1
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
2
|
Andretto V, Dusi S, Zilio S, Repellin M, Kryza D, Ugel S, Lollo G. Tackling TNF-α in autoinflammatory disorders and autoimmune diseases: From conventional to cutting edge in biologics and RNA- based nanomedicines. Adv Drug Deliv Rev 2023; 201:115080. [PMID: 37660747 DOI: 10.1016/j.addr.2023.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Silvia Dusi
- Istituto Oncologico Veneto IRCCS, Padova 35128, Italy
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; SATT Ouest Valorisation, 14C Rue du Patis Tatelin 35708, Rennes, France
| | - Mathieu Repellin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; PULSALYS SATT Lyon-Saint Etienne, 47 Boulevard du 11 Novembre 1918, 69625 Villeurbanne, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
3
|
Elahimanesh M, Najafi M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep 2023; 13:7704. [PMID: 37169818 PMCID: PMC10175251 DOI: 10.1038/s41598-023-34780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term inflammatory immune-mediated gut illness with several extra-intestinal complications. The aims of this study were to identify a novel network-based meta-analysis approach on the basis of the combinations of the differentially expressed genes (DEGs) from microarray data, to enrich the functional modules from human protein-protein interaction (PPI) and gene ontology (GO) data, and to profile the ncRNAs on the genes involved in IBD. The gene expression profiles of GSE126124, GSE87473, GSE75214, and GSE95095 are obtained from the Gene Expression Omnibus (GEO) database based on the study criteria between 2017 and 2022. The DEGs were screened by the R software. DEGs were then used to examine gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The ncRNAs including the miRNAs and ceRNAs were predicted on the PPIs visualized using Cytoscape. Enrichment analysis of genes with differential expression (n = 342) using KEGG and GO showed that the signaling pathways related with staphylococcus aureus and pertussis bacterial infections may stimulate the immune system and exacerbate IBD via the interaction with human proteins including Fibrinogen gamma chain (FGG), Keratin 10 (KRT10), and Toll like receptor 4 (TLR4). By building a ceRNA network, lncRNA XIST and NEAT1 were determined by affecting common miRNAs, hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-6763-5p, hsa-miR-4436a, and hsa-miR-520a-5p. Additionally, the chromosome regions including NM_001039703 and NM_006267, which produce the most potent circRNAs play a significant role in the ceRNA network of IBD. Also, we predicted the siRNAs that would be most effective against the bacterial genes in staphylococcus aureus and pertussis infections. These findings suggested that three genes (FGG, KRT10, and TLR4), six miRNAs (hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-4436a, hsa-miR-520a-5p, and hsa-miR-6763-5p), two lncRNAs (XIST and NEAT1), and chromosomal regions including NM_001039703 and NM_006267 with the production of the most effective circRNAs are involved in the ncRNA-associated ceRNA network of IBD. These ncRNA profiles are related to the described gene functions and may play therapeutic targets in controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
6
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Hossian AKMN, Mackenzie GG, Mattheolabakis G. miRNAs in gastrointestinal diseases: can we effectively deliver RNA-based therapeutics orally? Nanomedicine (Lond) 2019; 14:2873-2889. [PMID: 31735124 DOI: 10.2217/nnm-2019-0180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are evaluated for their potential of treating a plethora of diseases, including cancer and inflammation. Short nucleic acids, such as miRNAs, have emerged as versatile regulators for gene expression and are studied for therapeutic purposes. However, their inherent instability in vivo following enteral and parenteral administration has prompted the development of novel methodologies for their delivery. Although research on the oral delivery of siRNAs is progressing, with the development and utilization of promising carrier-based methodologies for the treatment of a plethora of gastrointestinal diseases, research on miRNA-based oral therapeutics is lagging behind. In this review, we present the potential role of miRNAs in diseases of the GI tract, and analyze current research and the cardinal features of the novel carrier systems used for nucleic acid oral delivery that can be expanded for oral miRNA administration.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | | | - George Mattheolabakis
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
8
|
|
9
|
Tian Y, Xu J, Li Y, Zhao R, Du S, Lv C, Wu W, Liu R, Sheng X, Song Y, Bi X, Li G, Li M, Wu X, Lou P, You H, Cui W, Sun J, Shuai J, Ren F, Zhang B, Guo M, Hou X, Wu K, Xue L, Zhang H, Plikus MV, Cong Y, Lengner CJ, Liu Z, Yu Z. MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology 2019; 156:2281-2296.e6. [PMID: 30779922 DOI: 10.1053/j.gastro.2019.02.023] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Levels of microRNA 31 (MIR31) are increased in intestinal tissues from patients with inflammatory bowel diseases and colitis-associated neoplasias. We investigated the effects of this microRNA on intestinal inflammation by studying mice with colitis. METHODS We obtained colon biopsy samples from 82 patients with ulcerative colitis (UC), 79 patients with Crohn's disease (CD), and 34 healthy individuals (controls) at Shanghai Tenth People's Hospital. MIR31- knockout mice and mice with conditional disruption of Mir31 specifically in the intestinal epithelium (MIR31 conditional knockouts) were given dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS) to induce colitis. We performed chromatin immunoprecipitation and luciferase assays to study proteins that regulate expression of MIR31, including STAT3 and p65, in LOVO colorectal cancer cells and organoids derived from mouse colon cells. Partially hydrolyzed alpha-lactalbumin was used to generate peptosome nanoparticles, and MIR31 mimics were loaded onto their surface using electrostatic adsorption. Peptosome-MIR31 mimic particles were encapsulated into oxidized konjac glucomannan (OKGM) microspheres, which were administered by enema into the large intestines of mice with DSS-induced colitis. Intestinal tissues were collected and analyzed by histology and immunohistochemistry. RESULTS Levels of MIR31 were increased in inflamed mucosa from patients with CD or UC, and from mice with colitis, compared with controls. STAT3 and nuclear factor-κB activated transcription of MIR31 in colorectal cancer cells and organoids in response to tumor necrosis factor and interleukin (IL)6. MIR31-knockout and conditional-knockout mice developed more severe colitis in response to DSS and TNBS, with increased immune responses, compared with control mice. MIR31 bound to 3' untranslated regions of Il17ra and Il7r messenger RNAs (RNAs) (which encode receptors for the inflammatory cytokines IL17 and IL7) and Il6st mRNA (which encodes GP130, a cytokine signaling protein). These mRNAs and proteins were greater in MIR31-knockout mice with colitis, compared with control mice; MIR31 and MIR31 mimics inhibited their expression. MIR31 also promoted epithelial regeneration by regulating the WNT and Hippo signaling pathways. OKGM peptosome-MIR31 mimic microspheres localized to colonic epithelial cells in mice with colitis; they reduced the inflammatory response, increased body weight and colon length, and promoted epithelial cell proliferation. CONCLUSIONS MIR31, increased in colon tissues from patients with CD or UC, reduces the inflammatory response in colon epithelium of mice by preventing expression of inflammatory cytokine receptors (Il7R and Il17RA) and signaling proteins (GP130). MIR31 also regulates the WNT and Hippo signaling pathways to promote epithelial regeneration following injury. OKGM peptosome-MIR31 microspheres localize to the colon epithelium of mice to reduce features of colitis. Transcript Profiling: GSE123556.
