1
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
2
|
Zhang L, Li K, Liu Z, An L, Wei H, Pang S, Cao Z, Huang X, Jin X, Ma X. Restoring T and B cell generation in X-linked severe combined immunodeficiency mice through hematopoietic stem cells adenine base editing. Mol Ther 2024; 32:1658-1671. [PMID: 38532630 PMCID: PMC11184316 DOI: 10.1016/j.ymthe.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Base editing of hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematologic diseases. However, the feasibility of using adenine-base-edited HSPCs for treating X-linked severe combined immunodeficiency (SCID-X1), the influence of dose-response relationships on immune cell generation, and the potential risks have not been demonstrated in vivo. Here, a humanized SCID-X1 mouse model was established, and 86.67% ± 2.52% (n = 3) of mouse hematopoietic stem cell (HSC) pathogenic mutations were corrected, with no single-guide-RNA (sgRNA)-dependent off-target effects detected. Analysis of peripheral blood over 16 weeks post-transplantation in mice with different immunodeficiency backgrounds revealed efficient immune cell generation following transplantation of different amounts of modified HSCs. Therefore, a large-scale infusion of gene-corrected HSCs within a safe range can achieve rapid, stable, and durable immune cell regeneration. Tissue-section staining further demonstrated the restoration of immune organ tissue structures, with no tumor formation in multiple organs. Collectively, these data suggest that base-edited HSCs are a potential therapeutic approach for SCID-X1 and that a threshold infusion dose of gene-corrected cells is required for immune cell regeneration. This study lays a theoretical foundation for the clinical application of base-edited HSCs in treating SCID-X1.
Collapse
Affiliation(s)
- Lu Zhang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Haikun Wei
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Shanshan Pang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China.
| |
Collapse
|
3
|
Rai R, Steinberg Z, Romito M, Zinghirino F, Hu YT, White N, Naseem A, Thrasher AJ, Turchiano G, Cavazza A. CRISPR/Cas9-Based Disease Modeling and Functional Correction of Interleukin 7 Receptor Alpha Severe Combined Immunodeficiency in T-Lymphocytes and Hematopoietic Stem Cells. Hum Gene Ther 2024; 35:269-283. [PMID: 38251667 PMCID: PMC11698663 DOI: 10.1089/hum.2023.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Interleukin 7 Receptor alpha Severe Combined Immunodeficiency (IL7R-SCID) is a life-threatening disorder caused by homozygous mutations in the IL7RA gene. Defective IL7R expression in humans hampers T cell precursors' proliferation and differentiation during lymphopoiesis resulting in the absence of T cells in newborns, who succumb to severe infections and death early after birth. Previous attempts to tackle IL7R-SCID by viral gene therapy have shown that unregulated IL7R expression predisposes to leukemia, suggesting the application of targeted gene editing to insert a correct copy of the IL7RA gene in its genomic locus and mediate its physiological expression as a more feasible therapeutic approach. To this aim, we have first developed a CRISPR/Cas9-based IL7R-SCID disease modeling system that recapitulates the disease phenotype in primary human T cells and hematopoietic stem and progenitor cells (HSPCs). Then, we have designed a knockin strategy that targets IL7RA exon 1 and introduces through homology-directed repair a corrective, promoterless IL7RA cDNA followed by a reporter cassette through AAV6 transduction. Targeted integration of the corrective cassette in primary T cells restored IL7R expression and rescued functional downstream IL7R signaling. When applied to HSPCs further induced to differentiate into T cells in an Artificial Thymic Organoid system, our gene editing strategy overcame the T cell developmental block observed in IL7R-SCID patients, while promoting full maturation of T cells with physiological and developmentally regulated IL7R expression. Finally, genotoxicity assessment of the CRISPR/Cas9 platform in HSPCs using biased and unbiased technologies confirmed the safety of the strategy, paving the way for a new, efficient, and safe therapeutic option for IL7R-SCID patients.
Collapse
Affiliation(s)
- Rajeev Rai
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Zohar Steinberg
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Marianna Romito
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Federica Zinghirino
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nathan White
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Adrian J. Thrasher
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
4
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Murugesan R, Karuppusamy KV, Marepally S, Thangavel S. Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Front Genome Ed 2023; 5:1148693. [PMID: 37780116 PMCID: PMC10540692 DOI: 10.3389/fgeed.2023.1148693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.
Collapse
Affiliation(s)
- Ramya Murugesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023:S0091-6749(23)00427-X. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
7
|
Rich RR, Cron RQ. The Human Immune Response. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Maurizi A. Experimental therapies for osteopetrosis. Bone 2022; 165:116567. [PMID: 36152941 DOI: 10.1016/j.bone.2022.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
The medical treatment of osteopetrosis is an ongoing clinical problem. There are no effective and safer therapeutic approaches for all its forms. However, recent discoveries concerning the etiology and the pathogenesis of osteopetrosis, the development of dedicated cellular and animal models, and the advent of new technologies are paving the way for the development of targeted and safer therapies for both lethal and milder osteopetrosis. This review summarizes the huge effort and successes made by researchers to identify and develop new experimental approaches with this objective, such as the use of non-genotoxic myeloablation, gene correction of inducible Pluripotent Stem Cells (iPSCs), lentiviral-based gene therapy, protein replacement, prenatal treatment, osteoclast precursors transplantation and RNA Interference.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
9
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
10
|
Abstract
Over the past 20 years, the rapid evolution in the diagnosis and treatment of primary immunodeficiencies (PI) and the recognition of immune dysregulation as a feature in some have prompted the use of "inborn errors of immunity" (IEI) as a more encompassing term used to describe these disorders [1, 2] . This article aims to review the future of therapy of PI/IEI (referred to IEI throughout this paper). Historically, immune deficiencies have been characterized as monogenic disorders resulting in immune deficiencies affecting T cells, B cells, combination of T and B cells, or innate immune disorders. More recently, immunologists are also recognizing a variety of phenotypes associated with one genotype or similar phenotypes across genotypes and a role for incomplete penetrance or variable expressivity of some genes causing inborn errors of immunity [3]. The IUIS classification of immune deficiencies (IEIs) has evolved over time to include 10 categories, with disorders of immune dysregulation accounting for a new subset, some treatable with small molecule inhibitors or biologics. [1] Until recently, management options were limited to prompt treatment of infections, gammaglobulin replacement, and possibly bone marrow transplant depending on the defect. Available therapies have expanded to include small molecule inhibitors, biologics, gene therapy, and the use of adoptive transfer of virus-specific T cells to fight viral infections in immunocompromised patients. Several significant contributions to the field of clinical immunology have fueled the rapid advancement of therapies over the past two decades. Among these are educational efforts to recruit young immunologists to the field resulting in the growth of a world-wide community of clinicians and investigators interested in rare diseases, efforts to increase awareness of IEI globally contributing to international collaborations, along with advancements in diagnostic genetic testing, newborn screening, molecular biology techniques, gene correction, use of immune modulators, and ex vivo expansion of engineered T cells for therapeutic use. The development and widespread use of newborn screening have helped to identify severe combined immune deficiency (SCID) earlier resulting in better outcomes [4]. Continual improvements and accessibility of genetic sequencing have helped to identify new IEI diseases at an accelerated pace [5]. Advances in gene therapy and bone marrow transplant have made treatments possible in otherwise fatal diseases. Furthermore, the increased awareness of IEI across the world has driven networks of immunologists working together to improve the diagnosis and treatment of these rare diseases. These improvements in the diagnosis and treatment of IEI noted over the past 20 years bring hope for a better future for the IEI community. This paper will review future directions in a few of the newer therapies emerging for IEI. For easy reference, most of the diseases discussed in this paper are briefly described in a summary table, in the order mentioned within the paper (Appendix).
