1
|
Leikas AJ, Hartikainen JEK, Kastrup J, Mathur A, Gyöngyösi M, Fernández-Avilés F, Sanz-Ruiz R, Wojakowski W, Gwizdała A, Luite R, Nikkinen M, Qayyum AA, Haack-Sørensen M, Kelham M, Jones DA, Hamzaraj K, Spannbauer A, Fernández-Santos ME, Jędrzejek M, Skoczyńska A, Vartiainen N, Knuuti J, Saraste A, Ylä-Herttuala S. Clinical development and proof of principle testing of new regenerative vascular endothelial growth factor-D therapy for refractory angina: rationale and design of the phase 2 ReGenHeart trial. Open Heart 2024; 11:e002817. [PMID: 39424303 PMCID: PMC11487854 DOI: 10.1136/openhrt-2024-002817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Despite tremendous therapeutic advancements, a significant proportion of coronary artery disease patients suffer from refractory angina pectoris, that is, quality-of-life-compromising angina that is non-manageable with established pharmacological and interventional treatment options. Adenoviral vascular endothelial growth factor-DΔNΔC (AdVEGF-D)-encoding gene therapy (GT) holds promise for the treatment of refractory angina. METHODS ReGenHeart is an investigator-initiated, multicentre, randomised, placebo-controlled and double-blinded phase 2 clinical trial that aims to study the safety and efficacy of intramyocardially administered angiogenic AdVEGF-D GT for refractory angina. Patients will be randomised in a 2:1 ratio and blocks of six to receive either AdVEGF-D or placebo. Primary endpoints are improvements in functional capacity assessed with the 6 min walking test and angina symptoms with Canadian Cardiovascular Society class after 6 month follow-up. Secondary endpoints are improvements in myocardial perfusion assessed with either positron emission tomography or single-photon emission CT after 6 month follow-up and functional capacity and angina symptoms after 12 months. In addition, changes in the quality of life, the use of angina medication and the incidence of major adverse cardiac and cerebrovascular events will be evaluated. CONCLUSIONS The phase 2 ReGenHeart trial will provide knowledge of the safety and efficacy of AdVEGF-D GT to ameliorate symptoms in refractory angina patients, extending and further testing positive results from the preceding phase 1/2a trial.
Collapse
Affiliation(s)
- Aleksi J Leikas
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Juha E K Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jens Kastrup
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Ricardo Sanz-Ruiz
- Department of Cardiology, General University Gregorio Marañón Hospital, Madrid, Spain
| | - Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Adrian Gwizdała
- First Department of Cardiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Riho Luite
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Marko Nikkinen
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Abbas A Qayyum
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthew Kelham
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Daniel A Jones
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Kevin Hamzaraj
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Marek Jędrzejek
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Skoczyńska
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Niklas Vartiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Heart Center, Turku University Hospital, Turku, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Bliss CM, Hulin-Curtis SL, Williams M, Marušková M, Davies JA, Statkute E, Baker AT, Stack L, Kerstetter L, Kerr-Jones LE, Milward KF, Russell G, George SJ, Badder LM, Stanton RJ, Coughlan L, Humphreys IR, Parker AL. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications. Mol Ther Methods Clin Dev 2024; 32:101308. [PMID: 39206304 PMCID: PMC11357811 DOI: 10.1016/j.omtm.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector "ChAdOx1" in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector.
Collapse
Affiliation(s)
- Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sarah L. Hulin-Curtis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Marta Williams
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Evelina Statkute
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alexander T. Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Louise Stack
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lucas Kerstetter
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Kate F. Milward
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gabrielle Russell
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lynda Coughlan
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
- University of Maryland School of Medicine, Center for Vaccine Development and Global Health, Baltimore, MD 21201, USA
| | - Ian R. Humphreys
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
5
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
6
|
Kumari S, Kamiya A, Karnik SS, Rohilla S, Dubey SK, Taliyan R. Novel Gene Therapy Approaches for Targeting Neurodegenerative Disorders: Focusing on Delivering Neurotrophic Genes. Mol Neurobiol 2024:10.1007/s12035-024-04260-y. [PMID: 38856793 DOI: 10.1007/s12035-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative illnesses (NDDs) like Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, spinal muscular atrophy, and Huntington's disease have demonstrated considerable potential for gene therapy as a viable therapeutic intervention. NDDs are marked by the decline of neurons, resulting in changes in both behavior and pathology within the body. Strikingly, only symptomatic management is available without a cure for the NDDs. There is an unmet need for a permanent therapeutic approach. Many studies have been going on to target the newer therapeutic molecular targets for NDDs including gene-based therapy. Gene therapy has the potential to provide therapeutic benefits to a large number of patients with NDDs by offering mechanisms including neuroprotection, neuro-restoration, and rectification of pathogenic pathways. Gene therapy is a medical approach that aims to modify the biological characteristics of living cells by controlling the expression of specific genes in certain neurological disorders. Despite being the most complex and well-protected organ in the human body, there is clinical evidence to show that it is possible to specifically target the central nervous system (CNS). This provides hope for the prospective application of gene therapy in treating NDDs in the future. There are several advanced techniques available for using viral or non-viral vectors to deliver the therapeutic gene to the afflicted region. Neurotrophic factors (NTF) in the brain are crucial for the development, differentiation, and survival of neurons in the CNS, making them important in the context of various neurological illnesses. Gene delivery of NTF has the potential to be used as a therapeutic approach for the treatment of neurological problems in the brain. This review primarily focuses on the methodologies employed for delivering the genes of different NTFs to treat neurological disorders. These techniques are currently being explored as a viable therapeutic approach for neurodegenerative diseases. The article exclusively addresses gene delivery approaches and does not cover additional therapy strategies for NDDs. Gene therapy offers a promising alternative treatment for NDDs by stimulating neuronal growth instead of solely relying on symptom relief from drugs and their associated adverse effects. It can serve as a long-lasting and advantageous treatment choice for the management of NDDs. The likelihood of developing NDDs increases with age as a result of neuronal degradation in the brain. Gene therapy is an optimal approach for promoting neuronal growth through the introduction of nerve growth factor genes.
Collapse
Affiliation(s)
- Shobha Kumari
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Aayush Kamiya
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sanika Sanjay Karnik
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sumedha Rohilla
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Rajeev Taliyan
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
7
|
Lv J, Fu Z, Zheng H, Song Q. Global research trends and emerging opportunities for integrin adhesion complexes in cardiac repair: a scientometric analysis. Front Cardiovasc Med 2024; 11:1308763. [PMID: 38699584 PMCID: PMC11063371 DOI: 10.3389/fcvm.2024.1308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Cardiac regenerative medicine has gained significant attention in recent years, and integrins are known to play a critical role in mediating cardiac development and repair, especially after an injury from the myocardial infarction (MI). Given the extensive research history and interdisciplinary nature of this field, a quantitative retrospective analysis and visualization of related topics is necessary. Materials and methods We performed a scientometric analysis of published papers on cardiac integrin adhesion complexes (IACs), including analysis of annual publications, disciplinary evolution, keyword co-occurrence, and literature co-citation. Results A total of 2,664 publications were finally included in the past 20 years. The United States is the largest contributor to the study and is leading this area of research globally. The journal Circulation Research attracts the largest number of high-quality publications. The study of IACs in cardiac repair/regenerative therapies involves multiple disciplines, particularly in materials science and developmental biology. Keywords of research frontiers were represented by Tenasin-C (2019-2023) and inflammation (2020-2023). Conclusion Integrins are topics with ongoing enthusiasm in biological development and tissue regeneration. The rapidly emerging role of matricellular proteins and non-protein components of the extracellular matrix (ECM) in regulating matrix structure and function may be a further breakthrough point in the future; the emerging role of IACs and their downstream molecular signaling in cardiac repair are also of great interest, such as induction of cardiac proliferation, differentiation, maturation, and metabolism, fibroblast activation, and inflammatory modulation.