Collapse
Affiliation(s)
- Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengzhen Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xi Wu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiwen You
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Cui
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China; Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, UK
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lixiang Xue
- Medical Research Center. Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, California
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
O'Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur J Pharm Sci 2019; 133:190-204. [PMID: 30946964 DOI: 10.1016/j.ejps.2019.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Gene therapy with RNA and pDNA-based drugs is limited by poor enzymatic stability and poor cellular permeation. The delivery of nucleic acids, in particular by the oral route, remains a major hurdle. This review will focus on the barriers to the oral delivery of nucleic acids and the strategies, in particular formulation strategies, which have been developed to overcome these barriers. Due to their very low oral bioavailability, the most obvious and most investigated biomedical applications for their oral delivery are related to the local treatment of inflammatory bowel diseases and colorectal cancers. Preclinical data but not yet clinical studies support the potential use of the oral route for the local delivery of formulated nucleic acid-based drugs.
Collapse
Affiliation(s)
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Julian D Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Véronique Préat
- Universite catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1.73.12, 1200 Brussels, Belgium.
| | - Vincent Jannin
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France.
| |
Collapse
|
11
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
12
|
Melo M, Nunes R, Sarmento B, das Neves J. Rectal administration of nanosystems: from drug delivery to diagnostics. MATERIALS TODAY CHEMISTRY 2018; 10:128-141. [DOI: 10.1016/j.mtchem.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Cationic Liposomes Carrying siRNA: Impact of Lipid Composition on Physicochemical Properties, Cytotoxicity and Endosomal Escape. NANOMATERIALS 2018; 8:nano8050270. [PMID: 29695068 PMCID: PMC5977284 DOI: 10.3390/nano8050270] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 01/06/2023]
Abstract
In recent year, cationic liposomes have gained a lot of attention for siRNA delivery. Despite this, intracellular barriers as endosomal escape and cytosolic delivery of siRNA still represent a challeng, as well as the cytotoxicity due to cationic lipids. To address these issues, we developed four liposomal formulations, composed of two different cationic lipids (DOTAP and DC-Cholesterol) and different ratio of co-lipids (cholesterol and DOPE). The objective is to dissect these impacts on siRNA efficacy and cytotoxicity. Liposomes were complexed to siRNA at six different N/P molar ratios, physico-chemical properties were characterized, and consequently, N/P 2.5, 5 and 10 were selected for in vitro experiments. We have shown that cytotoxicity is influenced by the N/P ratio, the concentration of cationic lipid, as well as the nature of the cationic lipid. For instance, cell viability decreased by 70% with liposomes composed of DOTAP/Cholesterol/DOPE 1/0.75/0.5 at a N/P ratio 10, whereas the same formulation at a N/P ratio of 2.5 was safe. Interestingly, we have observed differences in terms of mRNA knock-down efficiency, whereas the transfection rate was quite similar for each formulation. Liposomes containing 50% of DOPE induced a mRNA silencing of around 80%. This study allowed us to highlight crucial parameters in order to develop lipoplexes which are safe, and which induce an efficient intracytoplasmic release of siRNA.
Collapse
|
14
|
Zhou SY, Gillilland M, Wu X, Leelasinjaroen P, Zhang G, Zhou H, Ye B, Lu Y, Owyang C. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J Clin Invest 2017; 128:267-280. [PMID: 29202473 DOI: 10.1172/jci92390] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Foods high in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) exacerbate symptoms of irritable bowel syndrome (IBS); however, their mechanism of action is unknown. We hypothesized that a high-FODMAP (HFM) diet increases visceral nociception by inducing dysbiosis and that the FODMAP-altered gut microbial community leads to intestinal pathology. We fed rats an HFM and showed that HFM increases rat fecal Gram-negative bacteria, elevates lipopolysaccharides (LPS), and induces intestinal pathology, as indicated by inflammation, barrier dysfunction, and visceral hypersensitivity (VH). These manifestations were prevented by antibiotics and reversed by low-FODMAP (LFM) diet. Additionally, intracolonic administration of LPS or fecal supernatant (FS) from HFM-fed rats caused intestinal barrier dysfunction and VH, which were blocked by the LPS antagonist LPS-RS or by TLR4 knockdown. Fecal LPS was higher in IBS patients than in healthy subjects (HS), and IBS patients on a 4-week LFM diet had improved IBS symptoms and reduced fecal LPS levels. Intracolonic administration of FS from IBS patients, but not FS from HS or LFM-treated IBS patients, induced VH in rats, which was ameliorated by LPS-RS. Our findings indicate that HFM-associated gut dysbiosis and elevated fecal LPS levels induce intestinal pathology, thereby modulating visceral nociception and IBS symptomatology, and might provide an explanation for the success of LFM diet in IBS patients.
