1
|
Dafinca R, Tosat-Bitrian C, Carroll E, Vahsen BF, Gilbert-Jaramillo J, Scaber J, Feneberg E, Johnson E, Talbot K. Dynactin-1 mediates rescue of impaired axonal transport due to reduced mitochondrial bioenergetics in amyotrophic lateral sclerosis motor neurons. Brain Commun 2024; 6:fcae350. [PMID: 39440303 PMCID: PMC11495216 DOI: 10.1093/braincomms/fcae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. A key pathological signature of ALS is the cytoplasmic mislocalization and aggregation of TDP-43 in affected motor neurons, which is found in 97% of cases. Recent reports have shown that mitochondrial dysfunction plays a significant role in motor neuron degeneration in ALS, and TDP-43 modulates several mitochondrial transcripts. In this study, we used induced pluripotent stem cell-derived motor neurons from ALS patients with TDP-43 mutations and a transgenic TDP-43M337V mouse model to determine how TDP-43 mutations alter mitochondrial function and axonal transport. We detected significantly reduced mitochondrial respiration and ATP production in patient induced pluripotent stem cell-derived motor neurons, linked to an interaction between TDP-43M337V with ATPB and COX5A. A downstream reduction in speed of retrograde axonal transport in patient induced pluripotent stem cell-derived motor neurons was detected, which correlated with downregulation of the motor protein complex, DCTN1/dynein. Overexpression of DCTN1 in patient induced pluripotent stem cell-derived motor neurons significantly increased the percentage of retrograde travelling mitochondria and reduced the percentage of stationary mitochondria. This study shows that ALS induced pluripotent stem cell-derived motor neurons with mutations in TDP-43 have deficiencies in essential mitochondrial functions with downstream effects on retrograde axonal transport, which can be partially rescued by DCTN1 overexpression.
Collapse
Affiliation(s)
- Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Carlota Tosat-Bitrian
- Margarita Salas Center for Biological Research, University of Madrid, Madrid 28040, Spain
| | - Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Javier Gilbert-Jaramillo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Abati E, Gagliardi D, Manini A, Del Bo R, Ronchi D, Meneri M, Beretta F, Sarno A, Rizzo F, Monfrini E, Di Fonzo A, Pellecchia MT, Brusati A, Silani V, Comi GP, Ratti A, Verde F, Ticozzi N, Corti S. Investigating the prevalence of MFN2 mutations in amyotrophic lateral sclerosis: insights from an Italian cohort. Brain Commun 2024; 6:fcae312. [PMID: 39315308 PMCID: PMC11417610 DOI: 10.1093/braincomms/fcae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
The MFN2 gene encodes mitofusin 2, a key protein for mitochondrial fusion, transport, maintenance and cell communication. MFN2 mutations are primarily linked to Charcot-Marie-Tooth disease type 2A. However, a few cases of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis/frontotemporal dementia phenotypes with concomitant MFN2 mutations have been previously reported. This study examines the clinical and genetic characteristics of an Italian cohort of amyotrophic lateral sclerosis patients with rare, non-synonymous MFN2 mutations. A group of patients (n = 385) diagnosed with amyotrophic lateral sclerosis at our Neurology Units between 2008 and 2023 underwent comprehensive molecular testing, including MFN2. After excluding pathogenic mutations in the main amyotrophic lateral sclerosis-related genes (i.e. C9orf72, SOD1, FUS and TARDBP), MFN2 variants were classified based on the American College of Medical Genetics and Genomics guidelines, and demographic and clinical data of MFN2-mutated patients were retrieved. We identified 12 rare, heterozygous, non-synonymous MFN2 variants in 19 individuals (4.9%). Eight of these variants, carried by nine patients (2.3%), were either pathogenic, likely pathogenic or variants of unknown significance according to the American College of Medical Genetics and Genomics guidelines. Among these patients, four exhibited a familial pattern of inheritance. The observed phenotypes included classic and bulbar amyotrophic lateral sclerosis, amyotrophic lateral sclerosis/frontotemporal dementia, flail arm, flail leg and progressive muscular atrophy. Median survival after disease onset was extremely variable, ranging from less than 1 to 13 years. This study investigates the prevalence of rare, non-synonymous MFN2 variants within an Italian cohort of amyotrophic lateral sclerosis patients, who have been extensively investigated, enhancing our knowledge of the underlying phenotypic spectrum. Further research is needed to understand whether MFN2 mutations contribute to motor neuron disease and to what extent. Improving our knowledge regarding the genetic basis of amyotrophic lateral sclerosis is crucial both in a diagnostic and therapeutic perspective.
