen shot candidate against A. fumigatus is needed. Using immunoinformatics approaches from the characterized A. fumigatus allergens, we have mapped epitopic regions to predict potential peptides that elicit both Aspergillus-specific T cells and B cell immune response. Experimentally derived immunodominant allergens were retrieved from www.allergen.org. A total of 23 allergenic proteins of A. fumigatus were retrieved. Out of 23 allergenic proteins, 13 of them showed high sequence similarity to both human and mouse counterparts and thus were eliminated from analysis due to possible cross-reactivity. Remaining allergens were subjected to T cell (major histocompatibility complex class I and II alleles) and B cell epitope prediction using immune epitope database analysis resource. Only five allergens have shown a common B and T cell epitopic region between human and mouse. They are Asp f1 {147-156 region (RVIYTYPNKV); Mitogillin}, Asp f2 {5-19 region (LRLAVLLPLAAPLVA); Hypothetical protein}, Asp f5 {305-322 region (LNNYRPSSSSLSFKY); Metalloprotease}, Asp f17 {98-106 region (AANAGGTVY); Hypothetical protein}, and Asp f34 {74-82 region (YIQDGSLYL); PhiA cell wall protein}. The epitopic region from these five allergenic proteins showed potential for development of single peptide- or multipeptide-based vaccine or allergen shots for experimental prioritization.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan-173234 (Himachal Pradesh), India
| |
Collapse
|
5
|
Cambiagno DA, Lonez C, Ruysschaert JM, Alvarez ME. The synthetic cationic lipid diC14 activates a sector of the Arabidopsis defence network requiring endogenous signalling components. MOLECULAR PLANT PATHOLOGY 2015; 16:963-72. [PMID: 25727690 PMCID: PMC6638339 DOI: 10.1111/mpp.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified. In animal cells, nanoliposomes of the synthetic cationic lipid 3-tetradecylamino-tert-butyl-N-tetradecylpropionamidine (diC14) activate the TLR4-dependent immune cascade. Here, we have investigated whether this lipid induces Arabidopsis defence responses. At the local level, diC14 activated early and late defence gene markers (FRK1, WRKY29, ICS1 and PR1), acting in a dose-dependent manner. This lipid induced the salicylic acid (SA)-dependent, but not jasmonic acid (JA)-dependent, pathway and protected plants against Pseudomonas syringae pv. tomato (Pst), but not Botrytis cinerea. diC14 was not toxic to plant or pathogen, and potentiated pathogen-induced callose deposition. At the systemic level, diC14 induced PR1 expression and conferred resistance against Pst. diC14-induced defence responses required the signalling protein EDS1, but not NDR1. Curiously, the lipid-induced defence gene expression was lower in the fls2/efr/cerk1 triple mutant, but still unchanged in the single mutants. The amidine headgroup and chain length were important for its activity. Given the robustness of the responses triggered by diC14, its specific action on a defence pathway and the requirement for well-known defence components, this synthetic lipid is emerging as a useful tool to investigate the initial events involved in plant innate immunity.
Collapse
Affiliation(s)
- Damián Alejandro Cambiagno
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Caroline Lonez
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jean-Marie Ruysschaert
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
6
|
Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert JM. Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:775-82. [DOI: 10.1016/j.nano.2013.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/31/2023]
|
7
|
Vrtala S, Huber H, Thomas WR. Recombinant house dust mite allergens. Methods 2014; 66:67-74. [PMID: 23911838 PMCID: PMC4582397 DOI: 10.1016/j.ymeth.2013.07.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023] Open
Abstract
House dust mites (HDM) are a globally important source of allergen responsible for the sensitization of more than 50% of allergic patients. Specific immunotherapy with HDM extracts is effective but allergen extracts cannot be fully standardized and severe side-effects can occur during the protracted course of treatment. The introduction of molecular biological techniques into allergy research allowed the indentification of more than 20 groups of HDM allergens. Recombinant HDM allergens can be produced in defined concentrations and consistent quality and allow the development of vaccines for HDM allergy with reduced allergenic activity and retained immunogenicity. The immunotherapy trials in pollen allergic patients with recombinant pollen allergens/hypoallergenic allergen derivatives have shown that this treatment is effective and indicated that recombinant HDM vaccines might improve immunotherapy of HDM allergic patients. Here we report the steps for the development of vaccines for HDM allergy. After selection of the most prevalent HDM species, the panel of allergens to be included into a therapeutic vaccine for HDM allergy needs to be determined. HDM allergens with high IgE-binding frequency and clinical relevance will be modified into hypoallergenic variants and evaluated for their allergenic activity and immunogenicity. Derivatives with reduced allergenic activity but with retained immunogenicity would be good candidates for a HDM vaccine for safe and efficient immunotherapy.