Collapse
|
15
|
Shaikh MH, Clarke DTW, Johnson NW, McMillan NAJ. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol 2017; 68:9-19. [PMID: 28438299 DOI: 10.1016/j.oraloncology.2017.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Conventional treatment strategies have done little to improve the prognosis or disease-free survival in head and neck cancer (HNC) patients. Recent progress in our understanding of molecular aspects of head and neck squamous cell carcinoma (HNSCC) has provided insights into the potential use of molecular targeted therapies in combination with current treatment strategies. Here we review the current understanding of treatment modalities for both HPV-positive and HPV-negative HNSCCs with the potential to use gene editing and silencing technologies therapeutically. The development of sequence-specific RNA interference (RNAi) with its strong gene-specific silencing ability, high target specificity, greater potency and reduced side effects, has shown it to be a promising therapeutic candidate for treating cancers. CRISPR/Cas gene editing is the newest technology with the ability to delete, mutate or replace genes of interest and has great potential for treating HNSCCs. We also discuss the major challenge in using these approaches in HNSCC; that being the choice of target and the ability to deliver the payload. Finally, we highlight the potential combination of RNAi or CRIPSR/Cas with current treatment strategies and outline the possible path to the clinic.
Collapse
Affiliation(s)
- Mushfiq H Shaikh
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Daniel T W Clarke
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Newell W Johnson
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Nigel A J McMillan
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| |
Collapse
|
16
|
Brako F, Mahalingam S, Rami-Abraham B, Craig DQM, Edirisinghe M. Application of nanotechnology for the development of microbicides. NANOTECHNOLOGY 2017; 28:052001. [PMID: 28032619 DOI: 10.1088/1361-6528/28/5/052001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated.
Collapse
Affiliation(s)
- Francis Brako
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK. University College London, School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
17
|
Liu Y, Zhu X, Zhang H. Effects of chemokine receptor 3 gene silencing by RNA interference on eosinophils. Exp Ther Med 2016; 13:215-221. [PMID: 28123492 PMCID: PMC5245065 DOI: 10.3892/etm.2016.3965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to use RNA interference (RNAi) to silence chemokine receptor 3 (CCR3) and observe the effects on eosinophils (EOS) in mice with allergic rhinitis (AR). CCR3 small interfering RNA (siRNA) lentiviral vectors were transduced into purified EOS cells cultured in vitro. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were also used to detect the efficiency of silencing, and flow cytometry was used to detect the EOS apoptosis rates. Experimental mice were grouped for nasal administration, and the lentivirus was then dispensed to AR mice. RT-PCR and western blots were performed to detect the expression levels of CCR3 mRNA and protein in EOS extracted from bone marrow, peripheral blood and nasal mucosa. Furthermore, flow cytometry was performed to detect changes to CD34-positive (CD34+) cells in each group. The CCR3 siRNA lentiviral vector exhibited high efficiency in silencing CCR3 mRNA and protein expression, inhibited growth and promoted apoptosis of EOS. In addition, the expression of CCR3 mRNA and protein in the bone marrow, peripheral blood and nasal mucosa of mice in the CCR3 siRNA treatment group were lower than those in the control group (P<0.05), whereas the number of CD34+ cells in the CCR3 siRNA treatment group was not significantly different compared with that in the control group (P>0.05). CCR3 RNAi could effectively silence the expression of CCR3 mRNA and protein both in vitro and in vivo, thus promoting apoptosis of EOS and inhibiting its growth, migration and invasion.
Collapse
Affiliation(s)
- Yuehui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
19
|
Moroz E, Lee SH, Yamada K, Halloy F, Martínez-Montero S, Jahns H, Hall J, Damha MJ, Castagner B, Leroux JC. Carrier-free Gene Silencing by Amphiphilic Nucleic Acid Conjugates in Differentiated Intestinal Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e364. [PMID: 27648924 PMCID: PMC5056993 DOI: 10.1038/mtna.2016.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022]
Abstract
Nucleic acid therapy can be beneficial for the local treatment of gastrointestinal diseases that currently lack appropriate treatments. Indeed, several oligonucleotides (ONs) are currently progressing through clinical trials as potential treatments for inflammatory bowel diseases. However, due to low uptake of carrier-free ONs by mucosal cells, strategies aimed at increasing the potency of orally administered ONs would be highly desirable. In this work, we explored the silencing properties of chemically modified and highly resistant ONs derivatized with hydrophobic alkyl chain on intestinal epithelial cells. We screened a set of lipid-ON conjugates for the silencing of model Bcl-2 mRNA and selected 2'-deoxy-2'-fluoro-arabinonucleic acid modified ON bearing docosanoyl moiety (L-FANA) as the most potent candidate with lowest toxicity. The efficacy of L-FANA conjugate was preserved in simulated intestinal fluids and in the inverted transfection setup. Importantly, L-FANA conjugate was able to downregulate target gene expression at both mRNA and protein levels in a difficult-to-transfect polarized epithelial cell monolayer in the absence of delivery devices and membrane disturbing agents. These findings indicate that lipid-ON conjugates could be promising therapeutics for the treatment of intestinal diseases as well as a valuable tool for the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Elena Moroz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Soo Hyeon Lee
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ken Yamada
- Department of Chemistry, McGill University, Montreal, Canada
| | - François Halloy
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Hartmut Jahns
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Bastien Castagner
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Sarett SM, Nelson CE, Duvall CL. Technologies for controlled, local delivery of siRNA. J Control Release 2015; 218:94-113. [PMID: 26476177 PMCID: PMC4665980 DOI: 10.1016/j.jconrel.2015.09.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While locally injected or topically applied siRNA has progressed into numerous clinical trials, an enormous opportunity exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation.