Collapse
Affiliation(s)
- Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA.
| |
Collapse
|
11
|
Nordin J, Solís L, Prévot J, Mahlaoui N, Chapel H, Sánchez-Ramón S, Ali A, Seymour JW, Pergent M. The PID Principles of Care: Where Are We Now? A Global Status Report Based on the PID Life Index. Front Immunol 2021; 12:780140. [PMID: 34868053 PMCID: PMC8637458 DOI: 10.3389/fimmu.2021.780140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
A global gold standard framework for primary immunodeficiency (PID) care, structured around six principles, was published in 2014. To measure the implementation status of these principles IPOPI developed the PID Life Index in 2020, an interactive tool aggregating national PID data. This development was combined with a revision of the principles to consider advances in the field of health and science as well as political developments since 2014. The revision resulted in the following six principles: PID diagnosis, treatments, universal health coverage, specialised centres, national patient organisations and registries for PIDs. A questionnaire corresponding to these principles was sent out to IPOPI’s national member organisations and to countries in which IPOPI had medical contacts, and data was gathered from 60 countries. The data demonstrates that, regardless of global scientific progress on PIDs with a growing number of diagnostic tools and better treatment options becoming available, the accessibility and affordability of these remains uneven throughout the world. It is not only visible between regions, but also between countries within the same region. One of the most urgent needs is medical education. In countries without immunologists, patients with PID suffer the risk of remaining undiagnosed or misdiagnosed, resulting in health implications or even death. Many countries also lack the infrastructure needed to carry out more advanced diagnostic tests and perform treatments such as hematopoietic stem cell transplantation or gene therapy. The incapacity to secure appropriate diagnosis and treatments affects the PID environment negatively in these countries. Availability and affordability also remain key issues, as diagnosis and treatments require coverage/reimbursement to ensure that patients with PID can access them in practice, not only in theory. This is still not the case in many countries of the world according to the PID Life Index. Although some countries do perform better than others, to date no country has fully implemented the PID principles of care, confirming the long way ahead to ensure an optimal environment for patients with PID in every country.
Collapse
Affiliation(s)
- Julia Nordin
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Leire Solís
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Johan Prévot
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Helen Chapel
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Instituto de Medicina del Laboratorio (IML) and Instituto de Investigación Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | - Adli Ali
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Institute of IR4.0, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - John W Seymour
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom.,Department of Counseling and Student Personnel, Minnesota State University, Mankato, MN, United States
| | - Martine Pergent
- The International Patient Organisation for Primary Immunodeficiencies, Downderry, United Kingdom
| |
Collapse
|
12
|
Kreins AY, Velasco HF, Cheong KN, Rao K, Veys P, Worth A, Gaspar HB, Booth C. Long-Term Immune Recovery After Hematopoietic Stem Cell Transplantation for ADA Deficiency: a Single-Center Experience. J Clin Immunol 2021; 42:94-107. [PMID: 34654999 PMCID: PMC8821083 DOI: 10.1007/s10875-021-01145-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Unconditioned hematopoietic stem cell transplantation (HSCT) is the recommended treatment for patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency with an HLA-matched sibling donor (MSD) or family donor (MFD). Improved overall survival (OS) has been reported compared to the use of unrelated donors, and previous studies have demonstrated that adequate cellular and humoral immune recovery can be achieved even in the absence of conditioning. Detailed insight of the long-term outcome is still limited. We aim to address this by studying a large single-center cohort of 28 adenosine deaminase-deficient patients who underwent a total of 31 HSCT procedures, of which more than half were unconditioned. We report an OS of 85.7% and event-free survival of 71% for the entire cohort, with no statistically significant differences after procedures using related or unrelated HLA-matched donors. We find that donor engraftment in the myeloid compartment is significantly diminished in unconditioned procedures, which typically use a MSD or MFD. This is associated with poor metabolic correction and more frequent failure to discontinue immunoglobulin replacement therapy. Approximately one in four patients receiving an unconditioned procedure required a second procedure, whereas the use of reduced intensity conditioning (RIC) prior to allogeneic transplantation improves the long-term outcome by achieving better myeloid engraftment, humoral immune recovery, and metabolic correction. Further longitudinal studies are needed to optimize future management and guidelines, but our findings support a potential role for the routine use of RIC in most ADA-deficient patients receiving an HLA-identical hematopoietic stem cell transplant, even when a MSD or MFD is available.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena F Velasco
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Pediatric Allergy and Immunology, Federal University of São Paolo, São Paolo, Brazil
| | - Kai-Ning Cheong
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Paediatric Rheumatology and Immunology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Kanchan Rao
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Veys
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, UK.,Orchard Therapeutics, London, UK
| | - Claire Booth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. .,UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
13
|
Abraham RS, Butte MJ. The New "Wholly Trinity" in the Diagnosis and Management of Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:613-625. [PMID: 33551037 DOI: 10.1016/j.jaip.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The field of immunology has a rich and diverse history, and the study of inborn errors of immunity (IEIs) represents both the "cake" and the "icing on top of the cake," as it has enabled significant advances in our understanding of the human immune system. This explosion of knowledge has been facilitated by a unique partnership, a triumvirate formed by the physician who gathers detailed immunological and clinical phenotypic information from, and shares results with, the patient; the laboratory scientist/immunologist who performs diagnostic testing, as well as advanced functional correlative studies; and the genomics scientist/genetic counselor, who conducts and interprets varied genetic analyses, all of which are essential for dissecting constitutional genetic disorders. Although the basic principles of clinical care have not changed in recent years, the practice of clinical immunology has changed to reflect the prodigious advances in diagnostics, genomics, and therapeutics. An "omic/tics"-centric approach to IEI reflects the tremendous strides made in the field in the new millennium with recognition of new disorders, characterization of the molecular underpinnings, and development and implementation of personalized treatment strategies. This review brings renewed attention to bear on the indispensable "trinity" of phenotypic, genomic, and immunological analyses in the diagnosis, management, and treatment of IEIs.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Calif.