Collapse
Affiliation(s)
- Jiayu Lv
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Haoran Zheng
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Department of General Internal Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
9
|
Portero V, Deng S, Boink GJJ, Zhang GQ, de Vries A, Pijnappels DA. Optoelectronic control of cardiac rhythm: Toward shock-free ambulatory cardioversion of atrial fibrillation. J Intern Med 2024; 295:126-145. [PMID: 37964404 DOI: 10.1111/joim.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.
Collapse
Affiliation(s)
- Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Antoine de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
10
|
Ding J, Zhang H, Dai T, Gao X, Yin Z, Wang Q, Long M, Tan S. TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro. Pharmaceutics 2024; 16:213. [PMID: 38399267 PMCID: PMC10891721 DOI: 10.3390/pharmaceutics16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein-Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.
Collapse
Affiliation(s)
- Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Handan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Tianli Dai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Mengqi Long
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Meihua 52nd Road, Xiangzhou District, Zhuhai 510009, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| |
Collapse
|
11
|
Li G, Gao J, Ding P, Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J Adv Res 2024:S2090-1232(24)00029-8. [PMID: 38246244 DOI: 10.1016/j.jare.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) and pericytes (PCs) are crucial components of the vascular system, with ECs lining the inner layer of blood vessels and PCs surrounding capillaries to regulate blood flow and angiogenesis. Intercellular communication between ECs and PCs is vital for the formation, stability, and function of blood vessels. Various signaling pathways, such as the vascular endothelial growth factor/vascular endothelial growth factor receptor pathway and the platelet-derived growth factor-B/platelet-derived growth factor receptor-β pathway, play roles in communication between ECs and PCs. Dysfunctional communication between these cells is associated with various diseases, including vascular diseases, central nervous system disorders, and certain types of cancers. AIM OF REVIEW This review aimed to explore the diverse roles of ECs and PCs in the formation and reshaping of blood vessels. This review focused on the essential signaling pathways that facilitate communication between these cells and investigated how disruptions in these pathways may contribute to disease. Additionally, the review explored potential therapeutic targets, future research directions, and innovative approaches, such as investigating the impact of EC-PCs in novel systemic diseases, addressing resistance to antiangiogenic drugs, and developing novel antiangiogenic medications to enhance therapeutic efficacy. KEY SCIENTIFIC CONCEPTS OF REVIEW Disordered EC-PC intercellular signaling plays a role in abnormal blood vessel formation, thus contributing to the progression of various diseases and the development of resistance to antiangiogenic drugs. Therefore, studies on EC-PC intercellular interactions have high clinical relevance.
Collapse
Affiliation(s)
- Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
12
|
Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A. Casein kinase 2 activity is a host restriction factor for AAV transduction. Mol Ther 2024; 32:84-102. [PMID: 37952087 PMCID: PMC10787142 DOI: 10.1016/j.ymthe.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
So far, the mechanisms that impede AAV transduction, especially in the human heart, are poorly understood, hampering the introduction of new, effective gene therapy strategies. Therefore, the aim of this study was to identify and overcome the main cellular barriers to successful transduction in the heart, using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs), iPSC-derived cardiac fibroblasts (iPSC-CFs), and primary endothelial cells to model vector-host interactions. Through phosphoproteome analysis we established that casein kinase 2 (CK2) signaling is one of the most significantly affected pathways upon AAV exposure. Transient inhibition of CK2 activity substantially enhanced the transduction rate of AAV2, AAV6, and AAV9 in all tested cell types. In particular, CK2 inhibition improved the trafficking of AAVs through the cytoplasm, impaired DNA damage response through destabilization of MRE11, and altered the RNA processing pathways, which were also highly responsive to AAV transduction. Also, it augmented transgene expression in already transduced iPSC-CFs, which retain AAV genomes in a functional, but probably silent form. In summary, the present study provides new insights into the current understanding of the host-AAV vector interaction, identifying CK2 activity as a key barrier to efficient transduction and transgene expression, which may translate to improving the outcome of AAV-based therapies in the future.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Schmidt
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
13
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
14
|
Stewart DJ, Gianchetti A, Byrnes D, Dittrich HC, Thorne B, Manza LL, Reinhardt RR. Safety and biodistribution of XC001 (encoberminogene rezmadenovec) gene therapy in rats: a potential therapy for cardiovascular diseases. Gene Ther 2024; 31:45-55. [PMID: 37592080 DOI: 10.1038/s41434-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Adenovirus-mediated gene therapy holds promise for the treatment of cardiovascular diseases such as refractory angina. However, potential concerns around immunogenicity and vector dissemination from the target injected tissue require evaluation. This study was undertaken to evaluate the safety and biodistribution of XC001, a replication-deficient adenovirus serotype 5 vector expressing multiple isoforms of human vascular endothelial growth factor (VEGF), following direct administration into normal rat myocardium. Animals received the buffer formulation or increasing doses of XC001 (1 × 107, 2.5 × 108 or 2.5 × 109 viral particles). Based on in-life parameters (general health, body weights, clinical pathology, serum cardiac troponin I, plasma VEGF, and gross necropsy), there were no findings of clinical concern. On Day 8, intramyocardial administration of XC001 was associated with dose-related, left ventricular myocardial inflammation at injection sites, resolving by Day 30. XC001 DNA was not detected in blood at any time but was present at Day 8 around the site of injection and to a much lesser extent in the spleen, liver, and lungs, persisting at low levels in the heart and spleen until at least Day 91. These findings demonstrate that intramyocardial injection of XC001 is supported for use in human studies.