Collapse
Affiliation(s)
- Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Arianna Manini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Megi Meneri
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Beretta
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Università degli Studi di Firenze, 50139 Firenze, Italy
| | - Annalisa Sarno
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
| | - Federica Rizzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Monfrini
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, Università degli Studi di Salerno, 84081Salerno, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Vincenzo Silani
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122 Milan, Italy
| |
Collapse
|
3
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
4
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
5
|
Krus KL, Benitez AM, Strickland A, Milbrandt J, Bloom AJ, DiAntonio A. Reduced STMN2 and pathogenic TDP-43, two hallmarks of ALS, synergize to accelerate motor decline in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585052. [PMID: 38562780 PMCID: PMC10983882 DOI: 10.1101/2024.03.19.585052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 (Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer's Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation. The interaction between STMN2 loss and TDP-43 dysfunction has not been studied in mice because TDP-43 regulates human but not murine Stmn2 splicing. Therefore, we generated trans-heterozygous mice that lack one functional copy of Stmn2 and express one mutant TDP-43Q331K knock-in allele to investigate whether reduced STMN2 function exacerbates TDP-43-dependent pathology. Indeed, we observe synergy between these two alleles, resulting in an early onset, progressive motor deficit. Surprisingly, this behavioral defect is not accompanied by detectable neuropathology in the brain, spinal cord, peripheral nerves or at neuromuscular junctions (NMJs). However, the trans-heterozygous mice exhibit abnormal mitochondrial morphology in their distal axons and NMJs. As both STMN2 and TDP-43 affect mitochondrial dynamics, and neuronal mitochondrial dysfunction is a cardinal feature of many neurodegenerative diseases, this abnormality likely contributes to the observed motor deficit. These findings demonstrate that partial loss of STMN2 significantly exacerbates TDP-43-associated phenotypes, suggesting that STMN2 restoration could ameliorate TDP-43 related disease before the onset of degeneration.
Collapse
Affiliation(s)
- Kelsey L. Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States, 63110
| | - Ana Morales Benitez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States, 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, United States, 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, United States, 63110
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, United States, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, United States, 63110
| | - A. Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, United States, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, United States, 63110
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, United States, 63110
| |
Collapse
|
6
|
Gao J, Leinonen H, Wang EJ, Ding M, Perry G, Palczewski K, Wang X. Sex-Specific Early Retinal Dysfunction in Mutant TDP-43 Transgenic Mice. J Alzheimers Dis 2024; 97:927-937. [PMID: 38143367 PMCID: PMC11174142 DOI: 10.3233/jad-231102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Increasing evidence has highlighted retinal impairments in neurodegenerative diseases. Dominant mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the accumulation of TDP-43 in the cytoplasm is a pathological hallmark of ALS, frontotemporal dementia (FTD), and many other neurodegenerative diseases. OBJECTIVE While homozygous transgenic mice expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) experience premature death, hemizygous TDP-43M337V mice do not suffer sudden death, but they exhibit age-dependent motor-coordinative and cognitive deficits. This study aims to leverage the hemizygous TDP-43M337V mice as a valuable ALS/FTD disease model for the assessment also of retinal changes during the disease progression. METHODS We evaluated the retinal function of young TDP-43M337V mice by full field electroretinogram (ERG) recordings. RESULTS At 3-4 months of age, well before the onset of brain dysfunction at 8 months, the ERG responses were notably impaired in the retinas of young female TDP-43M337V mice in contrast to their male counterparts and age-matched non-transgenic mice. Mitochondria have been implicated as critical targets of TDP-43. Further investigation revealed that significant changes in the key regulators of mitochondrial dynamics and bioenergetics were only observed in the retinas of young female TDP-43M337V mice, while these alterations were not present in the brains of either gender. CONCLUSIONS Together our findings suggest a sex-specific vulnerability within the retina in the early disease stage, and highlight the importance of retinal changes and mitochondrial markers as potential early diagnostic indicators for ALS, FTD, and other TDP-43 related neurodegenerative conditions.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Henri Leinonen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Evan J Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, UCI, Irvine, CA, USA
- Department of Physiology and Biophysics, Chemistry and Molecular biology and Biochemsitry, UCI, Irvine, CA, USA
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
8
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
9
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
11
|
Zhou J, Zhuang Z, Li J, Feng Z. Significance of the cGAS-STING Pathway in Health and Disease. Int J Mol Sci 2023; 24:13316. [PMID: 37686127 PMCID: PMC10487967 DOI: 10.3390/ijms241713316] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a significant role in health and disease. In this pathway, cGAS, one of the major cytosolic DNA sensors in mammalian cells, regulates innate immunity and the STING-dependent production of pro-inflammatory cytokines, including type-I interferon. Moreover, the cGAS-STING pathway is integral to other cellular processes, such as cell death, cell senescence, and autophagy. Activation of the cGAS-STING pathway by "self" DNA is also attributed to various infectious diseases and autoimmune or inflammatory conditions. In addition, the cGAS-STING pathway activation functions as a link between innate and adaptive immunity, leading to the inhibition or facilitation of tumorigenesis; therefore, research targeting this pathway can provide novel clues for clinical applications to treat infectious, inflammatory, and autoimmune diseases and even cancer. In this review, we focus on the cGAS-STING pathway and its corresponding cellular and molecular mechanisms in health and disease.