| |
Collapse
|
14
|
Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech 2021; 14:261835. [PMID: 33970241 PMCID: PMC8188884 DOI: 10.1242/dmm.048940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe inherited bone disease characterized by defective osteoclast resorption or differentiation. Clinical manifestations include dense and brittle bones, anemia and progressive nerve compression, which hamper the quality of patients' lives and cause death in the first 10 years of age. This Review describes the pathogenesis of ARO and highlights the strengths and weaknesses of the current standard of care, namely hematopoietic stem cell transplantation (HSCT). Despite an improvement in the overall survival and outcomes of HSCT, transplant-related morbidity and the pre-existence of neurological symptoms significantly limit the success of HSCT, while the availability of human leukocyte antigen (HLA)-matched donors still remains an open issue. Novel therapeutic approaches are needed for ARO patients, especially for those that cannot benefit from HSCT. Here, we review preclinical and proof-of-concept studies, such as gene therapy, systematic administration of deficient protein, in utero HSCT and gene editing. Summary: Autosomal recessive osteopetrosis is a heterogeneous and rare bone disease for which effective treatments are still lacking for many patients. Here, we review the literature on clinical, preclinical and proof-of-concept studies.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| |
Collapse
|
15
|
Eguizabal C, Herrera L, Inglés-Ferrándiz M, Belmonte JCI. Correction to: Treating primary immunodeficiencies with defects in NK cells: from stem cell therapy to gene editing. Stem Cell Res Ther 2021; 12:250. [PMID: 33906672 PMCID: PMC8080394 DOI: 10.1186/s13287-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain. .,Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.
| | - L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - M Inglés-Ferrándiz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - J C Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 93027, USA
| |
Collapse
|
16
|
Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021; 22:2912. [PMID: 33805602 PMCID: PMC7999260 DOI: 10.3390/ijms22062912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.
Collapse
MESH Headings
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Dendrimers/administration & dosage
- Dendrimers/chemical synthesis
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Genetic Therapy/methods
- Government Regulation
- Humans
- MicroRNAs/administration & dosage
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nanomedicine/legislation & jurisprudence
- Nanomedicine/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plasmids/administration & dosage
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Surface Properties
Collapse
Affiliation(s)
- Piotr Tarach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
17
|
Puranik N, Yadav D, Chauhan PS, Kwak M, Jin JO. Exploring the Role of Gene Therapy for Neurological Disorders. Curr Gene Ther 2021; 21:11-22. [PMID: 32940177 DOI: 10.2174/1566523220999200917114101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Gene therapy is one of the frontier fields of medical breakthroughs that poses as an effective solution to previously incurable diseases. The delivery of the corrective genetic material or a therapeutic gene into the cell restores the missing gene function and cures a plethora of diseases, incurable by the conventional medical approaches. This discovery holds the potential to treat many neurodegenerative disorders such as muscular atrophy, multiple sclerosis, Parkinson's disease (PD) and Alzheimer's disease (AD), among others. Gene therapy proves as a humane, cost-effective alternative to the exhaustive often arduous and timely impossible process of finding matched donors and extensive surgery. It also overcomes the shortcoming of conventional methods to cross the blood-brain barrier. However, the use of gene therapy is only possible after procuring the in-depth knowledge of the immuno-pathogenesis and molecular mechanism of the disease. The process of gene therapy can be broadly categorized into three main steps: elucidating the target gene, culling the appropriate vector, and determining the best mode of transfer; each step mandating pervasive research. This review aims to dissertate and summarize the role, various vectors and methods of delivery employed in gene therapy with special emphasis on therapy directed at the central nervous system (CNS) associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Science Department, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
18
|
Klaver-Flores S, Zittersteijn HA, Canté-Barrett K, Lankester A, Hoeben RC, Gonçalves MAFV, Pike-Overzet K, Staal FJT. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? Front Genome Ed 2021; 2:615619. [PMID: 34713237 PMCID: PMC8525357 DOI: 10.3389/fgeed.2020.615619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.
Collapse
Affiliation(s)
| | - Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Khair K, Steadman L, Chaplin S, Holland M, Jenner K, Fletcher S. Parental perspectives on gene therapy for children with haemophilia: The Exigency study. Haemophilia 2020; 27:120-128. [PMID: 33216422 DOI: 10.1111/hae.14188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene therapy is used in life-limiting conditions of childhood. While not a current therapeutic option for children with haemophilia, it may be considered in the future especially for those where access to treatment is limited. AIM To assess the attitudes and opinions of parents of children with haemophilia about gene therapy as a potential future treatment, by understanding their awareness about gene therapy and what they need to know now and in the future; gauging levels of interest in gene therapy for their children; and exploring perceived current motivations and barriers. METHODS A mixed methods study with an online questionnaire and in-depth qualitative interviews in focus groups which were analysed using thematic analysis. RESULTS One hundred and fifty-eight participants commenced the online survey; 63 were fully completed (39%). 60 had heard of gene therapy but few (17/60 [28.3%]) felt they had a good understanding. 38/60 (63.3%) respondents did not know that gene therapy is not available for children. However, most held positive views: 53/60 (88.3%) saying they would consider it for their child. In the interviews, participants (N = 10, all mothers) discussed their awareness and understanding of gene therapy and opinions about it for children, including how this should be communicated to the child and parents. CONCLUSION A coherent, community-wide strategy for communicating information and news about gene therapy should now be provided for children and families living with haemophilia. This should come primarily from trusted haemophilia nursing teams, who can give tailored, age-appropriate, factual advice.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Fletcher
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
21
|
Eguizabal C, Herrera L, Inglés-Ferrándiz M, Izpisua Belmonte JC. Treating primary immunodeficiencies with defects in NK cells: from stem cell therapy to gene editing. Stem Cell Res Ther 2020; 11:453. [PMID: 33109263 PMCID: PMC7590703 DOI: 10.1186/s13287-020-01964-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are rare diseases that are characterized by genetic mutations that damage immunological function, defense, or both. Some of these rare diseases are caused by aberrations in the normal development of natural killer cells (NKs) or affect their lytic synapse. The pathogenesis of these types of diseases as well as the processes underlying target recognition by human NK cells is not well understood. Utilizing induced pluripotent stem cells (iPSCs) will aid in the study of human disorders, especially in the PIDs with defects in NK cells for PID disease modeling. This, together with genome editing technology, makes it possible for us to facilitate the discovery of future therapeutics and/or cell therapy treatments for these patients, because, to date, the only curative treatment available in the most severe cases is hematopoietic stem cell transplantation (HSCT). Recent progress in gene editing technology using CRISPR/Cas9 has significantly increased our capability to precisely modify target sites in the human genome. Among the many tools available for us to study human PIDs, disease- and patient-specific iPSCs together with gene editing offer unique and exceptional methodologies to gain deeper and more thorough understanding of these diseases as well as develop possible alternative treatment strategies. In this review, we will discuss some immunodeficiency disorders affecting NK cell function, such as classical NK deficiencies (CNKD), functional NK deficiencies (FNKD), and PIDs with involving NK cells as well as strategies to model and correct these diseases for further study and possible avenues for future therapies.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.