Collapse
Affiliation(s)
- Samantha M Sarett
- Vanderbilt University Department of Biomedical Engineering, United States
| | | | - Craig L Duvall
- Vanderbilt University Department of Biomedical Engineering, United States.
| |
Collapse
|
21
|
Müller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015; 468:411-8. [PMID: 26315266 DOI: 10.1016/j.bbrc.2015.08.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
In the last decades, the development and design of drug delivery systems have attracted great attention. Especially siRNA carriers have been of special interest since discovered as suitable tool for gene silencing. Self-assembled structures consisting of amphiphilic molecules are the most investigated carriers with regards to siRNA delivery. Liposomes as drug vehicles already found their way into clinical use, as they are highly biocompatible and their colloidal stability and circulation time in blood can be significantly enhanced by PEGylation. Fully synthetic polymersomes inspired by these natural structures provide enhanced stability and offer a wide range of modification-possibilities. Therefore, their design as carrier vehicles has become of great interest. This mini-review highlights the possibilities of using polymeric vesicles for potential drug delivery and gives a brief overview of their potential regarding fine-tuning towards targeted delivery or triggered drug release.
Collapse
Affiliation(s)
- Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Dobrovolskaia MA, McNeil SE. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther 2015; 15:1023-48. [PMID: 26017628 DOI: 10.1517/14712598.2015.1014794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Nucleic acid-based therapeutics (NATs) are proven agents in correcting disorders caused by gene mutations, as treatments against cancer, microbes and viruses, and as vaccine adjuvants. Although many traditional small molecule NATs have been approved for clinical use, commercialization of macromolecular NATs has been considerably slower, and only a few have successfully reached the market. Preclinical and clinical evaluation of macromolecular NATs has revealed many assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics (PKs), toxicology and formulation. Extensive review has been given to the PK and toxicological concerns of NATs including approaches designed to overcome these issues. Immunological and hematological issues are a commonly reported side effect of NAT treatment; however, literature exploring the mechanistic background of these effects is sparse. AREAS COVERED This review focuses on the immunomodulatory properties of various types of therapeutic nucleic acid concepts. The most commonly observed immunological and hematological toxicities are described for various NAT classes, with citations of how to circumvent these toxicities. EXPERT OPINION Although some success with overcoming immunological and hematological toxicities of NATs has been achieved in recent years, immunostimulation remains the main dose-limiting factor challenging clinical translation of these promising therapies. Novel delivery vehicles should be considered to overcome this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Nanotechnology Characterization Laboratory, Cancer Research Technology Program , P.O. Box B, Frederick, MD 21702 , USA +1 301 846 6939 ; +1 301 846 6399 ;
| | | |
Collapse
|
23
|
Steinbach JM. Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs. Cell Mol Life Sci 2015; 72:469-503. [PMID: 25323132 PMCID: PMC11113570 DOI: 10.1007/s00018-014-1756-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 01/17/2023]
Abstract
Intravaginal delivery offers an effective option for localized, targeted, and potent microbicide delivery. However, an understanding of the physiological factors that impact intravaginal delivery must be considered to develop the next generation of microbicides. In this review, a comprehensive discussion of the opportunities and challenges of intravaginal delivery are highlighted, in the context of the intravaginal environment and currently utilized dosage forms. After a subsequent discussion of the stages of microbicide development, the intravaginal delivery of proteins and oligonucleotides is addressed, with specific application to HSV and HIV. Future directions may include the integration of more targeted delivery modalities to virus and host cells, in addition to the use of biological agents to affect specific genes and proteins involved in infection. More versatile and multipurpose solutions are envisioned that integrate new biologicals and materials into potentially synergistic combinations to achieve these goals.
Collapse
Affiliation(s)
- Jill M Steinbach
- Department of Bioengineering, Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., CTRB, Room 623, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Abstract
Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn's disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies.
Collapse
Affiliation(s)
| | - Joel Pekow
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, 900 East 57th Street, MB # 9, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Haigh O, Depelsenaire AC, Meliga SC, Yukiko SR, McMillan NA, Frazer IH, Kendall MA. CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. J Control Release 2014; 194:148-56. [DOI: 10.1016/j.jconrel.2014.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/09/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022]
|
26
|
Mouse and human Notch-1 regulate mucosal immune responses. Mucosal Immunol 2014; 7:995-1005. [PMID: 24424521 DOI: 10.1038/mi.2013.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/22/2013] [Indexed: 02/04/2023]
Abstract
The Notch-1 signaling pathway is responsible for homeostatic tight junction expression in vitro, and promotes barrier function in vivo in the RAG1-adoptive transfer model of colitis. In this study, we sought to determine the role of colonic Notch-1 in the lymphoepithelial crosstalk in health and disease. We utilized in vivo and in vitro knockdown to target the expression of Notch-1. We identified that epithelial Notch-1 is required for appropriate activation of intestinal epithelial cells at steady state and upon inflammatory stimulus. Notch-1 expression modulates mucosal chemokine and cytokine secretion, and FoxP3 and effector T-cell responses. We showed that epithelial Notch-1 controls the immune function of the epithelium through crosstalk with the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathways that, in turn, elicits T-cell responses. Overall, epithelial Notch-1 bridges innate and adaptive immunity in the gut. Our findings highlight an indispensable role for Notch-1-mediated signaling in the intricate epithelial-immune crosstalk, and validate that epithelial Notch-1 is necessary and sufficient to support protective epithelial proinflammatory responses.