Collapse
Affiliation(s)
- Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhan Zhuang
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Jiamian Li
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
12
|
Zhou W, Xu R. Current insights in the molecular genetic pathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1189470. [PMID: 37638324 PMCID: PMC10448825 DOI: 10.3389/fnins.2023.1189470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that leads to the massive loss of motor neurons in cerebrum, brain stem and spinal cord. It affects not only motor neurons but also other neurons and glial cells, resulting in the progressive muscle atrophy, the severe disability and the eventual death due to the respiratory failure. The pathogenesis of ALS is not fully understood. Currently, several factors are considered to be involved in the pathogenesis of ALS, such as genetic factors, imbalances in protein homeostasis, RNA metabolism disorders, mitochondrial dysfunctions, glutamate-mediated excitatory toxicities and intra-neuronal material transport disorders in neurons. The study of genetic mutations related to ALS pathogenesis will link the molecular and cellular mechanisms of the disease, thus enhancing the understanding of its occurrence and progression, thereby providing new insights for the pathogenesis of ALS. This review summarizes the current insights in the molecular genetic pathogenesis of ALS.
Collapse
Affiliation(s)
- Wan Zhou
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| |
Collapse
|
13
|
Meneses AD, Koga S, Li Z, O’Leary J, Li F, Chen K, Murakami A, Qiao W, Kurti A, Heckman MG, White L, Xie M, Chen Y, Finch NA, Lim MJ, Delenclos M, DeTure MA, Linares C, Martin NB, Ikezu TC, van Blitterswijk MM, Wu LJ, McLean PJ, Rademakers R, Ross OA, Dickson DW, Bu G, Zhao N. APOE2 Exacerbates TDP-43 Related Toxicity in the Absence of Alzheimer Pathology. Ann Neurol 2023; 93:830-843. [PMID: 36546684 PMCID: PMC10471132 DOI: 10.1002/ana.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.
Collapse
Affiliation(s)
- Axel D. Meneses
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Clinical and Translational Science Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aya Murakami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - NiCole A. Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melina J. Lim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael A. DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Tadafumi C. Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Long-Jun Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
14
|
Bock FJ, Riley JS. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ 2023; 30:293-303. [PMID: 36376381 PMCID: PMC9661468 DOI: 10.1038/s41418-022-01082-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell death and the induction of inflammation.
Collapse
Affiliation(s)
- Florian J Bock
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
15
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
16
|
Han P, Mo S, Wang Z, Xu J, Fu X, Tian Y. UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front Oncol 2023; 13:1179947. [PMID: 37152054 PMCID: PMC10154696 DOI: 10.3389/fonc.2023.1179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance.
Collapse
Affiliation(s)
- Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiale Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Yanzhang Tian,
| |
Collapse
|
17
|
Ohene-Nyako M, Nass SR, Richard HT, Lukande R, Nicol MR, McRae M, Knapp PE, Hauser KF. Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia. ASN Neuro 2023; 15:17590914231158218. [PMID: 36890725 PMCID: PMC9998424 DOI: 10.1177/17590914231158218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
SUMMARY STATEMENT HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Hope T Richard
- Pathology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Robert Lukande
- Pathology, College of Health Sciences, 58589Makerere University, Kampala, Uganda
| | - Melanie R Nicol
- Experimental and Clinical Pharmacology, College of Pharmacy, 15515University of Minnesota, Minneapolis, MN, USA
| | - MaryPeace McRae
- Pharmacotherapy and Outcomes Science, School of Pharmacy, 15535Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E Knapp
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Liu T, Woo JAA, Bukhari MZ, Wang X, Yan Y, Buosi SC, Ermekbaeva A, Sista A, Kotsiviras P, LePochat P, Chacko A, Zhao X, Kang DE. Modulation of synaptic plasticity, motor unit physiology, and TDP-43 pathology by CHCHD10. Acta Neuropathol Commun 2022; 10:95. [PMID: 35787294 PMCID: PMC9254494 DOI: 10.1186/s40478-022-01386-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial intermembrane space protein, are associated with Frontotemporal dementia (FTD)-Amyotrophic lateral sclerosis (ALS) spectrum disorders, which are pathologically characterized by cytoplasmic inclusions containing TDP-43. FTD/ALS-linked CHCHD10 mutations and TDP-43 inclusions similarly induce mitochondrial defects in respiration, fusion/fission, mtDNA stability, and cristae structure, while sizeable