| | - L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - M Inglés-Ferrándiz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - J C Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 93027, USA
| |
Collapse
|
22
|
Rai R, Thrasher AJ, Cavazza A. Gene Editing for the Treatment of Primary Immunodeficiency Diseases. Hum Gene Ther 2020; 32:43-51. [PMID: 32935622 PMCID: PMC7612852 DOI: 10.1089/hum.2020.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With conventional treatments for primary immunodeficiency diseases (PIDs), such as allogeneic stem cell transplantation or autologous gene therapy, still facing important challenges, the rapid development of genome editing technologies to more accurately correct the mutations underlying the onset of genetic disorders has provided a new alternative, yet promising platform for the treatment of such diseases. The prospect of a more efficient and specific therapeutic tool has pushed many researchers to apply these editing tools to correct genetic, phenotypic, and functional defects of numerous devastating PIDs with extremely promising results to date. Despite these achievements, lingering concerns about the safety and efficacy of genome editing are currently being addressed in preclinical studies. This review summarizes the progress made toward the development of gene editing technologies to treat PIDs and the optimizations that still need to be implemented to turn genome editing into a next-generation treatment for rare monogenic life-threatening disorders.
Collapse
Affiliation(s)
- Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
23
|
Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene Therapy, A Novel Therapeutic Tool for Neurological Disorders: Current Progress, Challenges and Future Prospective. Curr Gene Ther 2020; 20:184-194. [DOI: 10.2174/1566523220999200716111502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
:
Neurological disorders are one of the major threat for health care system as they put enormous
socioeconomic burden. All aged populations are susceptible to one or other neurological problems
with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present,
available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases,
they provide only palliative effect. It was also found that the molecular etiology of neurological disorders
is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the
injury, environmental toxins and by some existing disease. Therefore, to take care of this situation,
gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion,
silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors
(viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various
routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such
as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral
sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic
reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy
of therapy. Considerable progress has been made to improve vector design, gene selection and
targeted delivery. This review article deals with the current status of gene therapy in neurological disorders
along with its clinical relevance, challenges and future prospective.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Aamir Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
24
|
Abstract
Sickle cell disease and the ß-thalassemias are caused by mutations of the ß-globin gene and represent the most frequent single gene disorders worldwide. Even in European countries with a previous low frequency of these conditions the prevalence has substantially increased following large scale migration from Africa and the Middle East to Europe. The hemoglobin diseases severely limit both, life expectancy and quality of life and require either life-long supportive therapy if cure cannot be achieved by allogeneic stem cell transplantation. Strategies for ex vivo gene therapy aiming at either re-establishing normal ß-globin chain synthesis or at re-activating fetal γ-globin chain and HbF expression are currently in clinical development. The European Medicine Agency (EMA) conditionally licensed gene addition therapy based on lentiviral transduction of hematopoietic stem cells in 2019 for a selected group of patients with transfusion dependent non-ß° thalassemia major without a suitable stem cell donor. Gene therapy thus offers a relevant chance to this group of patients for whom cure has previously not been on the horizon. In this review, we discuss the potential and the challenges of gene addition and gene editing strategies for the hemoglobin diseases.
Collapse
|
25
|
Preclinical Development of Autologous Hematopoietic Stem Cell-Based Gene Therapy for Immune Deficiencies: A Journey from Mouse Cage to Bed Side. Pharmaceutics 2020; 12:pharmaceutics12060549. [PMID: 32545727 PMCID: PMC7357087 DOI: 10.3390/pharmaceutics12060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).