Collapse
Affiliation(s)
- Duncan J Stewart
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute and the Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | - Linda L Manza
- Pharmaron (San Diego) Lab Services LLC, San Diego, CA, USA
| | | |
Collapse
|
15
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Rev Cardiovasc Ther 2024; 22:75-89. [PMID: 38494784 DOI: 10.1080/14779072.2024.2328642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION After understanding the genetic basis of cardiovascular disorders, the discovery of prime editing (PE), has opened new horizons for finding their cures. PE strategy is the most versatile editing tool to change cardiac genetic background for therapeutic interventions. The optimization of elements, prediction of efficiency, and discovery of the involved genes regulating the process have not been completed. The large size of the cargo and multi-elementary structure makes the in vivo heart delivery challenging. AREAS COVERED Updated from recent published studies, the fundamentals of the PEs, their application in cardiology, potentials, shortcomings, and the future perspectives for the treatment of cardiac-related genetic disorders will be discussed. EXPERT OPINION The ideal PE for the heart should be tissue-specific, regulatable, less immunogenic, high transducing, and safe. However, low efficiency, sup-optimal PE architecture, the large size of required elements, the unclear role of transcriptomics on the process, unpredictable off-target effects, and its context-dependency are subjects that need to be considered. It is also of great importance to see how beneficial or detrimental cell cycle or epigenomic modifier is to bring changes into cardiac cells. The PE delivery is challenging due to the size, multi-component properties of the editors and liver sink.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P, Adler ED. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1628-1647. [PMID: 37821174 DOI: 10.1016/j.jacc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly N Hong
- University of California-San Diego, San Diego, California, USA
| | | | - Michael Arad
- Leviev Heart Center, Sheba Hospital and Tel Aviv University, Tel Aviv, Israel
| | - Alessia Argirò
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Quan Bui
- University of California-San Diego, San Diego, California, USA
| | - Oren Caspi
- Rambam Medical Centre and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Fernando de Frutos
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Barry Greenberg
- University of California-San Diego, San Diego, California, USA
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juan Pablo Kaski
- Great Ormond Street Hospital and University College London, London, United Kingdom
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Abigail Yesso
- Division of Cardiology/Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.
| | - Eric D Adler
- University of California-San Diego, San Diego, California, USA.
| |
Collapse
|
18
|
Bi L, Wacker BK, Komandur K, Sanford N, Dichek DA. Apolipoprotein A-I vascular gene therapy reduces vein-graft atherosclerosis. Mol Ther Methods Clin Dev 2023; 30:558-572. [PMID: 37693942 PMCID: PMC10482902 DOI: 10.1016/j.omtm.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Coronary artery venous bypass grafts typically fail because of atherosclerosis driven by lipid and macrophage accumulation. Therapy for vein-graft atherosclerosis is limited to statin drugs, which are only modestly effective. We hypothesized that transduction of vein-graft endothelium of fat-fed rabbits with a helper-dependent adenovirus expressing apolipoprotein AI (HDAdApoAI) would reduce lipid and macrophage accumulation. Fat-fed rabbits received bilateral external jugular vein-to-carotid artery interposition grafts. Four weeks later, one graft per rabbit (n = 23 rabbits) was infused with HDAdApoAI and the contralateral graft with HDAdNull. Grafts were harvested 12 weeks later. Paired analyses of grafts were performed, with vein graft cholesterol, intimal lipid, and macrophage content as the primary endpoints. HDAd genomes were detected in all grafts. APOAI mRNA was median 63-fold higher in HDAdApoAI grafts versus HDAdNull grafts (p < 0.001). HDAdApoAI grafts had a mean 15% lower total cholesterol (by mass spectrometry; p = 0.003); mean 19% lower intimal lipid (by oil red O staining; p = 0.02); and mean 13% lower expression of the macrophage marker CD68 (by reverse transcriptase-mediated quantitative PCR; p = 0.008). In vivo transduction of vein-graft endothelium achieves persistent APOAI expression and reduces vein-graft cholesterol, intimal lipid, and CD68 expression. Vascular gene therapy with APOAI has promise for preventing vein-graft failure caused by atherosclerosis.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Bradley K. Wacker
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kaushik Komandur
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Nicole Sanford
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - David A. Dichek
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
19
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
21
|
Povsic TJ, Henry TD, Traverse JH, Anderson RD, Answini GA, Sun BC, Arnaoutakis GJ, Boudoulas KD, Williams AR, Dittrich HC, Tarka EA, Latter DA, Ohman EM, Peterson MW, Byrnes D, Pepine CJ, DiCarli MF, Crystal RG, Rosengart TK, Mokadam NA. EXACT Trial: Results of the Phase 1 Dose-Escalation Study. Circ Cardiovasc Interv 2023; 16:e012997. [PMID: 37503661 DOI: 10.1161/circinterventions.123.012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND New therapies are needed for patients with refractory angina. Encoberminogene rezmadenovec (XC001), a novel adenoviral-5 vector coding for all 3 major isoforms of VEGF (vascular endothelial growth factor), demonstrated enhanced local angiogenesis in preclinical models; however, the maximal tolerated dose and safety of direct epicardial administration remain unknown. METHODS In the phase 1 portion of this multicenter, open-label, single-arm, dose-escalation study, patients with refractory angina received increasing doses of encoberminogene rezmadenovec (1×109, 1×1010, 4×1010, and 1×1011 viral particles) to evaluate its safety, tolerability, and preliminary efficacy. Patients had class II to IV angina on maximally tolerated medical therapy, demonstrable ischemia on stress testing, and were angina-limited on exercise treadmill testing. Patients underwent minithoracotomy with epicardial delivery of 15 0.1-mL injections of encoberminogene rezmadenovec. The primary outcome was safety via adverse event monitoring over 6 months. Efficacy assessments included difference from baseline to months 3, 6 (primary), and 12 in total exercise duration, myocardial perfusion deficit using positron emission tomography, angina class, angina frequency, and quality of life. RESULTS From June 2, 2020 to June 25, 2021, 12 patients were enrolled into 4 dosing cohorts with 1×1011 viral particle as the highest planned dose. Seventeen serious adverse events were reported in 7 patients; none were related to study drug. Six serious adverse events in 4 patients were related to the thoracotomy, 3 non-serious adverse events were possibly related to study drug. The 2 lowest doses did not demonstrate improvements in total exercise duration, myocardial perfusion deficit, or angina frequency; however, there appeared to be improvements in all parameters with the 2 higher doses. CONCLUSIONS Epicardial delivery of encoberminogene rezmadenovec via minithoracotomy is feasible, and up to 1×1011 viral particle appears well tolerated. A dose response was observed across 4 dosing cohorts in total exercise duration, myocardial perfusion deficit, and angina class. The highest dose (1×1011 viral particle) was carried forward into phase 2. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Thomas J Povsic
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - R David Anderson
- University of Florida Heart and Vascular Center, Gainesville (R.D.A.)
| | - Geoffrey A Answini
- Division of Cardiovascular Surgery, Christ Hospital, Cincinnati, OH (G.A.A.)
| | - Benjamin C Sun
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - George J Arnaoutakis
- Department of Surgery, University of Florida Heart and Vascular Center, Gainesville (G.J.A.)
| | | | - Adam R Williams
- Department of Cardiovascular Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | | | | | - David A Latter
- Department of Cardiovascular Surgery, St Michael's Hospital, University of Toronto, Ontario, Canada (D.A.L.)
| | - E Magnus Ohman
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | | | - Dawn Byrnes
- XyloCor Therapeutics, Malvern, PA (H.C.D., D.B., M.W.P.)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Marcelo F DiCarli
- Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, MA (M.F.D.)