amounts of cytoplasmic TDP-43 aggregates are found in mitochondria. However, the mechanistic link between CHCHD10 and TDP-43 pathogenesis remains unclear. In this study, we present immunohistochemical and biochemical evidence demonstrating that insoluble CHCHD10 aggregates accumulate and colocalize with phospho-TDP-43 inclusions in brains of FTLD-TDP and AD patients, and that insoluble CHCHD10 levels tightly correlate with insoluble TDP-43 levels in control and FTLD-TDP brains. In an experimental exploration of this pathological phenotype, transgenic mice neuronally expressing FTD/ALS-linked CHCHD10R15L or CHCHDS59L mutations but not CHCHD10WT transgenic mice exhibit significantly increased CHCHD10 aggregation and phospho-TDP-43 pathology, which often colocalize within the same inclusions. Such pathologies are reflected in poor functional outcomes in long-term synaptic plasticity, motor unit physiology, and behavior in CHCHD10R15L and CHCHDS59L transgenic mice. In contrast, expression of CHCHD10WT in hTDP-43 transgenic mice (TAR4;CHCHD10WT) significantly mitigates phospho-TDP-43 pathology and rescues TDP-43-induced impairments in synaptic integrity and long-term synaptic plasticity. In isolated mitochondria, the S59L mutation induces the aggregation of resident CHCHD10S59L protein as well as the aggregation and slower turnover of recombinant TDP-43 imported into mitochondria. Likewise, in an in vitro cell-free system, the S59L mutation induces the aggregation of CHCHD10S59L protein while simultaneously enhancing the aggregation of recombinant TDP-43, as evidenced by filter trap assays and atomic force microscopy. In contrast, recombinant CHCHD10WT inhibits the growth of TDP-43 aggregates. These results in human brains, transgenic mice, and in vitro systems substantiate the role of wild type and mutant CHCHD10 in modulating mitochondrial CHCHD10 and TDP-43 pathogenesis together with associated phenotypes in long-term synaptic plasticity and motor unit physiology in mice and humans.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Jung-A A Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Mohammed Zaheen Bukhari
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xinming Wang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Sara Cazzaro Buosi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Aizara Ermekbaeva
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Apoorva Sista
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Peter Kotsiviras
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Patrick LePochat
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ann Chacko
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xingyu Zhao
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - David E Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA.
| |
Collapse
|
19
|
Yong H, Shan S, Wang S, Liu Z, Liu Z, Zhang C, Yang Y, Huang Z, Song F. Activation of mitophagy by rapamycin eliminated the accumulation of TDP-43 on mitochondrial and promoted the resolution of carbon tetrachloride-induced liver fibrosis in mice. Toxicology 2022; 471:153176. [PMID: 35405287 DOI: 10.1016/j.tox.2022.153176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
Liver fibrosis can lead to liver cirrhosis and hepatocellular carcinoma, and no effective treatment is available in clinical practice. Mitochondrial dysfunction is thought to be closely related to the development of liver fibrosis. Recent studies have reported that abnormal accumulation of TDP-43 on mitochondria may interfere with mitochondrial function in neurodegenerative disorders. However, whether aberrant TDP-43 aggregation is also involved in liver fibrosis has not been investigated. In this study, C57/BL6 mice were treated with CCl4 (escalating doses, three times a week) for 8 weeks to establish a model of liver fibrosis. Furthermore, mitophagy intervention experiment was achieved by the activator rapamycin (RAPA). The results demonstrated that chronic CCl4 exposure resulted in severe mitochondrial damage, inflammatory response and hepatic fibrogenesis. Interestingly, abnormal aggregation of TDP-43 on mitochondria was observed. By contrast, RAPA administration could promote the regression of liver fibrosis. Mechanistically, RAPA could eliminate the accumulation of TDP-43 on mitochondrial through enhancing mitophagy, thereby improving mitochondrial function. Taken together, our study revealed that mitochondrial damage induced by abnormal accumulation of TDP-43 has been implicated in the progression of liver fibrosis. Targeted clearance of mitochondrial TDP-43 may lead to the development of some anti-fibrotic therapies.
Collapse
Affiliation(s)
- Hui Yong
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
20
|
Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship. Metabolites 2022; 12:metabo12030233. [PMID: 35323676 PMCID: PMC8951432 DOI: 10.3390/metabo12030233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu–Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial “metabolic threshold”, which may appear pivotal in ALS pathogenesis.