Collapse
|
26
|
Zhang ZY, Thrasher AJ, Zhang F. Gene therapy and genome editing for primary immunodeficiency diseases. Genes Dis 2020; 7:38-51. [PMID: 32181274 PMCID: PMC7063425 DOI: 10.1016/j.gendis.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
In past two decades the gene therapy using genetic modified autologous hematopoietic stem cells (HSCs) transduced with the viral vector has become a promising alternative option for treating primary immunodeficiency diseases (PIDs). Despite of some pitfalls at early stage clinical trials, the field of gene therapy has advanced significantly in the last decade with improvements in viral vector safety, preparatory regime for manufacturing high quality virus, automated CD34 cell purification. Hence, the overall outcome from the clinical trials for the different PIDs has been very encouraging. In addition to the viral vector based gene therapy, the recent fast moving forward developments in genome editing using engineered nucleases in HSCs has provided a new promising platform for the treatment of PIDs. This review provides an overall outcome and progress in gene therapy clinical trials for SCID-X, ADA-SCID, WAS, X- CGD, and the recent developments in genome editing technology applied in HSCs for developing potential therapy, particular in the key studies for PIDs.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Immunology and Rheumatology, Children's Hospital of Chongqing Medical University, China
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| |
Collapse
|
27
|
Klermund J, Cathomen T. Grundlagen und klinische Anwendung der Genomeditierung. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Wilson J. Treating genes and patients. Gene Ther 2019; 27:109-110. [PMID: 31776472 DOI: 10.1038/s41434-019-0111-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Affiliation(s)
- John Wilson
- Cystic Fibrosis Service, Alfred Health, Melbourne, Australia. .,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
29
|
Acevedo MJ, Wilder JS, Adams S, Davis J, Kelly C, Hilligoss D, Carroll E, Blacklock-Schuver B, Cole K, Kang EM, Hsu AP, Kanakry CG, Dimitrova D, Kanakry JA. Outcomes of Related and Unrelated Donor Searches Among Patients with Primary Immunodeficiency Diseases Referred for Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1666-1673. [PMID: 30986499 PMCID: PMC6698402 DOI: 10.1016/j.bbmt.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022]
Abstract
Patients with primary immunodeficiencies (PIDs) are potentially cured by allogeneic hematopoietic cell transplantation (HCT). The spectrum of PIDs has expanded greatly beyond those that present in infancy or are diagnosed on newborn screening and require urgent, preemptive HCT. Many PID diagnoses are now made later in life, and the role of HCT is only considered for severe disease manifestations; in these cases, the kinetics and goals of a donor search may be different than for severe combined immunodeficiency. Across all PIDs, related donor searches have the additional selection factor of the inherited disease, and such searches may yield more limited options than searches for patients with hematologic malignancies; thus, unrelated donor options often become more critical in these patients. We retrospectively evaluated the outcomes of donor searches among patents with PIDs referred for HCT at the National Institutes of Health, where the minimum patient age for evaluation is 3 years and where donor options include matched sibling donors or matched related donors, HLA-haploidentical (haplo), or 7-8/8 HLA matched unrelated donors (mMUDs/MUDs). Patient (n = 161) and donor demographics, MUD search results, HLA typing, pedigrees, mutation testing, and donor selection data were collected. The National Marrow Donor Program HapLogic 8/8 HLA match algorithm was used to predict the likelihood of a successful MUD search and categorized as very good, good, fair, poor, very poor, or futile per the Memorial Sloan Kettering Cancer Center (MSKCC) Search Prognosis method. There were significant differences by PID mode of inheritance in patient age, disposition (receipt of HCT or not), donor source, and donor relatedness. A related or unrelated donor option could be identified for 94% of patients. Of living first-degree relatives (median, 3; range, 0 to 12 per patient), a median of 1 donor remained for autosomal dominant and X-linked (XL) diseases after HLA typing, mutation testing, and other exclusions, and a median of 2 donors remained for autosomal recessive (AR) diseases. Among patients with a PID of known mode of inheritance (n = 142), the best related donor was haplo for 99 (70%) patients, with 56 (39%) haplos age 40 years or older and 5 (4%) second-degree haplos; 13 (9%) had no family donor options. The best related donor was a heterozygote/asymptomatic carrier of the PID mutation in 36 (49%) patients with AR or XL disease (n = 73). Among patients with MUD search performed (n = 139), 53 (38%) had very poor/futile 8/8 MUD searches, including 6 (32%) of those with unknown PID mutation and therefore no family donor options. The MSKCC Search Prognosis was less favorable for those of non-European ancestry compared with European ancestry (P = .002). Most patients of Hispanic or African ancestry had very poor/futile MUD searches, 71% and 63%, respectively. No HCT recipients with very poor/futile MUD searches (n = 38) received 8/8 MUD grafts. Alternative donor options, including haplo and unrelated donors, are critical to enable HCT for patients with PIDs. MUD search success remains low for those of non-European ancestry, and this is of particular concern for patients with PIDs caused by an unknown genetic defect. Among patients with PIDs, related donor options are reduced and haplos age 40 years and older and/or mutation carriers are often the best family option.
Collapse
Affiliation(s)
| | - Jennifer S Wilder
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland
| | - Sharon Adams
- National Institutes of Health, Bethesda, Maryland
| | - Joie Davis
- National Institutes of Health, Bethesda, Maryland
| | - Corin Kelly
- National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Kristen Cole
- National Institutes of Health, Bethesda, Maryland
| | | | - Amy P Hsu
- National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
30
|
Wu S, Yan Y, Ni D, Pan X, Chen X, Guan J, Xiong X, Liu L. Development of a safe and efficient gene delivery system based on a biodegradable tannic acid backbone. Colloids Surf B Biointerfaces 2019; 183:110408. [PMID: 31382051 DOI: 10.1016/j.colsurfb.2019.110408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
Finding a safe and efficient gene delivery vector is a major international challenge facing the development of gene therapy. Tannic acid (TA) is a natural cross-linker owing to its hydroxyl and carboxyl groups that can interact with biopolymers for different biomaterial design. In this work, three polyethyleneimine-modified TA polymers were prepared, and the polymers were characterized by FTIR, UV-vis, elemental analysis and 1H NMR. The potential of PTAs as gene vector was studied in vitro, including DNA loading capacity, DNA protection ability and biocompatibility. In addition, the particle size, zeta potential, DNA encapsulation efficiency, cell uptake and transfection efficiency of the PTA-pDNA polyplexes were also studied. The results showed that PTA2k and PTA30k could completely condense DNA at N/P of 2, and PTA600 could only completely condense DNA at N/P of 50. The PTA/pDNA polyplexes could protect DNA from degrading by DNA enzymes and could be efficiently uptaked by cells. Biocompatibility assay showed that PTA had no significant cytotoxicity and effect on cell proliferation compared to PEI. At low N/P ratios of 1-4, PTA showed higher transfection efficiency than PEI, and the transfection efficiency increased with the increase of PEI molecular weight in PTA. At N/P of 3, PTA30k showed the highest transfection efficiency of 23.8%, while PEI30k showed only 6.7%. These results indicate that PTA is a promising candidate vector for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Shuheng Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yujian Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dani Ni
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xianhu Pan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuemin Xiong
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
31
|
Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target 2019; 28:111-128. [DOI: 10.1080/1061186x.2019.1630415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefanie A. Pena
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Iyengar
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca S. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abdulrahman Aljohani
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
33
|