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York (R.G.C.)
| | - Todd K Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Nahush A Mokadam
- Division of Cardiac Surgery, The Ohio State Wexner Medical Center, Columbus (N.A.M.)
| |
Collapse
|
22
|
Wu N, Li F, Yang W, Du WW, Awan FM, Zhang C, Lyu J, Misir S, Zeng K, Eshaghi E, Yang BB. Silencing mouse circular RNA circSlc8a1 by circular antisense cA-circSlc8a1 induces cardiac hepatopathy. Mol Ther 2023; 31:1688-1704. [PMID: 36245125 PMCID: PMC10277841 DOI: 10.1016/j.ymthe.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of non-coding RNAs with a unique circular structure generated by back-splicing. It is acknowledged that circRNAs play critical roles in cardiovascular diseases. However, functional studies of circRNAs were impeded due to lack of effective in vivo silencing approaches. Since most circRNAs are produced by protein-coding transcripts, gene editing typically affects the coding activity of the parental genes. In this study, we developed a circular antisense RNA (cA-circSlc8a1) that could silence the highly expressed circRNA circSlc8a1 in the mouse heart but not its parental Slc8a1 linear mRNA. Transgenic cA-circSlc8a1 mice developed congestive heart failure resulting in a significant increase in the body weight secondary to peripheral edema and congestive hepatopathy. To further test the role of circSlc8a1, we generated transgenic mice overexpressing circSlc8a1 and observed a protective effect of circSlc8a1 in a pressure overload model. Mechanistically, we found that circSlc8a1 translocated into mitochondria to drive ATP synthesis. While establishing a transgenic murine model for antisense-mediated circRNA silencing without interfering with the parental linear RNA, our finding revealed the essential role of circSlc8a1 in maintaining heart function and may lay the groundwork of using the circular antisense RNA as a potential gene therapy approach for cardiovascular diseases.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - William W Du
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada; Department of Medical Lab Technology, the University of Haripur (UOH), Haripur, Pakistan
| | - Chao Zhang
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Juanjuan Lyu
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Sema Misir
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Kaixuan Zeng
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Esra Eshaghi
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Ladak A, Hajjar RJ, Murali S, Michalek JJ, Riviere CN. Cable Tension Optimization for an Epicardial Parallel Wire Robot. J Med Device 2023; 17:021006. [PMID: 37152412 PMCID: PMC10158971 DOI: 10.1115/1.4056866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
HeartPrinter is a novel under-constrained 3-cable parallel wire robot designed for minimally invasive epicardial interventions. The robot adheres to the beating heart using vacuum suction at its anchor points, with a central injector head that operates within the triangular workspace formed by the anchors, and is actuated by cables for multipoint direct gene therapy injections. Minimizing cable tensions can reduce forces on the heart at the anchor points while supporting rapid delivery of accurate injections and minimizing procedure time, risk of damage to the robot, and strain to the heart. However, cable tensions must be sufficient to hold the injector head's position as the heart moves and to prevent excessive cable slack. We pose a linear optimization problem to minimize the sum of cable tension magnitudes for HeartPrinter while ensuring the injector head is held in static equilibrium and the tensions are constrained within a feasible range. We use Karush-Kuhn-Tucker optimality conditions to derive conditional algebraic expressions for optimal cable tensions as a function of injector head position and workspace geometry, and we identify regions of injector head positions where particular combinations of cable tensions are optimally at minimum allowable tensions. The approach can rapidly solve for the minimum set of cable tensions for any robot workspace geometry and injector head position and determine whether an injection site is attainable.
Collapse
Affiliation(s)
- Aman Ladak
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| | | | - Srinivas Murali
- Department of Cardiovascular Medicine, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212
| | - Jeremy J. Michalek
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213; Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213; Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| | - Cameron N. Riviere
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213
| |
Collapse
|
24
|
Wiethoff I, Evers SMAA, Michels M, Hiligsmann M. An introduction to health technology assessment and health economic evaluation: an online self-learning course. Neth Heart J 2023; 31:219-225. [PMID: 37171709 DOI: 10.1007/s12471-023-01777-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases impose an enormous burden on patients and society. New health technologies promise to lower this burden; however, novel treatments often come at a high cost. In the Netherlands, health technology assessment (HTA) is increasingly being used to inform policy bodies about the optimal distribution of scarce healthcare resources and to guide decision-making about financing and reimbursement. In particular, economic evaluations, as one pillar of HTA, are frequently used to compare the costs and effects of different interventions. This paper aims to define HTA and its relevance to healthcare policy as well as providing a comprehensive overview of the methodology of economic evaluations targeting health professionals and researchers with limited prior knowledge of this subject. Accordingly, different types of economic evaluations are introduced, together with their respective costs and outcomes. Further, the results of economic evaluations are explained, along with techniques for performing them and methods for coping with uncertainty. In addition to this paper-based learning format, each chapter is complemented by a video lecture with further information and practical examples, helping to better understand and analyse health economic studies.
Collapse
Affiliation(s)
- Isabell Wiethoff
- Department of Health Services Research, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.
| | - Silvia M A A Evers
- Department of Health Services Research, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Centre for Economic Evaluation and Machine Learning, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Mickaël Hiligsmann
- Department of Health Services Research, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Li D, Wang C. Advances in symptomatic therapy for left ventricular non-compaction in children. Front Pediatr 2023; 11:1147362. [PMID: 37215603 PMCID: PMC10192632 DOI: 10.3389/fped.2023.1147362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Left ventricular non-compaction is a complex cardiomyopathy and the third largest childhood cardiomyopathy, for which limited knowledge is available. Both pathogenesis and prognosis are still under investigation. Currently, no effective treatment strategy exists to reduce its incidence or severity, and symptomatic treatment is the only clinical treatment strategy. Treatment strategies are constantly explored in clinical practice, and some progress has been made in coping with the corresponding symptoms because the prognosis of children with left ventricular non-compaction is usually poor if there are complications. In this review, we summarized and discussed the coping methods for different left ventricular non-compaction symptoms.
Collapse
Affiliation(s)
| | - Ce Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis 2023; 14:398-417. [PMID: 37008065 PMCID: PMC10017145 DOI: 10.14336/ad.2022.00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid advancements have taken place in gene therapy technology. However, effective methods for treating aging- or age-related chronic diseases, which are often closely related to genes or even multiple genes, are still lacking. The path to developing cures is winding, while gene therapy that targets genes related to aging represents an exciting research direction with tremendous potential. Among aging-related genes, some candidates have been studied at different levels, from cell to organismal levels (e.g., mammalian models) with different methods, from overexpression to gene editing. The TERT and APOE have even entered the stage of clinical trials. Even those displaying only a preliminary association with diseases have potential applications. This article discusses the foundations and recent breakthroughs in the field of gene therapy, providing a summary of current mainstream strategies and gene therapy products with clinical and preclinical applications. Finally, we review representative target genes and their potential for treating aging or age-related diseases.