Collapse
Affiliation(s)
- Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Huber
- Biomay AG, Lazarettgasse 19. 1090 Vienna, Austria
| | - Wayne R Thomas
- Center for Child Health Research, University of Western Australia, Telethon Institute of Child Health Research, West Perth, Australia.
| |
Collapse
|
8
|
Weiss R, Scheiblhofer S, Roesler E, Weinberger E, Thalhamer J. mRNA vaccination as a safe approach for specific protection from type I allergy. Expert Rev Vaccines 2014; 11:55-67. [DOI: 10.1586/erv.11.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Inoh Y, Tadokoro S, Tanabe H, Inoue M, Hirashima N, Nakanishi M, Furuno T. Inhibitory effects of a cationic liposome on allergic reaction mediated by mast cell activation. Biochem Pharmacol 2013; 86:1731-8. [PMID: 24099793 DOI: 10.1016/j.bcp.2013.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Several studies have shown that cationic liposomes exert immunomodulatory effects with low immunogenicity and toxicity, and offer advantages such as easy preparation and targeting. Cationic liposomes not only transport DNA to immune cells but also enhance the function of antigen presenting cells such as dendritic cells and macrophages. Here, we investigated the effect of a particular cationic liposome on mast cell function during allergic reaction. We found that the cationic liposomes bound to the mast cell surface suppressed degranulation induced by cross-linking of high affinity immunoglobulin E receptors in a time- and dose-dependent manner. The suppression of degranulation was mediated by impairment of the sustained level of intracellular Ca(2+) concentration ([Ca(2+)]i) derived from the inhibition of store-operated Ca(2+) entry. The decrease in sustained elevation of [Ca(2+)]i led to the suppression of phosphorylation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins such as SNAP-23, syntaxin-4, which are necessary for membrane fusion between secretory granules and the plasma membrane during degranulation. Furthermore, the cationic liposomes suppressed vascular permeability elevation induced by mast cell activation in mice. These results showed that cationic liposomes possess the novel property of inhibiting mast cell activation, suggesting the possibility of developing cationic liposomes as anti-allergic effectors.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012; 64:1749-58. [PMID: 22634161 DOI: 10.1016/j.addr.2012.05.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
Cationic liposomes are commonly used as a transfection reagent for DNA, RNA or proteins and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger cascades that are classically activated by endogenous cationic compounds. The present review provides evidence that cationic liposomes activate several cellular pathways like pro-apoptotic and pro-inflammatory cascades. An improved knowledge of the relationship between the cationic lipid properties (nature of the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) and the activation of these pathways opens the way to the use and design of cationic tailored for a specific application (e.g. for gene transport or as adjuvants).