Collapse
|
21
|
Gois AM, Bispo JM, Lins LC, Medeiros KA, Souza MF, Santos ER, Santos JF, Ribeiro AM, Silva RH, Paixão MO, Leopoldino JF, Marchioro M, Santos JR, Mendonça DM. Motor behavioral abnormalities and histopathological findings in middle aged male Wistar rats inoculated with cerebrospinal fluid from patients with Amyotrophic Lateral Sclerosis. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Vitamin B12 Reduces TDP-43 Toxicity by Alleviating Oxidative Stress and Mitochondrial Dysfunction. Antioxidants (Basel) 2021; 11:antiox11010082. [PMID: 35052586 PMCID: PMC8773243 DOI: 10.3390/antiox11010082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 01/20/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a member of an evolutionarily conserved family of heterogeneous nuclear ribonucleoproteins that modulate multiple steps in RNA metabolic processes. Cytoplasmic aggregation of TDP-43 in affected neurons is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer’s disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Mislocalized and accumulated TDP-43 in the cytoplasm induces mitochondrial dysfunction and reactive oxidative species (ROS) production. Here, we show that TDP-43- and rotenone-induced neurotoxicity in the human neuronal cell line SH-SY5Y were attenuated by hydroxocobalamin (Hb, vitamin B12 analog) treatment. Although Hb did not affect the cytoplasmic accumulation of TDP-43, Hb attenuated TDP-43-induced toxicity by reducing oxidative stress and mitochondrial dysfunction. Moreover, a shortened lifespan and motility defects in TDP-43-expressing Drosophila were significantly mitigated by dietary treatment with hydroxocobalamin. Taken together, these findings suggest that oral intake of hydroxocobalamin may be a potential therapeutic intervention for TDP-43-associated proteinopathies.
Collapse
|
24
|
Cytosolic Self-DNA—A Potential Source of Chronic Inflammation in Aging. Cells 2021; 10:cells10123544. [PMID: 34944052 PMCID: PMC8700131 DOI: 10.3390/cells10123544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is the consequence of a lifelong accumulation of stochastic damage to tissues and cellular components. Advancing age closely associates with elevated markers of innate immunity and low-grade chronic inflammation, probably reflecting steady increasing incidents of cellular and tissue damage over the life course. The DNA sensing cGAS-STING signaling pathway is activated by misplaced cytosolic self-DNA, which then initiates the innate immune responses. Here, we hypothesize that the stochastic release of various forms of DNA from the nucleus and mitochondria, e.g., because of DNA damage, altered nucleus integrity, and mitochondrial damage, can result in chronic activation of inflammatory responses that characterize the aging process. This cytosolic self-DNA-innate immunity axis may perturb tissue homeostasis and function that characterizes human aging and age-associated pathology. Proper techniques and experimental models are available to investigate this axis to develop therapeutic interventions.
Collapse
|
25
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
26
|
Yong H, Wang S, Song F. Activation of cGAS/STING pathway upon TDP-43-mediated mitochondrial injury may be involved in the pathogenesis of liver fibrosis. Liver Int 2021; 41:1969-1971. [PMID: 33830629 DOI: 10.1111/liv.14895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Yong
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
27
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
28
|
Huang C, Li J, Zhang G, Lin Y, Li C, Zheng X, Song X, Han B, Guo B, Tu Z, Zhang J, Sun Y, Wang Y, Zhang Z, Yan S. TBN improves motor function and prolongs survival in a TDP-43M337V mouse model of ALS. Hum Mol Genet 2021; 30:1484-1496. [PMID: 33929499 DOI: 10.1093/hmg/ddab101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are serious neurodegenerative diseases. Although their pathogenesis is unclear, the abnormal accumulation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological feature that exists in almost all patients. Thus far, there is no drug that can cure ALS/FTLD. Tetramethylpyrazine nitrone (TBN) is a derivative of tetramethylapyrazine, derived from the traditional Chinese medicine Ligusticum chuanxiong, which has been widely proven to have therapeutic effects on models of various neurodegenerative diseases. TBN is currently under clinical investigation for several indications including a Phase II trial of ALS. Here, we explored the therapeutic effect of TBN in an ALS/FTLD mouse model. We injected the TDP-43 M337V virus into the striatum of mice unilaterally and bilaterally, and then administered 30 mg/kg TBN intragastrically to observe changes in behavior and survival rate of mice. The results showed that in mice with unilateral injection of TDP-43M337V into the striatum, TBN improved motor deficits and cognitive impairment in the early stages of disease progression. In mice with bilateral injection of TDP-43M337V into the striatum, TBN not only improved motor function but also prolonged survival rate. Moreover, we show that its therapeutic effect may be through activation of the Akt/mTOR/GSK-3β and AMPK/PGC-1α/Nrf2 signaling pathways. In summary, TBN is a promising agent for the treatment of ALS/FTLD.