Collapse
Affiliation(s)
| | | | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| |
Collapse
|
27
|
Li B, Feng Q, Yu C, Yang J, Qin X, Li X, Cao J, Xu X, Yang C, Jin Y. Predictive value of serum HIF-1α and VEGF for arrhythmia in acute coronary syndrome patients. Exp Biol Med (Maywood) 2023; 248:685-690. [PMID: 37350444 PMCID: PMC10291207 DOI: 10.1177/15353702231171902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 06/24/2023] Open
Abstract
Percutaneous coronary intervention (PCI) has been widely used in the alleviation of myocardial ischemia in patients with acute coronary syndrome (ACS). However, the incidence of reperfusion arrhythmia (RA) after PCI is high, which seriously affects the prognosis of ACS patients. Therefore, this study aimed to study the predictive value of serum HIF-1α and VEGF levels before PCI for RA in ACS patients post PCI. A total of 200 ACS patients who underwent PCI were selected and divided into those with RA after PCI (RA, n = 93) and those without RA after PCI (non-RA, n = 107) according to Lown grade. Spearman correlation analysis was applied for the relationship between serum hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) levels and Lown grade. Patients with RA after PCI tended to have higher levels of creatine kinase muscle and brain isoenzyme (CK-MB), serum HIF-1α and VEGF before surgery. Low left ventricular ejection fraction (LVEF), high CK-MB, high serum VEGF and HIF-1α were risk factors for RA in ACS patients within 24 h after PCI. Receiver operating characteristic (ROC) analysis revealed that serum HIF-1α and VEGF levels could predict RA in ACS patients after PCI, and the combined detection could increase the sensitivity of single HIF-1α detection and the specificity of single VEGF detection. Lown grade was positively correlated with the serum HIF-1α and VEGF concentrations. In conclusion, serum HIF-1α and VEGF levels before PCI are risk factors for the occurrence of RA in ACS patients after PCI, and have certain predictive values for the occurrence of RA in ACS patients after PCI.
Collapse
Affiliation(s)
- Bin Li
- Wuxi No.2 People’s Hospital, The Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Qiuting Feng
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Cheng Yu
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Jun Yang
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xian Qin
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xing Li
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Jianing Cao
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xin Xu
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Chenjian Yang
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Yan Jin
- Wuxi No.2 People’s Hospital, The Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Department of Cardiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| |
Collapse
|
28
|
Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Mol Diagn Ther 2023; 27:129-140. [PMID: 36512179 PMCID: PMC10123801 DOI: 10.1007/s40291-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Heart disease is the primary cause of death worldwide. Even though extensive research has been done, and many pharmacological and surgical treatments have been introduced to treat heart disease, the mortality rate still remains high. Gene therapy is widely used to understand molecular mechanisms of myocardial infarction and to treat cardiomyocyte loss. It was reported that adult cardiomyocytes proliferate at a very low rate; thus, targeting their proliferation has become a new regenerative therapeutic approach. Currently, re-activating cardiomyocyte proliferation appears to be one of the most promising methods to promote adult cardiomyocyte renewal. In this article, we highlight gene therapeutic targets of cell proliferation presently being pursued to re-activate the cell cycle of cardiomyocytes, including cell cycle regulators, transcription factors, microRNAs, signal transduction, and other contributing factors. We also summarize gene delivery vectors that have been used in cardiac research and major challenges to be overcome in the translation to the clinical approach and future directions.
Collapse
|
29
|
Shen WJ, Tian DM, Fu L, Jin B, Liu Y, Xu YS, Ye YB, Wang XB, Xu XJ, Tang C, Li FP, Wang CF, Wu G, Yan LP. Elastin-Derived VGVAPG Fragment Decorated Cell-Penetrating Peptide with Improved Gene Delivery Efficacy. Pharmaceutics 2023; 15:670. [PMID: 36839992 PMCID: PMC9961289 DOI: 10.3390/pharmaceutics15020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are attractive non-viral gene delivery vectors due to their high transfection capacity and safety. Previously, we have shown that cell-penetrating peptide RALA can be a promising gene delivery vector for chronic wound regeneration application. In this study, we engineered a novel peptide called RALA-E by introducing elastin-derived VGVAPG fragment into RALA, in order to target the elastin-binding protein on the cell surface and thus improve delivery efficacy of RALA. The transfection efficiency of RALA-E was evaluated by transfecting the HEK-293T and HeLa cell lines cells with RALA-E/pDNA complexes and the flow-cytometry results showed that RALA-E significantly increased the transfection efficiency by nearly 20% in both cell lines compared to RALA. Inhibition of pDNA transfection on HEK-293T cells via chlorpromazine, genistein and mβCD showed that the inhibition extent in transfection efficiency was much less for RALA-E group compared to RALA group. In addition, RALA-E/miR-146a complexes showed up to 90% uptake efficiency in macrophages, and can escape from the endosome and enter the nucleus to inhibit the expression of inflammation genes. Therefore, the developed RALA-E peptide has high potential as a safe and efficient vector for gene therapy application.
Collapse
Affiliation(s)
- Wen-Juan Shen
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Duo-Mei Tian
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Le Fu
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Biao Jin
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Sheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yong-Bin Ye
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-sen University, Zhongshan 528403, China
| | - Xiao-Bo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao-Jun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fang-Ping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun-Fei Wang
- Endoscopy Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
31
|
Pajula J, Lähteenvuo J, Lähteenvuo M, Honkonen K, Halonen P, Hätinen OP, Kuivanen A, Heikkilä M, Nurro J, Hartikainen J, Ylä-Herttuala S. Adenoviral VEGF-D ΔN ΔC gene therapy for myocardial ischemia. Front Bioeng Biotechnol 2022; 10:999226. [PMID: 36619378 PMCID: PMC9817830 DOI: 10.3389/fbioe.2022.999226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death globally. In spite of the availability of improved treatments, there is still a large group of chronic ischemia patients who suffer from significant symptoms and disability. Thus, there is a clear need to develop new treatment strategies for these patients. Therapeutic angiogenesis is a novel therapy method which has shown promising results in preclinical studies. In this study, we evaluated safety and efficacy of adenoviral (Ad) VEGF-DΔNΔC gene transfer for the treatment of myocardial ischemia in a pig model. Methods: Adenoviral VEGF-DΔNΔC gene transfer was given to pigs (n = 26) via intramyocardial injections using an electromechanical injection catheter. Angiogenic effects were evaluated in an acute myocardial infarction model (n = 18) and functionality of the lymphatic vessels were tested in healthy porcine myocardium (n = 8). AdLacZ was used as a control. Results: AdVEGF-DΔNΔC induced safe and effective myocardial angiogenesis by inducing a four-fold increase in mean capillary area at the edge of the myocardial infarct six days after the gene transfer relative to the control AdLacZ group. The effect was sustained over 21 days after the gene transfer, and there were no signs of vessels regression. AdVEGF-DΔNΔC also increased perfusion 3.4-fold near the infarct border zone relative to the control as measured by fluorescent microspheres. Ejection fraction was 8.7% higher in the AdVEGF-DΔNΔC treated group 21 days after the gene transfer relative to the AdLacZ control group. Modified Miles assay detected a transient increase in plasma protein extravasation after the AdVEGF-DΔNΔC treatment and a mild accumulation of pericardial effusate was observed at d6. However, AdVEGF-DΔNΔC also induced the growth of functional lymphatic vasculature, and the amount of pericardial fluid and level of vascular permeability had returned to normal by d21. Conclusion: Endovascular intramyocardial AdVEGF-DΔNΔC gene therapy proved to be safe and effective in the acute porcine myocardial infarction model and provides a new potential treatment option for patients with severe coronary heart disease.