Collapse
|
27
|
Xiong J, Lin YH, Bi LH, Wang JD, Bai Y, Liu SD. Effects of interleukin-4 or interleukin-10 gene therapy on trinitrobenzenesulfonic acid-induced murine colitis. BMC Gastroenterol 2013; 13:165. [PMID: 24314293 PMCID: PMC3897998 DOI: 10.1186/1471-230x-13-165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/14/2013] [Indexed: 02/08/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is characterized by disturbance of pro-inflammatory cytokines and anti-inflammatory cytokines. Previous studies have demonstrated the effect of anti-inflammatory cytokines, such as interleukin-10 (IL-10) or IL-4 on IBD, but their data were controversial. This study further investigated the effect of IL-4 (IL-4), IL-10 and their combination on treatment of trinitrobenzenesulfonic acid (TNBS)-induced murine colitis. Methods pcDNA3.0 carrying murine IL-4 or IL-10 cDNA was encapsulated with LipofectAMINE 2000 and intraperitoneally injected into mice with TNBS-induced colitis. The levels of intestinal IL-4 and IL-10 mRNA were confirmed by quantitative-RT-PCR. Inflamed tissues were assessed by histology and expression of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and IL-6. Results The data confirmed that IL-4 or IL-10 over-expression was successfully induced in murine colon tissues after intraperitoneal injection. Injections of IL-4 or IL-10 significantly inhibited TNBS-induced colon tissue damage, disease activity index (DAI) and body weight loss compared to the control mice. Furthermore, expression of IFN-γ, TNF-α and IL-6 was markedly blocked by injections of IL-4 or IL-10 plasmid. However, there was less therapeutic effect in mice injected with the combination of IL-4 and IL-10. Conclusions These data suggest that intraperitoneal injection of IL-4 or IL-10 plasmid was a potential strategy in control of TNBS-induced murine colitis, but their combination had less effect.
Collapse
Affiliation(s)
| | | | | | | | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | | |
Collapse
|
28
|
Bang EK, Jeon EM, Kim W, Lee KH, Kim KT, Kim BH. Tissue specific delivery of estrone-conjugated siRNAs. MOLECULAR BIOSYSTEMS 2013; 9:974-7. [PMID: 23037688 DOI: 10.1039/c2mb25258a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An estrone phosphoramidite, synthesized in a single step, was directly incorporated at the 5' ends of small interfering RNAs (siRNAs). The resulting estrone-conjugated siRNAs readily pass through cellular membranes and down-regulate the target protein, and show specific distributions in vivo.
Collapse
Affiliation(s)
- Eun-Kyoung Bang
- Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1633-41. [PMID: 22465072 DOI: 10.1016/j.bbamem.2012.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/10/2012] [Accepted: 03/19/2012] [Indexed: 01/05/2023]
Abstract
The discovery of siRNA has been an important step in gene therapy, but the problem of delivering siRNA to a target organ limits its use as a therapeutic drug. Liposomes can be used as a nonviral vector to deliver siRNA to target cells. In this study we developed a novel method of producing asymmetric liposome particles (ALPs) with highly efficient siRNA encapsulation. Two kinds of lipid inverted micelles were prepared for the purpose of obtaining ALPs. The inner one is composed of ionizable cationic 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), which entrap siRNA, and the outer one is composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), DOPE, polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (PEG-PE), and cholesterol. After mixing the inverted micelles, ALPs encapsulating siRNA were obtained by solvent evaporation and dialysis. This process allowed more than 90% siRNA encapsulation as well as the negatively charged surface. The ALPs protected siRNA from ribonuclease A degradation. ALPs without any surface modification elicited almost no uptake into cells, while the surface-modified ALPs with a polyarginine peptide (R12) induced nonspecific cell penetration. The conjugation of the anti-human epidermal growth factor receptor antibody (anti-EGFR) to ALPs induces an EGFR-mediated uptake into the non-small cell lung cancer cell lines but not into NIH-3T3 cells without the receptor. The siRNA encapsulated in ALPs showed the R12- or anti-EGFR-dependent target gene silencing in NCI-H322 cells. These properties of ALPs are useful for target-specific delivery of siRNA after modification of ALPs with a target-specific ligand.
Collapse
|
30
|
Efficient Biodistribution and Gene Silencing in the Lung epithelium via Intravenous Liposomal Delivery of siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e96. [PMID: 23736774 PMCID: PMC3696903 DOI: 10.1038/mtna.2013.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) may provide a therapeutic solution to many pulmonary epithelium diseases. However, the main barrier to the clinical use of RNAi remains the lack of efficient delivery vectors. Research has mainly concentrated on the intranasal route of delivery of short interfering RNA (siRNA) effector molecules for the treatment of respiratory diseases. However, this may be complicated in a diseased state due to the increased fluid production and tissue remodeling. Therefore, we investigated our hydration of a freeze-dried matrix (HFDM) formulated liposomes for systemic delivery to the lung epithelium. Here, we show that 45 ± 2% of epithelial murine lung cells receive siRNA delivery upon intravenous (IV) liposomal administration. Furthermore, we demonstrate that liposomal siRNA delivery resulted in targeted gene and protein knockdown throughout the lung, including lung epithelium. Taken together, this is the first description of lung epithelial delivery via cationic liposomes, and provides a proof of concept for the use of IV liposomal RNAi delivery to specifically knockdown targeted genes in the respiratory system. This approach may provide an attractive alternate therapeutic delivery strategy for the treatment of lung epithelium diseases.
Collapse
|
31
|
Olesen MTJ, Ballarín-González B, Howard KA. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv Transl Res 2013; 4:4-18. [DOI: 10.1007/s13346-013-0156-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
McCarthy J, O'Neill MJ, Bourre L, Walsh D, Quinlan A, Hurley G, Ogier J, Shanahan F, Melgar S, Darcy R, O'Driscoll CM. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. J Control Release 2013; 168:28-34. [PMID: 23500058 DOI: 10.1016/j.jconrel.2013.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammation of the gastrointestinal tract. The cytokine TNF-alpha (TNF-α) plays a pivotal role in mediating this inflammatory response. RNA interference (RNAi) holds great promise for the specific and selective silencing of aberrantly expressed genes, such as TNF-α in IBD. The aim of this study was to investigate the efficacy of an amphiphilic cationic cyclodextrin (CD) vector for effective TNF-α siRNA delivery to macrophage cells and to mice with induced acute-colitis. The stability of CD.siRNA was examined by gel electrophoresis in biorelevant media reflecting colonic fluids. RAW264.7 cells were transfected with CD.TNF-α siRNA, stimulated with lipopolysaccharide (LPS) and TNF-α and IL-6 responses were measured by PCR and ELISA. Female C57BL/6 mice were exposed to dextran sodium sulphate (DSS) and treated by intrarectal administration with either CD.siRNA TNF-α or a control solution. In vitro, siRNA in CD nanocomplexes remained intact and stable in both fed and fasted simulated colonic fluids. RAW264.7 cells transfected with CD.TNF-α siRNA and stimulated with LPS displayed a significant reduction in both gene and protein levels of TNF-α and IL-6. CD.TNF-α siRNA-treated mice revealed a mild amelioration in clinical signs of colitis, but significant reductions in total colon weight and colonic mRNA expression of TNF-α and IL-6 compared to DSS-control mice were detected. This data indicates the clinical potential of a local CD-based TNF-α siRNA delivery system for the treatment of IBD.