Collapse
Affiliation(s)
- Chunhui Huang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China.,Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jun Li
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Guiliang Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Bofeng Han
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Baojian Guo
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- School of traditional Chinese medicine, Jinan University, Guangzhou 510632, China
| | - Yewei Sun
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yuqiang Wang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Zaijun Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
30
|
Lucini CB, Braun RJ. Mitochondrion-Dependent Cell Death in TDP-43 Proteinopathies. Biomedicines 2021; 9:376. [PMID: 33918437 PMCID: PMC8066287 DOI: 10.3390/biomedicines9040376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.
Collapse
Affiliation(s)
- Chantal B. Lucini
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| | - Ralf J. Braun
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| |
Collapse
|
31
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
32
|
Debska-Vielhaber G, Miller I, Peeva V, Zuschratter W, Walczak J, Schreiber S, Petri S, Machts J, Vogt S, Szczepanowska J, Gellerich FN, Hermann A, Vielhaber S, Kunz WS. Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Exp Neurol 2021; 339:113620. [PMID: 33497646 DOI: 10.1016/j.expneurol.2021.113620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive, neurodegenerative disorder affecting upper and lower motor neurons. Approximately 10% of patients suffer from familial ALS (FALS) with mutations in different ubiquitously expressed genes including SOD1, C9ORF72, TARDBP, and FUS. There is compelling evidence for mitochondrial involvement in the pathogenic mechanisms of FALS and sporadic ALS (SALS), which is believed to be relevant for disease. Owing to the ubiquitous expression of relevant disease-associated genes, mitochondrial dysfunction is also detectable in peripheral patient tissue. We here report results of a detailed investigation of the functional impairment of mitochondrial oxidative phosphorylation (OXPHOS) in cultured skin fibroblasts from 23 SALS and 17 FALS patients, harboring pathogenic mutations in SOD1, C9ORF72, TARDBP and FUS. A considerable functional and structural mitochondrial impairment was detectable in fibroblasts from patients with SALS. Similarly, fibroblasts from patients with FALS, harboring pathogenic mutations in TARDBP, FUS and SOD1, showed mitochondrial defects, while fibroblasts from C9ORF72 associated FALS showed a very mild impairment detectable in mitochondrial ATP production rates only. While we could not detect alterations in the mtDNA copy number in the SALS or FALS fibroblast cultures, the impairment of OXPHOS in SALS fibroblasts and SOD1 or TARDBP FALS could be rescued by in vitro treatments with CoQ10 (5 μM for 3 weeks) or Trolox (300 μM for 5 days). This underlines the role of elevated oxidative stress as a potential cause for the observed functional effects on mitochondria, which might be relevant disease modifying factors.
Collapse
Affiliation(s)
- Grazyna Debska-Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Irina Miller
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Neurosurgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Werner Zuschratter
- Leibniz Institute for Neurobiology, Laboratory for Electron- and Laserscanning- Microscopy, Brenneckestr.6, 39118 Magdeburg, Germany
| | - Jaroslaw Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland; Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego St, 02-106 Warsaw, Poland
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Vogt
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland
| | - Frank N Gellerich
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany.
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
33
|
Madruga E, Maestro I, Martínez A. Mitophagy Modulation, a New Player in the Race against ALS. Int J Mol Sci 2021; 22:ijms22020740. [PMID: 33450997 PMCID: PMC7828440 DOI: 10.3390/ijms22020740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.
Collapse
Affiliation(s)
- Enrique Madruga
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Inés Maestro
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
34
|
Qin S, Ye L, Zheng Y, Gao J. Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1. FEBS Lett 2021; 595:507-520. [PMID: 33354788 DOI: 10.1002/1873-3468.14030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, China
| | - Ling Ye
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ju Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Dafinca R, Barbagallo P, Talbot K. The Role of Mitochondrial Dysfunction and ER Stress in TDP-43 and C9ORF72 ALS. Front Cell Neurosci 2021; 15:653688. [PMID: 33867942 PMCID: PMC8047135 DOI: 10.3389/fncel.2021.653688] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. Despite this heterogeneity, a key pathological signature is the mislocalization and aggregation of specific proteins in the cytoplasm, suggesting that convergent pathogenic mechanisms focusing on disturbances in proteostasis are important in ALS. In addition, many cellular processes have been identified as potentially contributing to disease initiation and progression, such as defects in axonal transport, autophagy, nucleocytoplasmic transport, ER stress, calcium metabolism, the unfolded protein response and mitochondrial function. Here we review the evidence from in vitro and in vivo models of C9ORF72 and TDP-43-related ALS supporting a central role in pathogenesis for endoplasmic reticulum stress, which activates an unfolded protein response (UPR), and mitochondrial dysfunction. Disruption in the finely tuned signaling between the ER and mitochondria through calcium ions may be a crucial trigger of mitochondrial deficits and initiate an apoptotic signaling cascade, thus acting as a point of convergence for multiple upstream disturbances of cellular homeostasis and constituting a potentially important therapeutic target.