Murillo O, Moreno D, Gazquez C, Barberia M, Cenzano I, Navarro I, Uriarte I, Sebastian V, Arruebo M, Ferrer V, Bénichou B, Combal JP, Prieto J, Hernandez-Alcoceba R, Gonzalez Aseguinolaza G. Liver Expression of a MiniATP7B Gene Results in Long-Term Restoration of Copper Homeostasis in a Wilson Disease Model in Mice. Hepatology 2019; 70:108-126. [PMID: 30706949 DOI: 10.1002/hep.30535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Gene therapy with an adeno-associated vector (AAV) serotype 8 encoding the human ATPase copper-transporting beta polypeptide (ATP7B) complementary DNA (cDNA; AAV8-ATP7B) is able to provide long-term copper metabolism correction in 6-week-old male Wilson disease (WD) mice. However, the size of the genome (5.2 kilobases [kb]) surpasses the optimal packaging capacity of the vector, which resulted in low-yield production; in addition, further analyses in WD female mice and in animals with a more advanced disease revealed reduced therapeutic efficacy, as compared to younger males. To improve efficacy of the treatment, an optimized shorter AAV vector was generated, in which four out of six metal-binding domains (MBDs) were deleted from the ATP7B coding sequence, giving rise to the miniATP7B protein (Δ57-486-ATP7B). In contrast to AAV8-ATP7B, AAV8-miniATP7B could be produced at high titers and was able to restore copper homeostasis in 6- and 12-week-old male and female WD mice. In addition, a recently developed synthetic AAV vector, AAVAnc80, carrying the miniATP7B gene was similarly effective at preventing liver damage, restoring copper homeostasis, and improving survival 1 year after treatment. Transduction of approximately 20% of hepatocytes was sufficient to normalize copper homeostasis, suggesting that corrected hepatocytes are acting as a sink to eliminate excess of copper. Importantly, administration of AAVAnc80-miniATP7B was safe in healthy mice and did not result in copper deficiency. Conclusion: In summary, gene therapy using an optimized therapeutic cassette in different AAV systems provides long-term correction of copper metabolism regardless of sex or stage of disease in a clinically relevant WD mouse model. These results pave the way for the implementation of gene therapy in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Itziar Cenzano
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Iñigo Navarro
- Department of Chemistry and Soil Sciences, University of Navarra, IdisNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, FIMA, University of Navarra, IdisNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Pamplona, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | | | | | | | - Jesus Prieto
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Gloria Gonzalez Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain.,Vivet Therapeutics SAS, Paris, France
| |
Collapse
|
34
|
Romito M, Rai R, Thrasher AJ, Cavazza A. Genome editing for blood disorders: state of the art and recent advances. Emerg Top Life Sci 2019; 3:289-299. [PMID: 33523137 PMCID: PMC7288986 DOI: 10.1042/etls20180147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
In recent years, tremendous advances have been made in the use of gene editing to precisely engineer the genome. This technology relies on the activity of a wide range of nuclease platforms - such as zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR-Cas system - that can cleave and repair specific DNA regions, providing a unique and flexible tool to study gene function and correct disease-causing mutations. Preclinical studies using gene editing to tackle genetic and infectious diseases have highlighted the therapeutic potential of this technology. This review summarizes the progresses made towards the development of gene editing tools for the treatment of haematological disorders and the hurdles that need to be overcome to achieve clinical success.
Collapse
Affiliation(s)
- Marianna Romito
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Rajeev Rai
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| |
Collapse
|
35
|
Abstract
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| |
Collapse
|
36
|
Naldini L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 2019; 11:e9958. [PMID: 30670463 PMCID: PMC6404113 DOI: 10.15252/emmm.201809958] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Here I review the scientific background, current stage of development and future perspectives that I foresee in the field of genetic manipulation of hematopoietic stem cells with a special emphasis on clinical applications.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital and Research Institute, "Vita - Salute San Raffaele" University Medical School, Milan, Italy
| |
Collapse
|
37
|
Soni S, Kohn DB. Chemistry, manufacturing and controls for gene modified hematopoietic stem cells. Cytotherapy 2019; 21:358-366. [PMID: 30745225 DOI: 10.1016/j.jcyt.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
Gene modification of hematopoietic stem cells is increasingly becoming popular as a therapeutic approach, given the recent approvals and the number of new applications for clinical trials targeting monogenetic and immunodeficiency disorders. Technological advances in stem cell selection, culture, transduction and gene editing now allow for efficient ex vivo genetic manipulation of stem cells. Gene-addition techniques using viral vectors (mainly retrovirus- and lentivirus-based) and gene editing using various targeted nuclease platforms (e.g., Zinc finger, TALEN and Crispr/Cas9) are being applied to the treatment of multiple genetic and immunodeficiency disorders. Herein, the current state of the art in manufacturing and critical assays that are required for ex vivo manipulation of stem cells are addressed. Important quality control and safety assays that need to be planned early in the process development phase of these products for regulatory approval are also highlighted.
Collapse
Affiliation(s)
- Sandeep Soni
- Division of Stem Cell Transplant and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA.
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
38
|
Application of induced pluripotent stem cells to primary immunodeficiency diseases. Exp Hematol 2019; 71:43-50. [PMID: 30664903 DOI: 10.1016/j.exphem.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Primary immunodeficiency diseases (PIDs) are a heterogeneous group of rare immune disorders with genetic causes. Effective treatments using hematopoietic stem cells or pharmaceutical agents have been around for decades. However, for many patients, these treatment options are ineffective, partly because the rarity of these PIDs complicates the diagnosis and therapy. Induced pluripotent stem cells (iPSCs) offer a potential solution to these problems. The proliferative capacity of iPSCs allows for the preparation of a large, stable supply of hematopoietic cells with the same genome as the patient, allowing for new human cell models that can trace cellular abnormalities during the pathogenesis and lead to new drug discovery. PID models using patient iPSCs have been instrumental in identifying deviations in the development or function of several types of immune cells, revealing new molecular targets for experimental therapies. These models are only in their early stages and for the most part have recapitulated results from existing models using animals or primary cells. However, iPSC-based models are being used to study complex diseases of other organs, including those with multigenic causes, suggesting that advances in differentiation processes will expand iPSC-based models to complex PIDs as well.
Collapse
|
39
|
Wu TT. Other Inflammatory Disorders of Duodenum. SURGICAL PATHOLOGY OF NON-NEOPLASTIC GASTROINTESTINAL DISEASES 2019:239-263. [DOI: 10.1007/978-3-030-15573-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Penna S, Capo V, Palagano E, Sobacchi C, Villa A. One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol (Lausanne) 2019; 10:85. [PMID: 30837952 PMCID: PMC6389615 DOI: 10.3389/fendo.2019.00085] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022] Open
Abstract
Osteopetrosis is a condition characterized by increased bone mass due to defects in osteoclast function or formation. In the last decades, the molecular dissection of osteopetrosis has unveiled a plethora of molecular players responsible for different forms of the disease, some of which present also primary neurodegeneration that severely limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them when performed in the first months of life, highlighting the relevance of an early molecular diagnosis. However, clinical management of these patients is constrained by the severity of the disease and lack of a bone marrow niche that may delay immune reconstitution. Based on osteopetrosis genetic heterogeneity and disease severity, personalized therapies are required for patients that are not candidate to bone marrow transplantation. This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity, current therapy and innovative approaches undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
| | - Eleonora Palagano
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Cristina Sobacchi
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- *Correspondence: Anna Villa
| |
Collapse
|
41
|
Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-β-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles. Asian J Pharm Sci 2018; 15:121-128. [PMID: 32175024 PMCID: PMC7066049 DOI: 10.1016/j.ajps.2018.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/08/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on their surface. This study focuses on guanidinylated O-carboxymethyl chitosan (GOCMCS) along with poly-β-amino ester(PBAE) for siRNA delivery. Binding efficiency of PBAE/siRNA/GOCMCS nanoparticles were characterized by gel electrophoresis. The siRNA-loaded nanoparticles were found to be stable in the presence of RNase A, serum and BALF respectively. Fine particle fraction (FPF) which was determined by a two-stage impinger (TSI) was 57.8% ± 2.6%. The particle size and zeta potential of the nanoparticles were 153.8 ± 12.54 nm and + 12.2 ± 4.94 mV. In vitro cell transfection studies were carried out with A549 cells. The cellular uptake was significantly increased. When the cells were incubated with siSurvivin-loaded nanoparticles, it could induce 26.83% ± 0.59% apoptosis of A549 cells and the gene silencing level of survivin expression in A549 cells were 30.93% ± 2.27%. The results suggested that PBAE/GOCMCS nanoparticle was a very promising gene delivery carrier.