Collapse
Affiliation(s)
- J McCarthy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MVLB. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res 2013; 30:915-31. [PMID: 23344907 PMCID: PMC7088712 DOI: 10.1007/s11095-013-0971-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.
Collapse
|
34
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
35
|
Mucosal Delivery of RNAi Therapeutics. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [PMCID: PMC7121168 DOI: 10.1007/978-1-4614-4744-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The effectiveness of RNA interference-based drugs is dependent on accumulation at the target site in therapeutically relevant amounts. Local administration to the mucosal surfaces lining the respiratory, gastrointestinal and genitourinary tracts allows access into diseased areas without the necessity to overcome serum nuclease degradation, rapid renal and hepatic clearance and non-specific tissue accumulation associated with systemic delivery. This work describes RNAi therapeutics focused on pulmonary, oral, rectal and intravaginal routes of administration. Mucosal barrier components including site variations and delivery considerations are addressed in order to design an effective mucosal delivery strategy.
Collapse
|
36
|
Singhania R, Khairuddin N, Clarke D, McMillan NA. RNA interference for the treatment of papillomavirus disease. Open Virol J 2012; 6:204-15. [PMID: 23341856 PMCID: PMC3547394 DOI: 10.2174/1874357901206010204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.
Collapse
Affiliation(s)
- Richa Singhania
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
37
|
Hernandez-Alejandro R, Zhang X, Croome KP, Zheng X, Parfitt J, Chen D, Jevnikar A, Wall W, Min WP, Quan D. Reduction of Liver Ischemia Reperfusion Injury by Silencing of TNF-α Gene with shRNA. J Surg Res 2012; 176:614-20. [DOI: 10.1016/j.jss.2011.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
|
38
|
Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release 2012; 162:102-10. [PMID: 22705461 DOI: 10.1016/j.jconrel.2012.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/22/2012] [Accepted: 06/05/2012] [Indexed: 11/27/2022]
Abstract
Effective, low-cost, and safe treatments for sexually transmitted viral infections are urgently needed. Here, we show for the first time that intravaginal administration with nanoparticles of poly(lactic-co-glycolic acid) (PLGA) encapsulating short interfering RNA (siRNA) molecules is effective for prevention of genital HSV-2 infections in mice. PLGA nanoparticles (NPs) were designed to interfere with HSV-2 infection by siRNA-mediated knockdown of nectin, a host cell protein. NPs were characterized in vitro to determine the optimal formulation based on siRNA loading, controlled release profile, and mRNA knockdown. Mice inoculated intravaginally with a lethal dose of HSV-2, and treated with PLGA NPs, showed increased survival from ~9 days (in untreated mice) to >28 days (in PLGA NP treated mice) - the longest survival ever observed with siRNA treatment in this mouse model. This work provides proof-of-concept that topical administration of NPs containing siRNA against a pathologically relevant host cell target can knockdown the gene in tissue and improve survival after HSV-2 infection. Furthermore, this system provides a safe delivery platform that employs materials that are already approved by the FDA and can be modified to enhance delivery of other microbicides.
Collapse
|
39
|
Goldsmith M, Mizrahy S, Peer D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (Lond) 2012; 6:1771-85. [PMID: 22122585 DOI: 10.2217/nnm.11.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNAi is a ubiquitous and highly specific, endogenous, evolutionarily conserved mechanism of gene silencing. RNAi holds great promise as a novel therapeutic modality. Despite the rapid progress in the understanding and utilization of RNAi in vitro, the application of RNAi in vivo has been met with great difficulties, mainly in the delivery of these molecules into specific cell types. Here, we describe the major systemic nanomedicine platforms that have been developed. Focus is given to the development of new strategies to target subsets of leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss the hurdles and potential opportunities for in vivo manipulation of the immune response utilizing RNAi nanomedicines.
Collapse
Affiliation(s)
- Meir Goldsmith
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
40
|
Ocampo SM, Romero C, Aviñó A, Burgueño J, Gassull MA, Bermúdez J, Eritja R, Fernandez E, Perales JC. Functionally enhanced siRNA targeting TNFα attenuates DSS-induced colitis and TLR-mediated immunostimulation in mice. Mol Ther 2011; 20:382-90. [PMID: 22044934 DOI: 10.1038/mt.2011.236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNFα) is a proinflammatory cytokine involved in the pathogenesis of inflammatory bowel disease (IBD). Although TNFα has been extensively targeted using systemic drugs, the use of antisense and small interfering RNA (siRNA) to drive down its expression at the site of inflammation should provide important advantages. In this study, native and chemically modified siRNA against TNFα was developed and characterized using a murine model of IBD. siRNA with 2'-O-methyl and propanediol modifications (siTNF-OMe-P) were resistant to nuclease degradation and provided better silencing efficacy in vitro as compared to unmodified siRNA. Every modification reduced nonspecific Toll-like receptor (TLR)-mediated immunomodulation in human peripheral blood mononuclear cells (PBMC) cells. Intrarectal administration of siTNF-OMe-P significantly ameliorated the clinical endpoints and histopathological severity in 5% dextran sulphate sodium (DSS)-treated mice as compared to unmodified and other chemically modified siRNAs. Differential gene expression assessed in siTNF-OMe-P-treated animals correlated with improved colon integrity and reduced TLR activation as compared to all treatment groups. All in all, this study demonstrates that propanediol and 2'-O-methyl modifications have profound functional consequences for siRNA efficacy in vivo. Consequently, this strategy has potential implications for therapeutic intervention in IBD and other diseases.