Collapse
Affiliation(s)
- Juho Pajula
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Markku Lähteenvuo
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Krista Honkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Paavo Halonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Antti Kuivanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jussi Nurro
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Hartikainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland,*Correspondence: Seppo Ylä-Herttuala,
| |
Collapse
|
32
|
Katz MG, Hadas Y, Bailey RA, Fazal S, Vincek A, Madjarova SJ, Shtraizent N, Vandenberghe LH, Eliyahu E. Efficient cardiac gene transfer and early-onset expression of a synthetic adeno-associated viral vector, Anc80L65, after intramyocardial administration. J Thorac Cardiovasc Surg 2022; 164:e429-e443. [PMID: 34985414 PMCID: PMC8733395 DOI: 10.1016/j.jtcvs.2021.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Gene therapy is a promising approach in the treatment of cardiovascular diseases. Preclinical and clinical studies have demonstrated that adeno-associated viral vectors are the most attractive vehicles for gene transfer. However, preexisting immunity, delayed gene expression, and postinfection immune response limit the success of this technology. The aim of this study was to investigate the efficacy of the first synthetic adeno-associated viral lineage clone, Anc80L65, for cardiac gene therapy. METHODS By combining 2 different reporter approaches by fluorescence with green fluorescent protein and bioluminescence (Firefly luciferase), we compared transduction efficiency of Anc80L65 and adeno-associated virus, serotype 9 in neonatal rat cardiomyocytes ex vivo and rat hearts in vivo after intramyocardial and intracoronary administration. RESULTS In cardiomyocytes, Anc80L65 provided a green fluorescent protein expression of 28.9% (36.4 ± 3.34 cells/field) at 24 hours and approximately 100% on day 7. In contrast, adeno-associated virus, serotype 9 green fluorescent protein provided minimal green fluorescent protein expression of 5.64% at 24 hours and 11.8% on day 7. After intramyocardial injection, vector expression peaked on day 7 with Anc80L65; however, with adeno-associated virus, serotype 9 the peak expression was during week 6. Administration of Anc80L65 demonstrated significantly more efficient expression of reporter gene than after adeno-associated virus, serotype 9 at 6 weeks (6.81 ± 0.64 log10 gc/100 ng DNA vs 6.49 ± 0.28 log10 gc/100 ng DNA, P < .05). These results were consistent with the amount of genome copy per cell observed in the heart. CONCLUSIONS Anc80L65 vector allows fast and robust gene transduction compared with adeno-associated virus, serotype 9 vector in cardiac gene therapy. Anc80L65 did not adversely affect cardiac function and caused no inflammatory response or toxicity.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rasheed A Bailey
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shahood Fazal
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Luk H Vandenberghe
- Grousbeck Center of Gene Therapy, Ocular Genomics Institute, Mass Eye and Ear, Boston, Mass; Department of Ophthalmology, Harvard Medical School, Boston, Mass; The Broad Institute of Harvard and MIT, Cambridge, Mass
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
33
|
Mei R, Wan Z, Li Z, Wei M, Qin W, Yuan L, Liu L, Yang G. "All-in-One" Exosome Engineering Strategy for Effective Therapy of Familial Hypercholesterolemia. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50626-50636. [PMID: 36342824 DOI: 10.1021/acsami.2c15785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exosomes serve as a promising therapeutic nanoplatform. However, the exosomes produced by donor cells are a heterogeneous group, with only a small portion having high therapeutic efficacy. Specific isolation of the subpopulation with high efficacy is important for lowering the dose and minimizing toxicity. In this study, we loaded target mRNA and displayed specific Flag in engineered exosomes simultaneously. Briefly, the donor cells were transfected with plasmid expressing a fusion protein Flag-TCS-PTGFRN-CTSL-MCP, namely, exosome sorter. During biogenesis, the RNA-binding motif MCP can specifically bind with MS2-containing RNA and sort the target RNA into the lumen of exosomes. Anti-Flag magnetic beads can capture and thus purify the engineered exosomes via recognition of the Flag on the surface of exosomes. After purification, the Flag could be cleaved by thrombin treatment while MCP can be separated from the fusion protein by CTSL autocleavage upon exosome acidification, minimizing the side effects and augmenting the therapeutic effects. By the proof-of-concept experiment, the exosome sorter-based "all-in-one" strategy was confirmed effective in both the encapsulation of therapeutic mRNA (Ldlr-MS2) into exosomes and the subsequent purification. The purified Ldlr-MS2-containing exosomes had much higher efficacy in alleviating atherosclerosis, in comparison with the bulk exosomes, confirming the advantage of the proposed "all-in-one" strategy.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
- Shaanxi Department of National Clinical Research Center for Hematological Diseases, Xi'an 710032, China
- Clinical Medical Research Center for Hematological Diseases of Shaanxi Province, Xi'an 710032, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
- Shaanxi Department of National Clinical Research Center for Hematological Diseases, Xi'an 710032, China
- Clinical Medical Research Center for Hematological Diseases of Shaanxi Province, Xi'an 710032, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Weiwei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
- Shaanxi Department of National Clinical Research Center for Hematological Diseases, Xi'an 710032, China
- Clinical Medical Research Center for Hematological Diseases of Shaanxi Province, Xi'an 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
- Shaanxi Department of National Clinical Research Center for Hematological Diseases, Xi'an 710032, China
- Clinical Medical Research Center for Hematological Diseases of Shaanxi Province, Xi'an 710032, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
34
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology 2022; 20:393. [PMID: 36045375 PMCID: PMC9428876 DOI: 10.1186/s12951-022-01595-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.
Collapse
|
36
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Mallick R, Gurzeler E, Toivanen PI, Nieminen T, Ylä-Herttuala S. Novel Designed Proteolytically Resistant VEGF-B186R127S Promotes Angiogenesis in Mouse Heart by Recruiting Endothelial Progenitor Cells. Front Bioeng Biotechnol 2022; 10:907538. [PMID: 35992336 PMCID: PMC9385986 DOI: 10.3389/fbioe.2022.907538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Previous studies have indicated that vascular endothelial growth factor B186 (VEGF-B186) supports coronary vascular growth in normal and ischemic myocardium. However, previous studies also indicated that induction of ventricular arrhythmias is a severe side effect preventing the use of VEGF-B186 in cardiac gene therapy, possibly mediated by binding to neuropilin 1 (NRP1). We have designed a novel VEGF-B186 variant, VEGF-B186R127S, which is resistant to proteolytic processing and unable to bind to NRP1. Here, we studied its effects on mouse heart to explore the mechanism of VEGF-B186-induced vascular growth along with its effects on cardiac performance. Methods: Following the characterization of VEGF-B186R127S, we performed ultrasound-guided adenoviral VEGF-B186R127S gene transfers into the murine heart. Vascular growth and heart functions were analyzed using immunohistochemistry, RT-PCR, electrocardiogram and ultrasound examinations. Endothelial progenitor cells (EPCs) were isolated from the circulating blood and characterized. Also, in vitro experiments were carried out in cardiac endothelial cells with adenoviral vectors. Results: The proteolytically resistant VEGF-B186R127S significantly induced vascular growth in mouse heart. Interestingly, VEGF-B186R127S gene transfer increased the number of circulating EPCs that secreted VEGF-A. Other proangiogenic factors were also present in plasma and heart tissue after the VEGF-B186R127S gene transfer. Importantly, VEGF-B186R127S gene transfer did not cause any side effects, such as arrhythmias. Conclusion: VEGF-B186R127S induces vascular growth in mouse heart by recruiting EPCs. VEGF-B186R127S is a novel therapeutic agent for cardiac therapeutic angiogenesis to rescue myocardial tissue after an ischemic insult.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry I. Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- *Correspondence: Seppo Ylä-Herttuala,
| |
Collapse
|
38
|
An FGFR1-Binding Peptide Modified Liposome for siRNA Delivery in Lung Cancer. Int J Mol Sci 2022; 23:ijms23158380. [PMID: 35955516 PMCID: PMC9369135 DOI: 10.3390/ijms23158380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Liposome modification by targeting ligands has been used to mediate specific interactions and drug delivery to target cells. In this study, a new peptide ligand, CP7, was found to be able to effectively bind to FGFR1 through reverse molecular docking and could cooperate with VEGFR3 to achieve targeting of A549 cells. CP7 was modified on the surface of the liposome to construct a targeted and safe nanovehicle for the delivery of a therapeutic gene, Mcl-1 siRNA. Due to the specific binding between CP7 and A549 cells, siRNA-loaded liposome-PEG-CP7 showed increased cellular uptake in vitro, resulting in significant apoptosis of tumor cells through silencing of the Mcl-1 gene, which is associated with apoptosis and angiogenesis. This gene delivery system also showed significantly better antitumor activity in tumor-bearing mice in vivo. All of these suggested that siRNA-loaded liposome-PEG-CP7 could be a promising gene drug delivery system with good bioavailability and minimal side effects for treatment.