Collapse
|
42
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Barzel A. Immune Gene Therapy and the International Conference on Lymphocyte Engineering (ICLE 2018). Hum Gene Ther 2018; 29:vii-ix. [PMID: 29902085 DOI: 10.1089/hum.2018.29069.aba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Adi Barzel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
44
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
45
|
Ferrua F, Aiuti A. Twenty-Five Years of Gene Therapy for ADA-SCID: From Bubble Babies to an Approved Drug. Hum Gene Ther 2018; 28:972-981. [PMID: 28847159 DOI: 10.1089/hum.2017.175] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Twenty-five years have passed since first attempts of gene therapy (GT) in children affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) defect, also known by the general public as bubble babies. ADA-SCID is fatal early in life if untreated. Unconditioned hematopoietic stem cell (HSC) transplant from matched sibling donor represents a curative treatment but is available for few patients. Enzyme replacement therapy can be life-saving, but its chronic use has many drawbacks. This review summarizes the history of ADA-SCID GT over the last 25 years, starting from first pioneering studies in the early 1990s using gamma-retroviral vectors, based on multiple infusions of genetically corrected autologous peripheral blood lymphocytes. HSC represented the ideal target for gene correction to guarantee production of engineered multi-lineage progeny, but it required a decade to achieve therapeutic benefit with this approach. Introduction of low-intensity conditioning represented a crucial step in achieving stable gene-corrected HSC engraftment and therapeutic levels of ADA-expressing cells. Recent clinical trials demonstrated that gamma-retroviral GT for ADA-SCID has a favorable safety profile and is effective in restoring normal purine metabolism and immune functions in patients >13 years after treatment. No abnormal clonal proliferation or leukemia development have been observed in >40 patients treated experimentally in five different centers worldwide. In 2016, the medicinal product Strimvelis™ received marketing approval in Europe for patients affected by ADA-SCID without a suitable human leukocyte antigen-matched related donor. Positive safety and efficacy results have been obtained in GT clinical trials using lentiviral vectors encoding ADA. The results obtained in last 25 years in ADA-SCID GT development fundamentally contributed to improve patients' prognosis, together with earlier diagnosis thanks to newborn screening. These advances open the way to further clinical development of GT as treatment for broader applications, from inherited diseases to cancer.
Collapse
Affiliation(s)
- Francesca Ferrua
- 1 San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute , Milan, Italy.,2 Vita-Salute San Raffaele University , Milan, Italy
| | - Alessandro Aiuti
- 1 San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute , Milan, Italy.,2 Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
46
|
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20:e3015. [PMID: 29575374 DOI: 10.1002/jgm.3015] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | | | - Mohammad R Abedi
- Department of Laboratory Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
47
|
Fox TA, Chakraverty R, Burns S, Carpenter B, Thomson K, Lowe D, Fielding A, Peggs K, Kottaridis P, Uttenthal B, Bigley V, Buckland M, Grandage V, Denovan S, Grace S, Dahlstrom J, Workman S, Symes A, Mackinnon S, Hough R, Morris E. Successful outcome following allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency. Blood 2018; 131:917-931. [PMID: 29279357 PMCID: PMC6225386 DOI: 10.1182/blood-2017-09-807487] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
The primary immunodeficiencies (PIDs), rare inherited diseases characterized by severe dysfunction of immunity, have been successfully treated by allogeneic hematopoietic stem cell transplantation (Allo-HSCT) in childhood. Controversy exists regarding optimal timing and use of Allo-HSCT in adults, due to lack of experience and previous poor outcomes. Twenty-nine consecutive adult patients, with a mean age at transplant of 24 years (range, 17-50 years), underwent Allo-HSCT. Reduced-intensity conditioning (RIC) included fludarabine (Flu)/melphalan/alemtuzumab (n = 20), Flu/busulfan (Bu)/alemtuzumab (n = 8), and Flu/Bu/antithymocyte globulin (n = 1). Stem cell donors were matched unrelated donors or mismatched unrelated donors (n = 18) and matched related donors (n = 11). Overall survival (OS), event-free survival, transplant-related mortality (TRM), acute and chronic graft-versus-host disease incidence and severity, time to engraftment, lineage-specific chimerism, immune reconstitution, and discontinuation of immunoglobulin replacement therapy were recorded. OS at 3 years for the whole cohort was 85.2%. The rarer PID patients without chronic granulomatous disease (CGD) achieved an OS at 3 years of 88.9% (n = 18), compared with 81.8% for CGD patients (n = 11). TRM was low with only 4 deaths observed at a median follow-up of 3.5 years. There were no cases of early or late rejection. In all surviving patients, either stable mixed chimerism or full donor chimerism were observed. At last follow-up, 87% of the surviving patients had no evidence of persistent or recurrent infections. Allo-HSCT is safe and effective in young adult patients with severe PID and should be considered the treatment of choice where an appropriate donor is available.