Collapse
Affiliation(s)
- Sandra M Ocampo
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
SiRNA is the trigger of RNA interference, a mechanism discovered in the late 1990s. To release the therapeutic potential of this versatile but large and fragile molecule, excipients are used which either interact by electrostatic interaction, passively encapsulate siRNA or are covalently attached to enable specific and safe delivery of the drug substance. Controlling the delicate balance between protective complexation and release of siRNA at the right point and time is done by understanding excipients–siRNA interactions. These can be lipids, polymers such as PEI, PLGA, Chitosans, Cyclodextrins, as well as aptamers and peptides. This review describes the mechanisms of interaction of the most commonly used siRNA delivery vehicles, and looks at the results of their clinical and preclinical studies.
Collapse
Affiliation(s)
- Katharina Bruno
- Novartis Pharma AG, Technical Research & Development (TRD), Pharmaceutical and Analytical Development (PHAD), CH-4057 Basel, Switzerland.
| |
Collapse
|
42
|
Baoum A, Ovcharenko D, Berkland C. Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. Int J Pharm 2011; 427:134-42. [PMID: 21856394 DOI: 10.1016/j.ijpharm.2011.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/05/2011] [Accepted: 08/06/2011] [Indexed: 11/29/2022]
Abstract
The development of short-interfering RNA (siRNA) offers new strategies for manipulating specific genes responsible for pathological disorders. Myriad cationic polymer and lipid formulations have been explored, but an effective, non-toxic carrier remains a major barrier to clinical translation. Among the emerging candidates for siRNA carriers are cell penetrating peptides (CPPs), which can traverse the plasma membrane and facilitate the intracellular delivery of siRNA. Previously, a highly efficient and non-cytotoxic means of gene delivery was designed by complexing plasmid DNA with CPPs, then condensing with calcium. Here, the CPP TAT and a longer, 'double' TAT (dTAT) were investigated as potential carriers for siRNA. Various N/P ratios and calcium concentrations were used to optimize siRNA complexes in vitro. Upon addition of calcium, 'loose' siRNA/CPP complexes were condensed into small nanoparticles. Knockdown of luciferase expression in the human epithelial lung cell line A549-luc-C8 was high (up to 93%) with no evidence of cytotoxicity. Selected formulations of the dTAT complexes were dosed intravenously up to 1000 mg/kg with minimal toxicity. Biodistribution studies revealed high levels of gene knockdown in the lung and muscle tissue suggesting these simple vectors may offer a translatable approach to siRNA delivery.
Collapse
Affiliation(s)
- Abdulgader Baoum
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, United States
| | | | | |
Collapse
|
43
|
Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther 2011; 131:18-32. [PMID: 21514318 DOI: 10.1016/j.pharmthera.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 02/08/2023]
Abstract
It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21-22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded.
Collapse
Affiliation(s)
- Elena Sotillo
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
44
|
Dual TNF-α/Cyclin D1 Gene Silencing With an Oral Polymeric Microparticle System as a Novel Strategy for the Treatment of Inflammatory Bowel Disease. Clin Transl Gastroenterol 2011; 2:e2. [PMID: 23237848 PMCID: PMC3365667 DOI: 10.1038/ctg.2011.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES: RNA silencing utilizing short interfering RNA (siRNA) offers a new and exciting means to overcome the limitations of current treatment options of many diseases. However, delivery of these molecules still poses a great challenge to date. METHODS: In the present study, a multicompartmental biodegradable polymer-based nanoparticles-in-microsphere oral system (NiMOS) using gelatin nanoparticles encapsulating a combination of siRNA duplexes specifically targeted against tumor necrosis factor-α (TNF-α) and cyclin D1 (Ccnd1) was employed to study its effects on a dextran sulfate sodium (DSS)-induced acute colitis mouse model mimicking inflammatory bowel disease (IBD). DSS colitis-bearing animals were divided into several control and treatment groups and received either no treatment, blank NiMOS, NiMOS-encapsulating inactive (scrambled), active TNF-α silencing, CyD1 silencing siRNA, or a combination of both active siRNAs by repeated oral administration of three NiMOS doses. RESULTS: Successful gene silencing with the aid of dual siRNA treatment led to decreased colonic levels of TNF-α or CyD1, suppressed expression of certain pro-inflammatory cytokines (interleukin-1α and -β, interferon-γ), an increase in body weight, and reduced tissue myeloperoxidase activity, while the silencing effect of CyD1 siRNA or the dual treatment was more potent than that of TNF-α siRNA alone. CONCLUSION: Results of this study demonstrate the therapeutic potential of a NiMOS-based oral combined TNF-α and CyD1 gene silencing system for the treatment of IBD as shown in an acute colitis model.
Collapse
|
45
|
Abstract
Short interfering RNA (siRNA) functions directly in the cytoplasm, where it is assembled into an RNA-induced silencing complex (RISC). The localized delivery of siRNA to a specific site in vivo is highly challenging. There are many disease states in which a systemic effect of RNAi may be desirable; some examples include non-localized cancers, HIV, neurodegenerative diseases, respiratory viruses, and heart and vascular disease. In this Concept, we will focus on the localized delivery of siRNA to a target site using various delivery modalities. In certain tissues, such as the eye, central nervous system and lung, it has been demonstrated that a simple injection of naked siRNA will silence gene expression specifically in that tissue. To achieve local gene silencing in other tissues, a variety of approaches have been pursued to help stabilize the siRNA and facilitate uptake; they include chemical modification of the siRNA or complexation within liposomes or polymers to form nanoparticles. Recently, the use of macroscopic biomaterial scaffolds for siRNA delivery has been reported, and although there is still significant work to be done in this area to optimize the delivery systems, it is an important area of research that offers the potential for having great impact on the field of siRNA delivery.