Collapse
|
39
|
Scalzo S, Santos AK, Ferreira HAS, Costa PA, Prazeres PHDM, da Silva NJA, Guimarães LC, E Silva MDM, Rodrigues Alves MTR, Viana CTR, Jesus ICG, Rodrigues AP, Birbrair A, Lobo AO, Frezard F, Mitchell MJ, Guatimosim S, Guimaraes PPG. Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes. Int J Nanomedicine 2022; 17:2865-2881. [PMID: 35795081 PMCID: PMC9252585 DOI: 10.2147/ijn.s366962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Gene therapy is a promising approach to be applied in cardiac regeneration after myocardial infarction and gene correction for inherited cardiomyopathies. However, cardiomyocytes are crucial cell types that are considered hard-to-transfect. The entrapment of nucleic acids in non-viral vectors, such as lipid nanoparticles (LNPs), is an attractive approach for safe and effective delivery. Methods Here, a mini-library of engineered LNPs was developed for pDNA delivery in cardiomyocytes. LNPs were characterized and screened for pDNA delivery in cardiomyocytes and identified a lead LNP formulation with enhanced transfection efficiency. Results By varying lipid molar ratios, the LNP formulation was optimized to deliver pDNA in cardiomyocytes with enhanced gene expression in vitro and in vivo, with negligible toxicity. In vitro, our lead LNP was able to reach a gene expression greater than 80%. The in vivo treatment with lead LNPs induced a twofold increase in GFP expression in heart tissue compared to control. In addition, levels of circulating myeloid cells and inflammatory cytokines remained without significant changes in the heart after LNP treatment. It was also demonstrated that cardiac cell function was not affected after LNP treatment. Conclusion Collectively, our results highlight the potential of LNPs as an efficient delivery vector for pDNA to cardiomyocytes. This study suggests that LNPs hold promise to improve gene therapy for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sérgio Scalzo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson K Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heloísa A S Ferreira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A Costa
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália J A da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lays C Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mário de Morais E Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco T R Rodrigues Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso T R Viana
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Itamar C G Jesus
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alice P Rodrigues
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson O Lobo
- Department of Materials Engineering, Federal University of Piauí, Teresina, PI, Brazil
| | - Frederic Frezard
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
40
|
Wu Y, Lin X, Hong H, Fung YL, Cao X, Tse JKY, Li TH, Chan TF, Tian XY. Endothelium-targeted delivery of PPARδ by adeno-associated virus serotype 1 ameliorates vascular injury induced by hindlimb ischemia in obese mice. Biomed Pharmacother 2022; 151:113172. [PMID: 35644115 DOI: 10.1016/j.biopha.2022.113172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic vasculopathy is a major health problem worldwide. Peripheral arterial disease (PAD), and in its severe form, critical limb ischemia is a major form of diabetic vasculopathy with limited treatment options. Existing literature suggested an important role of PPARδ in vascular homeostasis. It remains elusive for using PPARδ as a potential therapeutic target due to mostly the side effects of PPARδ agonists. To explore the roles of PPARδ in endothelial homeostasis, endothelial cell (EC) selective Ppard knockout and controlled mice were subjected to hindlimb ischemia (HLI) injury. The muscle ECs were sorted for single-cell RNA sequencing (scRNA-seq) analysis. HLI was also performed in high fat diet (HFD)-induced obese mice to examine the function of PPARδ in obese mice with delayed vascular repair. Adeno-associated virus type 1 (AAV1) carrying ICAM2 promoter to target endothelium for overexpressing PPARδ was injected into the injured muscles of normal chow- and HFD-fed obese mice before HLI surgery was performed. scRNA-seq analysis of ECs in ischemic muscles revealed a pivotal role of PPARδ in endothelial homeostasis. PPARδ expression was diminished both after HLI injury, and also in obese mice, which showed further delayed vascular repair. Endothelium-targeted delivery of PPARδ by AAV1 improved perfusion recovery, increased capillary density, restored endothelial integrity, suppressed vascular inflammation, and promoted muscle regeneration in ischemic hindlimbs of both lean and obese mice. Our study indicated the effectiveness of endothelium-targeted PPARδ overexpression for restoring functional vasculature after ischemic injury, which might be a promising option of gene therapy to treat PAD and CLI.