Collapse
|
11
|
Korsholm KS, Andersen PL, Christensen D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 2012; 11:561-77. [PMID: 22827242 DOI: 10.1586/erv.12.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic liposome formulations can function as efficient vaccine adjuvants. However, due to the highly diverse nature of lipids, cationic liposomes have different physical-chemical characteristics that influence their adjuvant mechanisms and their relevance for use in different vaccines. These characteristics can be further manipulated by incorporation of additional lipids or stabilizers, and inclusion of carefully selected immunostimulators is a feasible strategy when tailoring cationic liposomal adjuvants for specific disease targets. Thus, cationic liposomes present a plasticity, which makes them promising adjuvants for future vaccines. This versatility has also led to a vast amount of literature on different experimental liposomal formulations in combination with a wide range of immunostimulators. Here, we have compiled information about the animal challenge models and administration routes that have been used to study vaccine adjuvants based on cationic liposomes and provide an overview of the applicability, progress and clinical status of cationic liposomal vaccine adjuvants.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2011; 10:513-21. [PMID: 21506648 DOI: 10.1586/erv.11.17] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
13
|
Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv 2011; 8:505-19. [DOI: 10.1517/17425247.2011.558081] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Ouali M, Ruysschaert JM, Lonez C, Vandenbranden M. Cationic lipids involved in gene transfer mobilize intracellular calcium. Mol Membr Biol 2009; 24:225-32. [PMID: 17520479 DOI: 10.1080/09687860601108911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cationic lipids are efficient tools to introduce nucleic acids and proteins into cells. Elucidation of the mechanism and cellular pathways associated with such transport has been relatively tedious, even though significant progress has been made in the characterization of the intracellular trafficking of lipid/DNA complexes. Surprisingly little is known about the effects of these delivery vectors on cell functioning. In this report, we show that both cationic lipids and cationic lipid/DNA complexes mobilize the intracellular calcium. Removal of extracellular calcium did not significantly abolish this effect and preincubating cells with thapsigargin led to a decrease in [Ca2+]i, indicating that calcium was released mainly from internal calcium stores sensitive to thapsigargin. Pretreatment of the cells with the phospholipase C inhibitor U73122, blocked the [Ca2+]i rise, suggesting an inositol dependent mechanism.
Collapse
Affiliation(s)
- Mustapha Ouali
- Laboratory of Structure and Function of Biological Membranes, Center of Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
15
|
Cationic lipids activate cellular cascades. Which receptors are involved? Biochim Biophys Acta Gen Subj 2009; 1790:425-30. [DOI: 10.1016/j.bbagen.2009.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 12/14/2022]
|
16
|
Tanaka T, Legat A, Adam E, Steuve J, Gatot JS, Vandenbranden M, Ulianov L, Lonez C, Ruysschaert JM, Muraille E, Tuynder M, Goldman M, Jacquet A. DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. Eur J Immunol 2008; 38:1351-7. [PMID: 18389479 DOI: 10.1002/eji.200737998] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DiC14-amidine cationic liposomes were recently shown to promote Th1 responses when mixed with allergen. To further define the mode of action of diC14-amidine as potential vaccine adjuvant, we characterized its effects on mouse and human myeloid dendritic cells (DC). First, we observed that, as compared with two other cationic liposomes, only diC14-amidine liposomes induced the production of IL-12p40 and TNF-alpha by mouse bone marrow-derived DC. DiC14-amidine liposomes also activated human DC, as shown by synthesis of IL-12p40 and TNF-alpha, accumulation of IL-6, IFN-beta and CXCL10 mRNA, and up-regulation of membrane expression of CD80 and CD86. DC stimulation by diC14-amidine liposomes was associated with activation of NF-kappaB, ERK1/2, JNK and p38 MAP kinases. Finally, we demonstrated in mouse and human cells that diC14-amidine liposomes use Toll-like receptor 4 to elicit both MyD88-dependent and Toll/IL-1R-containing adaptor inducing interferon IFN-beta (TRIF)-dependent responses.
Collapse
Affiliation(s)
- Tetsuya Tanaka
- Laboratoire d'Allergologie Expérimentale, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Charleroi, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res 2008; 47:340-7. [PMID: 18424270 DOI: 10.1016/j.plipres.2008.03.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 11/21/2022]
Abstract
Cationic lipids are positively charged amphiphilic molecules which, for most of them, form positively charged liposomes, sometimes in combination with a neutral helper lipid. Such liposomes are mainly used as efficient DNA, RNA or protein carriers for gene therapy or immunization trials. Over the past decade, significant progress has been made in the understanding of the cellular pathways and mechanisms involved in lipoplex-mediated gene transfection but the interaction of cationic lipids with cell components and the consequences of such an interaction on cell physiology remains poorly described. The data reported in the present review provide evidence that cationic lipids are not just carriers for molecular delivery into cells but do modify cellular pathways and stimulate immune or anti-inflammatory responses. Considering the wide number of cationic lipids currently available and the variety of cellular components that could be involved, it is likely that only a few cationic lipid-dependent functions have been identified so far.