Collapse
Affiliation(s)
- Melissa D. Krebs
- Case Western Reserve University, Biomedical Engineering, 309 Wickenden, 10900 Euclid Avenue, Cleveland, OH (USA), Fax: (+1) 216‐368‐4969
| | - Eben Alsberg
- Case Western Reserve University, Biomedical Engineering, 309 Wickenden, 10900 Euclid Avenue, Cleveland, OH (USA), Fax: (+1) 216‐368‐4969
- Case Western Reserve University, Orthopaedic Surgery, 309 Wickenden, 10900 Euclid Avenue, Cleveland, OH (USA)
| |
Collapse
|
46
|
Wu SY, Chang HI, Burgess M, McMillan NAJ. Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. J Control Release 2011; 155:418-26. [PMID: 21315117 DOI: 10.1016/j.jconrel.2011.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/06/2011] [Accepted: 02/01/2011] [Indexed: 02/04/2023]
Abstract
Sustained vaginal delivery of siRNA has been precluded by the mucosal barrier lining the vaginal tract. In contrast to prior reports, we showed that conventional lipoplexes administered intravaginally are unable to reach the vaginal epithelium under normal physiological conditions. Here we have developed a novel alginate scaffold system containing muco-inert PEGylated lipoplexes to provide a sustained vaginal presence of lipoplexes in vivo and to facilitate the delivery of siRNA/oligonucleotides into the vaginal epithelium. These PEGylated lipoplex-entrapped alginate scaffolds (PLAS) were fabricated using a freeze-drying method and the entrapment efficiency, release rate, and efficacy were characterized. We demonstrated that the PLAS system had an entrapment efficiency of ~50%, which released PEGylated lipoplexes gradually both in vitro and in vivo. While the presence of alginate diminished the cell uptake efficiency of PEGylated lipoplexes in vitro, as expected, we showed a six-fold increase their uptake into the vaginal epithelium compared to existing transfection systems following intravaginal administration in mice. A significant knockdown of Lamin A/C level was also observed in vaginal tissues using siLamin A/C-containing PLAS system in vivo. Overall, our results indicated the potential of the biodegradable PLAS system for the sustained delivery of siRNA/oligonucleotides to vaginal epithelium.
Collapse
Affiliation(s)
- Sherry Y Wu
- Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Australia
| | | | | | | |
Collapse
|
47
|
O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011; 16:203-18. [PMID: 21262379 DOI: 10.1016/j.drudis.2011.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/18/2010] [Accepted: 01/14/2011] [Indexed: 01/12/2023]
Abstract
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.
Collapse
Affiliation(s)
- Martin J O'Neill
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
48
|
Kriegel C, Amiji M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release 2010; 150:77-86. [PMID: 20959130 DOI: 10.1016/j.jconrel.2010.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate down-regulation of tumor necrosis factor (TNF)-α by oral RNA interference therapy. Control (scrambled sequence) or TNF-α specific small interfering RNA (siRNA) was encapsulated in type B gelatin nanoparticles and further entrapped in poly(epsilon-caprolactone) (PCL) microspheres to form a nanoparticles-in-microsphere oral system (NiMOS). Upon confirmation of the dextran sulfate sodium (DSS)-induced acute colitis model, mice were divided into several treatment groups receiving no treatment, blank NiMOS, NiMOS with scramble siRNA, or NiMOS with TNF-α silencing siRNA by oral administration. Successful gene silencing led to decreased colonic levels of TNF-α, suppressed expression of other pro-inflammatory cytokines (e.g., interleukin (IL)-1β, interferon (IFN)-γ) and chemokines (MCP-1), an increase in body weight, and reduced tissue myeloperoxidase activity. Results of this study established the clinical potential of a NiMOS-based oral TNF-α gene silencing system for the treatment of inflammatory bowel disease as demonstrated in an acute colitis model.
Collapse
Affiliation(s)
- Christina Kriegel
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, MA 02115, United States
| | | |
Collapse
|
49
|
Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. SILENCE 2010; 1:4. [PMID: 20226078 PMCID: PMC2835998 DOI: 10.1186/1758-907x-1-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022]
Abstract
This potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of siRNAs into specific cell populations is still the principal challenge in the clinical development of RNAi therapeutics. With the increasing enthusiasm for developing targeted delivery vehicles, nucleic acid-based aptamers targeting cell surface proteins are being explored as promising delivery vehicles to target a distinct disease or tissue in a cell-type-specific manner. The aptamer-based delivery of siRNAs can often enhance the therapeutic efficacy and reduce the unwanted off-target effects of siRNAs. In particular, for RNA interference-based therapeutics, aptamers represent an efficient agent for cell type-specific, systemic delivery of these oligonucleotides. In this review, we summarize recent attractive developments in creatively using cell-internalizing aptamers to deliver siRNAs to target cells. The optimization and improvement of aptamer-targeted siRNAs for clinical translation are further highlighted.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|
50
|
Wu SY, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. AAPS JOURNAL 2009; 11:639-52. [PMID: 19757082 DOI: 10.1208/s12248-009-9140-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/14/2009] [Indexed: 11/30/2022]
Abstract
The ability of small-interfering RNA (siRNA) to silence specific target genes not only offers a tool to study gene function but also represents a novel approach for the treatment of various human diseases. Its clinical use, however, has been severely hampered by the lack of delivery of these molecules to target cell populations in vivo due to their instability, inefficient cell entry, and poor pharmacokinetic profile. Various delivery vectors including liposomes, polymers, and nanoparticles have thus been developed in order to circumvent these problems. This review presents a comprehensive overview of the barriers and recent progress for both local and systemic delivery of therapeutic siRNA using lipidic vectors. Different strategies for formulating these siRNA-loaded lipid particles as well as the general concern about their safe use in vivo will also be discussed. Finally, current advances in the targeted delivery of siRNA and their impacts on the field of RNA interference (RNAi)-based therapy will be presented.
Collapse
Affiliation(s)
- Sherry Y Wu
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Level 4, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Buranda, QLD, 4102, Australia
| | | |
Collapse
|