Collapse
Affiliation(s)
- Thomas A Fox
- Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
| | - Ronjon Chakraverty
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
- Department of Haematology, Cancer Institute, UCL, London, United Kingdom
| | - Siobhan Burns
- Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
| | - Benjamin Carpenter
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Kirsty Thomson
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Cancer Institute, UCL, London, United Kingdom
| | - David Lowe
- Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Department of Immunology, Royal Free London NHS FT, London, United Kingdom
| | - Adele Fielding
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
- Department of Haematology, Cancer Institute, UCL, London, United Kingdom
| | - Karl Peggs
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Cancer Institute, UCL, London, United Kingdom
| | - Panagiotis Kottaridis
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
| | - Benjamin Uttenthal
- Department of Haematology, Addenbrookes' Hospital, Cambridge, United Kingdom; and
| | - Venetia Bigley
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Matthew Buckland
- Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Department of Immunology, Royal Free London NHS FT, London, United Kingdom
| | - Victoria Grandage
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Shari Denovan
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Sarah Grace
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Julia Dahlstrom
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Sarita Workman
- Department of Immunology, Royal Free London NHS FT, London, United Kingdom
| | - Andrew Symes
- Department of Immunology, Royal Free London NHS FT, London, United Kingdom
| | - Stephen Mackinnon
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Haematology, Royal Free London NHS FT, London, United Kingdom
- Department of Haematology, Cancer Institute, UCL, London, United Kingdom
| | - Rachael Hough
- Teenage and Young Adult BMT Programme, UCL Hospital NHS FT, London, United Kingdom
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London (UCL), London, United Kingdom
- Bone Marrow Transplant (BMT) Programme, UCL Hospital National Health Service Foundation Trust (NHS FT), London, United Kingdom
- Department of Immunology, Royal Free London NHS FT, London, United Kingdom
| |
Collapse
|
48
|
Rae W, Ward D, Mattocks C, Pengelly RJ, Eren E, Patel SV, Faust SN, Hunt D, Williams AP. Clinical efficacy of a next-generation sequencing gene panel for primary immunodeficiency diagnostics. Clin Genet 2018; 93:647-655. [PMID: 29077208 DOI: 10.1111/cge.13163] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
Abstract
Primary immunodeficiencies (PIDs) are rare monogenic inborn errors of immunity that result in impairment of functions of the human immune system. PIDs have a broad phenotype with increased morbidity and mortality, and treatment choices are often complex. With increased accessibility of next-generation sequencing (NGS), the rate of discovery of genetic causes for PID has increased exponentially. Identification of an underlying monogenic diagnosis provides important clinical benefits for patients with the potential to alter treatments, facilitate genetic counselling, and pre-implantation diagnostics. We investigated a NGS PID panel of 242 genes within clinical care across a range of PID phenotypes. We also evaluated Phenomizer to predict causal genes from human phenotype ontology (HPO) terms. Twenty-seven participants were recruited, and a total of 15 reportable variants were identified in 48% (13/27) of the participants. The panel results had implications for treatment in 37% (10/27) of participants. Phenomizer identified the genes harbouring variants from HPO terms in 33% (9/27) of participants. This study shows the clinical efficacy that genetic testing has in the care of PID. However, it also highlights some of the disadvantages of gene panels in the rapidly moving field of PID genomics and current challenges in HPO term assignment for PID.
Collapse
Affiliation(s)
- W Rae
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK.,Southampton National Institute for Health Research Clinical Research Facility, University Hospital Southampton NHSFT, Southampton, UK
| | - D Ward
- Wessex Investigational Sciences Hub Laboratory, University Hospital Southampton NHSFT, Southampton, UK
| | - C Mattocks
- Wessex Investigational Sciences Hub Laboratory, University Hospital Southampton NHSFT, Southampton, UK
| | - R J Pengelly
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - E Eren
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK
| | - S V Patel
- Paediatric Immunology and Infectious Disease, Children's Hospital Southampton, Southampton, UK
| | - S N Faust
- Southampton National Institute for Health Research Clinical Research Facility, University Hospital Southampton NHSFT, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK.,Paediatric Immunology and Infectious Disease, Children's Hospital Southampton, Southampton, UK
| | - D Hunt
- Wessex Clinical Genetics Service, University Hospital Southampton NHSFT, Southampton, UK
| | - A P Williams
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK.,Wessex Investigational Sciences Hub Laboratory, University Hospital Southampton NHSFT, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
49
|
Capo V, Castiello MC, Fontana E, Penna S, Bosticardo M, Draghici E, Poliani LP, Sergi Sergi L, Rigoni R, Cassani B, Zanussi M, Carrera P, Uva P, Dobbs K, Sacchetti N, Notarangelo LD, van Til NP, Wagemaker G, Villa A. Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation. J Allergy Clin Immunol 2017; 142:928-941.e8. [PMID: 29241731 DOI: 10.1016/j.jaci.2017.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Omenn syndrome (OS) is a rare severe combined immunodeficiency associated with autoimmunity and caused by defects in lymphoid-specific V(D)J recombination. Most patients carry hypomorphic mutations in recombination-activating gene (RAG) 1 or 2. Hematopoietic stem cell transplantation is the standard treatment; however, gene therapy (GT) might represent a valid alternative, especially for patients lacking a matched donor. OBJECTIVE We sought to determine the efficacy of lentiviral vector (LV)-mediated GT in the murine model of OS (Rag2R229Q/R229Q) in correcting immunodeficiency and autoimmunity. METHODS Lineage-negative cells from mice with OS were transduced with an LV encoding the human RAG2 gene and injected into irradiated recipients with OS. Control mice underwent transplantation with wild-type or OS-untransduced lineage-negative cells. Immunophenotyping, T-dependent and T-independent antigen challenge, immune spectratyping, autoantibody detection, and detailed tissue immunohistochemical analyses were performed. RESULTS LV-mediated GT allowed immunologic reconstitution, although it was suboptimal compared with that seen in wild-type bone marrow (BM)-transplanted OS mice in peripheral blood and hematopoietic organs, such as the BM, thymus, and spleen. We observed in vivo variability in the efficacy of GT correlating with the levels of transduction achieved. Immunoglobulin levels and T-cell repertoire normalized, and gene-corrected mice responded properly to challenges in vivo. Autoimmune manifestations, such as skin infiltration and autoantibodies, dramatically improved in GT mice with a vector copy number/genome higher than 1 in the BM and 2 in the thymus. CONCLUSIONS Our data show that LV-mediated GT for patients with OS significantly ameliorates the immunodeficiency, even in an inflammatory environment.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi P Poliani
- Institute of Molecular Medicine "A. Nocivelli," University Hospital "Spedali Civili," Brescia, Italy
| | - Lucia Sergi Sergi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Rosita Rigoni
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Barbara Cassani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Monica Zanussi
- Genomics for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Genomics for the Diagnosis of Human Pathologies, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nicolò Sacchetti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell Research and Development Center, Hacettepe University, Ankara, Turkey; Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology and Hematology, Saint Petersburg, Russia
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.
| |
Collapse
|
50
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|