Collapse
|
18
|
Gao YY, Di Pascuale MA, Elizondo A, Tseng SCG. Clinical treatment of ocular demodecosis by lid scrub with tea tree oil. Cornea 2007; 26:136-43. [PMID: 17251800 DOI: 10.1097/01.ico.0000244870.62384.79] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report clinical outcome of treating ocular demodecosis by lid scrub with tea tree oil (TTO). METHODS Retrospective review of clinical results in 11 patients with ocular Demodex who received weekly lid scrub with 50% TTO combined with daily lid hygiene with tea tree shampoo. RESULTS These 11 patients also had meibomian gland dysfunction (n = 7) manifesting abnormal lipid film with slow lipid film spread, intermittent trichiasis (n = 5), and subjective lash loss (n = 4), suggesting damage to the meibomian glands and lash follicles. In addition, conjunctival inflammation (n = 8) was associated with conjunctivitis (n = 5), conjunctivochalasis (n = 3), findings suspicious for pemphigoid (n = 2), and recurrent pterygium (n = 2). After TTO lid scrub, the Demodex count dropped to 0 for 2 consecutive visits in less than 4 weeks in 8 of 11 patients. Ten of the 11 patients showed different degrees of symptomatic relief and notable reduction of inflammatory signs. Significant visual improvement in 6 of 22 eyes was associated with a stable lipid tear film caused by significant reduction of lipid spread time. Lid scrub with 50% TTO caused notable irritation in 3 patients. CONCLUSION Demodex potentially causes ocular surface inflammation, meibomian gland dysfunction, and lash abnormalities. Lid scrub with TTO can effectively eradicate ocular Demodex and result in subjective and objective improvements. This preliminary positive result warrants future prospective investigation of Demodex pathogenicity.
Collapse
Affiliation(s)
- Ying-Ying Gao
- Ocular Surface Center and Ocular Surface Research and Education Foundation, Miami, FL 33173, USA
| | | | | | | |
Collapse
|
19
|
Fernández-Caldas E, Iraola V, Boquete M, Nieto A, Casanovas M. Mite immunotherapy. Curr Allergy Asthma Rep 2006; 6:413-9. [PMID: 16899204 DOI: 10.1007/s11882-996-0015-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dermatophagoides pteronyssinus and D. farinae are the most common house dust mites and are among the most common sources of indoor allergens worldwide. These species are very common in humid regions, where most allergic individuals are sensitized to house dust mites. Specific immunotherapy with mite extracts has demonstrated clinical benefits in several double-blind, placebo-controlled trials that are included in recent reviews of subcutaneous immunotherapy, including pediatric and adult patients with rhinoconjunctivitis and or asthma. Most successful studies of mite immunotherapy have used native allergen extracts adsorbed onto aluminum hydroxide, or chemically modified mite-allergen extracts. Several studies have also shown efficacy using sublingual immunotherapy in pediatric and adult patients with asthma and/or rhinitis. Additionally, the efficacy of subcutaneous immunotherapy has been demonstrated in patients with atopic dermatitis, although more double-blind, placebo-controlled studies are needed. Based on several studies, it cannot be concluded that mite immunotherapy is more dangerous or safer than immunotherapy with grasses, epithelia, or animal epithelia. Because the delivery of high doses of allergen carries with it the risk for immunoglobulin E (IgE)-mediated events, several methods have been developed to reduce specific IgE binding to mite-allergen extracts. An important challenge for future mite immunotherapy modalities is the delivery of relatively high doses without a significant risk for severe reactions.
Collapse
|
20
|
Stebelska K, Wyrozumska P, Gubernator J, Sikorski AF. Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell Mol Biol Lett 2006; 12:39-50. [PMID: 17103091 PMCID: PMC6275732 DOI: 10.2478/s11658-006-0049-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 08/09/2006] [Indexed: 11/29/2022] Open
Abstract
Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.
Collapse
Affiliation(s)
- Katarzyna Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|