Collapse
|
36
|
Huang C, Yan S, Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 2020; 9:40. [PMID: 33126923 PMCID: PMC7597011 DOI: 10.1186/s40035-020-00219-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum–mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.
Collapse
Affiliation(s)
- Chunhui Huang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
37
|
Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA. Tocotrienol Rich Fraction Supplementation Modulate Brain Hippocampal Gene Expression in APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Alzheimers Dis 2020; 70:S239-S254. [PMID: 30507571 PMCID: PMC6700627 DOI: 10.3233/jad-180496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
Collapse
Affiliation(s)
- Wan Nurzulaikha Wan Nasri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 2020; 183:636-649.e18. [PMID: 33031745 PMCID: PMC7599077 DOI: 10.1016/j.cell.2020.09.020] [Citation(s) in RCA: 500] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS. TDP-43 enters mitochondria, triggers mtDNA release via the mPTP TDP-43-induced cytosolic mtDNA accumulation activates the cGAS/STING pathway Evidence of cytoplasmic mtDNA was found in ALS patient cells and disease models Blocking STING prevents inflammation and neurodegeneration in vitro and in vivo
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James B Hilton
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Mlodzianoski
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ronnie Ren Jie Low
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonas Moecking
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Erya Ni
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Catriona A McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Andre L Samson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shiraz Tyebji
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Tonkin
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Bye
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Genevieve Pepin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Kelly L Rogers
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate McArthur
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
39
|
Briese M, Saal-Bauernschubert L, Lüningschrör P, Moradi M, Dombert B, Surrey V, Appenzeller S, Deng C, Jablonka S, Sendtner M. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol Commun 2020; 8:116. [PMID: 32709255 PMCID: PMC7379803 DOI: 10.1186/s40478-020-00987-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023] Open
Abstract
Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Collapse
|
40
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
41
|
Gois AM, Mendonça DMF, Freire MAM, Santos JR. IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW. Brain Res Bull 2020; 159:32-43. [PMID: 32247802 DOI: 10.1016/j.brainresbull.2020.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper motor neurons (UMN) and lower motor neurons (LMN). Disease affects people all over the world and is more prevalent in men. Patients with ALS develop extensive muscle wasting, paralysis and ultimately death, with a median survival of usually fewer than five years after disease onset. ALS may be sporadic (sALS, 90%) or familial (fALS, 10%). The large majority of fALS cases are associated with genetic alterations, which are mainly related to the genes SOD1, TDP-43, FUS, and C9ORF72. In vitro and in vivo models have helped elucidate ALS etiology and pathogenesis, as well as its molecular, cellular, and physiological mechanisms. Many studies in cell cultures and animal models, such as Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and non-human primates have been performed to clarify the relationship of these genes to ALS disease. However, there are inherent limitations to consider when using experimental models. In this review, we provide an updated overview of the most used in vitro and in vivo studies that have contributed to a better understanding of the different ALS pathogenic mechanisms.
Collapse
Affiliation(s)
- Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Deise M F Mendonça
- Laboratory of Neurobiology of Degenerative Diseases of the Nervous System, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Postgraduation Program in Health and Society, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jose R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
42
|
Termsarasab P, Thammongkolchai T, Gao J, Wang L, Liang J, Wang X. Cytoplasmic mislocalization and mitochondrial colocalization of TDP-43 are common features between normal aged and young mice. Exp Biol Med (Maywood) 2020; 245:1584-1593. [PMID: 32212857 DOI: 10.1177/1535370220914253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Despite increasing evidence implicating the important role of TDP-43 in the pathogenesis of a wide range of age-related neurodegenerative diseases, there is limited study of TDP-43 proteinopathy and its association with mitochondria during normal aging. Our findings of cytoplasmic accumulation of TDP-43 that is highly colocalized with mitochondria in neurons in selective brain regions in young animals in the absence of neuronal loss provide a novel insight into the development of TDP-43 proteinopathy and its contribution to neuronal loss.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thananan Thammongkolchai
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Huang W, Zhou Y, Tu L, Ba Z, Huang J, Huang N, Luo Y. TDP-43: From Alzheimer's Disease to Limbic-Predominant Age-Related TDP-43 Encephalopathy. Front Mol Neurosci 2020; 13:26. [PMID: 32180703 PMCID: PMC7059763 DOI: 10.3389/fnmol.2020.00026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of TAR DNA-binding protein 43 (TDP-43) in 1995, our understanding of its role continues to expand as research progresses. In particular, its role in the pathogenesis of Alzheimer’s disease (AD) has drawn increasing interest in recent years. TDP-43 may participate in various pathogenic mechanisms underlying AD, such as amyloid β deposition, tau hyperphosphorylation, mitochondrial dysfunction, and neuroinflammation. Because AD is complex and heterogeneous, and because of the distinct characteristics of TDP-43, mostly seen in the oldest-old and those with more severe clinical phenotype, subcategorization based on specific features or biomarkers may significantly improve diagnosis and treatment. AD-like cognitive dysfunction associated with TDP-43 pathology may therefore be a distinct encephalopathy, referred to as limbic-predominant age-related TDP-43 encephalopathy (LATE).
Collapse
Affiliation(s)
- Wendi Huang
- Department of Pediatrics, Guizhou Medical University, Guizhou, China
| | - Yongjian Zhou
- School of Graduate Studies, Zunyi Medical University, Guizhou, China
| | - Lin Tu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Zhisheng Ba
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Juan Huang
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Nanqu Huang
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| | - Yong Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Guizhou, China
| |
Collapse
|
44
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2019; 12:301. [PMID: 31920533 PMCID: PMC6934062 DOI: 10.3389/fnmol.2019.00301] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
45
|
Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165580. [PMID: 31678156 DOI: 10.1016/j.bbadis.2019.165580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized clinically by progressive decline in cognitive function and neuropathologically by the presence of senile plaques and neuronal loss in the brain. While current drugs for AD are always employed as symptomatic therapies with variable benefits, there is no treatment to delay its progression or halt neurodegeneration. TAR DNA-binding protein 43 (TDP-43) proteinopathy has increasingly been implicated as a prominent histopathological feature of AD and related dementias. Our recent studies have implicated mitochondria as critical targets of TDP-43 neurotoxicity. Here, we demonstrate that the suppression of mitochondrial-associated TDP-43 protects against neuronal loss and behavioral deficits in 5XFAD transgenic mice recapitulating AD-related phenotypes. In AD patients and 5XFAD mice, the level of TDP-43 is increased in mitochondria, and TDP-43 highly co-localizes with mitochondria in brain neurons exhibiting TDP-43 proteinopathy. Chronic administration of a TDP-43 mitochondrial localization inhibitory peptide, PM1, significantly alleviates TDP-43 proteinopathy, mitochondrial abnormalities, microgliosis and even neuronal loss without effect on amyloid plaque load in 12-month-old 5XFAD mice well after the onset of symptoms. Additionally, PM1 also improves the cognitive and motor function in 12-month-old 5XFAD mice and completely prevents the onset of mild cognitive impairment in 6-month-old 5XFAD mice. These data indicate that mitochondria-associated TDP-43 is likely involved in AD pathogenesis and that the inhibitor of mitochondria-associated TDP-43 may be a valuable drug to treat underlying AD.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
46
|
Wohua Z, Weiming X. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomed Pharmacother 2019; 118:108940. [DOI: 10.1016/j.biopha.2019.108940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
|
47
|
Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol Cell Neurosci 2019; 100:103396. [PMID: 31445085 DOI: 10.1016/j.mcn.2019.103396] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and glial cells, is a common prominent pathological feature of various major neurodegenerative diseases including ALS, FTD, and Alzheimer's disease (AD). Although the pathomechanisms underlying TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been repeatedly shown to be present in either the inside or outside of mitochondria, and functionally involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the current knowledge of the association of TDP-43 with mitochondria. We then review in detail multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial abnormalities may provide new avenues for neurodegeneration therapeutics.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
48
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
49
|
Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol Dis 2019; 121:148-162. [DOI: 10.1016/j.nbd.2018.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
|
50
|
Alrafiah AR. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis. In Vivo 2018; 32:983-998. [PMID: 30150420 DOI: 10.21873/invivo.11339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There are several genetic mutations that lead to ALS development, such as chromosome 9 hexanucleotide repeat 72 (C9ORF72), transactive response DNA-binding protein (TARDBP), superoxide dismutase 1 (SOD1) and fused in sarcoma (FUS). ALS is associated with disrupted gene homeostasis causing aberrant RNA processing or toxic pathology. Several animal models of ALS disease have been developed to understand whether TARDBP-mediated neurodegeneration results from a gain or a loss of function of the protein, however, none exactly mimic the pathophysiology and the phenotype of human ALS. Here, the pathophysiology of specific ALS-linked gene mutations is discussed. Furthermore, some of the generated mouse models, as well as the similarities and differences between these models, are comprehensively reviewed. Further refinement of mouse models will likely aid the development of a better form of model that mimics human ALS. However, disrupted gene homeostasis that causes mutation can result in an ALS-like syndrome, increasing concerns about whether neurodegeneration and other effects in these models are due to the mutation or to gene overexpression. Research on the pleiotropic role of different proteins present in motor neurons is also summarized. The development of better mouse models that closely mimic human ALS will help identify potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Aziza Rashed Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences and Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|