Collapse
Affiliation(s)
- Yalan Wu
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Lin
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huiling Hong
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yee Lok Fung
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyun Cao
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Joyce Ka Yu Tse
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Ho Li
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China; School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, Hong Kong, China; Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
41
|
Li L, Xu N, Liu J, Chen Z, Liu X, Wang J. m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Front Genet 2022; 13:908976. [PMID: 35836571 PMCID: PMC9274458 DOI: 10.3389/fgene.2022.908976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Srivastava D. Cellular cross-talk in heart repair. Science 2022; 376:1271-1272. [PMID: 35709257 DOI: 10.1126/science.adc8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cytokine meteorin-like (METRNL) improves cardiac function after heart attack in mice.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA.,Roddenberry Stem Cell Center at Gladstone, San Francisco, CA, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Stendahl JC, Liu Z, Boutagy NE, Nataneli E, Daghighian F, Sinusas AJ. Prototype device for endoventricular beta-emitting radiotracer detection and molecularly-guided intervention. J Nucl Cardiol 2022; 29:663-676. [PMID: 32820423 PMCID: PMC7895860 DOI: 10.1007/s12350-020-02317-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have set out to develop a catheter-based theranostic system that: (a) identifies diseased and at-risk myocardium via endocardial detection of systemically delivered β-emitting radiotracers and (b) utilizes molecular signals to guide delivery of therapeutics to appropriate tissue via direct intramyocardial injection. METHODS Our prototype device consists of a miniature β-radiation detector contained within the tip of a flexible intravascular catheter. The catheter can be adapted to incorporate an injection port and retractable needle for therapeutic delivery. The performance of the β-detection catheter was assessed in vitro with various β-emitting radionuclides and ex vivo in hearts of pigs following systemic injection of 18F-fluorodeoxyglucose (18F-FDG) at 1-week post-myocardial infarction. Regional catheter-based endocardial measurements of 18F activity were compared to regional tissue activity from PET/CT images and gamma counting. RESULTS The β-detection catheter demonstrated sensitive in vitro detection of β-radiation from 22Na (β+), 18F (β+), and 204Tl (β-), with minimal sensitivity to γ-radiation. For 18F, the catheter demonstrated a sensitivity of 4067 counts/s/μCi in contact and a spatial resolution of 1.1 mm FWHM. Ex vivo measurements of endocardial 18F activity with the β-detection catheter in the chronic pig infarct model demonstrated good qualitative and quantitative correlation with regional tissue activity from PET/CT images and gamma counting. CONCLUSION The prototype β-detection catheter demonstrates sensitive and selective detection of β- and β+ emissions over a wide range of energies and enables high-fidelity ex vivo characterization of endocardial activity from systemically delivered 18F-FDG.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhao Liu
- Department of Biomedical Engineering, Yale University, School of Engineering and Applied Science, New Haven, CT, 06520, USA
| | - Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Eliahoo Nataneli
- IntraMedical Imaging, LLC, 12569 Crenshaw Blvd, Hawthorne, CA, 90250, USA
| | - Farhad Daghighian
- IntraMedical Imaging, LLC, 12569 Crenshaw Blvd, Hawthorne, CA, 90250, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520-8017, USA.
- Department of Biomedical Engineering, Yale University, School of Engineering and Applied Science, New Haven, CT, 06520, USA.
| |
Collapse
|
45
|
le Noble F, Kupatt C. Interdependence of Angiogenesis and Arteriogenesis in Development and Disease. Int J Mol Sci 2022; 23:ijms23073879. [PMID: 35409246 PMCID: PMC8999596 DOI: 10.3390/ijms23073879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
The structure of arterial networks is optimized to allow efficient flow delivery to metabolically active tissues. Optimization of flow delivery is a continuous process involving synchronization of the structure and function of the microcirculation with the upstream arterial network. Risk factors for ischemic cardiovascular diseases, such as diabetes mellitus and hyperlipidemia, adversely affect endothelial function, induce capillary regression, and disrupt the micro- to macrocirculation cross-talk. We provide evidence showing that this loss of synchronization reduces arterial collateral network recruitment upon arterial stenosis, and the long-term clinical outcome of current revascularization strategies in these patient cohorts. We describe mechanisms and signals contributing to synchronized growth of micro- and macrocirculation in development and upon ischemic challenges in the adult organism and identify potential therapeutic targets. We conclude that a long-term successful revascularization strategy should aim at both removing obstructions in the proximal part of the arterial tree and restoring “bottom-up” vascular communication.
Collapse
Affiliation(s)
- Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131 Karlsruhe, Germany
- Institute for Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Experimental Cardiology, Heidelberg Germany and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69117 Heidelberg, Germany
- Correspondence: (F.l.N.); (C.K.)
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, 80802 Munich, Germany
- Correspondence: (F.l.N.); (C.K.)
| |
Collapse
|
46
|
Katz MG, Hadas Y, Vincek AS, Shtraizent N, Schadt E, Eliyahu E. Cardiac Targeted Adeno-Associated Virus Injection in Rats. Methods Mol Biol 2022; 2573:135-145. [PMID: 36040591 DOI: 10.1007/978-1-0716-2707-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gene therapy is a promising approach in the treatment of cardiovascular diseases. The vectors available for cardiovascular gene therapy have significantly improved over time. Cardiac tropism is a primary characteristic of an ideal vector along with a long-term expression profile and a minimal risk of cellular immune response. Preclinical and clinical studies have demonstrated that adeno-associated viral (AAV) vectors are one of the most attractive vehicles for gene transfer. AAV has gained great popularity in the last years because of its biological properties and advantages over other viral vector systems. In this chapter we will describe methods for intracardiac delivery of AAV vector in rats.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cardiovascular Surgery and Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam S Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Godet AC, Roussel E, David F, Hantelys F, Morfoisse F, Alves J, Pujol F, Ader I, Bertrand E, Burlet-Schiltz O, Froment C, Henras AK, Vitali P, Lacazette E, Tatin F, Garmy-Susini B, Prats AC. Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia. eLife 2022; 11:69162. [PMID: 36546462 PMCID: PMC9799981 DOI: 10.7554/elife.69162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.
Collapse
Affiliation(s)
| | - Emilie Roussel
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | - Florian David
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | | | - Joffrey Alves
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | - Isabelle Ader
- UMR 1301-RESTORE, Inserm, CNRS 5070, Etablissement Français du Sang-Occitanie (EFS), National Veterinary School of Toulouse (ENVT), Université de ToulouseToulouseFrance
| | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRSToulouseFrance
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRSToulouseFrance
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de ToulouseToulouseFrance
| | - Patrice Vitali
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de ToulouseToulouseFrance
| | - Eric Lacazette
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | - Florence Tatin
- UMR 1297-I2MC, Inserm, Université de ToulouseToulouseFrance
| | | | | |
Collapse
|
48
|
Eriksson RAE, Nieminen T, Galibert L, Peltola SK, Tikkanen P, Käyhty P, Lesch HP, Ylä-Herttuala S, Airenne KJ. Optimized riboswitch-regulated AAV vector for VEGF-B gene therapy. Front Med (Lausanne) 2022; 9:1052318. [PMID: 36582287 PMCID: PMC9792491 DOI: 10.3389/fmed.2022.1052318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Gene therapy would greatly benefit from a method to regulate therapeutic gene expression temporally. Riboswitches are small RNA elements that have been studied for their potential use in turning transgene expression on or off by ligand binding. We compared several tetracycline and toyocamycin-inducible ON-riboswitches for a drug responsive transgene expression. The tetracycline-dependent K19 riboswitch showed the best control and we successfully applied it to different transgenes. The induction of gene expression was 6- to 10-fold, dose-dependent, reversible, and occurred within hours after the addition of a clinically relevant tetracycline dose, using either plasmid or adeno-associated virus (AAV) vectors. To enhance the switching capacity, we further optimized the gene cassette to control the expression of a potential therapeutic gene for cardiovascular diseases, VEGF-B. Using two or three riboswitches simultaneously reduced leakiness and improved the dynamic range, and a linker sequence between the riboswitches improved their functionality. The riboswitch function was promoter-independent, but a post-transcriptional WPRE element in the expression cassette reduced its functionality. The optimized construct was a dual riboswitch at the 3' end of the transgene with a 100 bp linker sequence. Our study reveals significant differences in the function of riboswitches and provides important aspects on optimizing expression cassette designs. The findings will benefit further research and development of riboswitches.
Collapse
Affiliation(s)
- Reetta A E Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | | | | | - Petra Tikkanen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Piia Käyhty
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Kari J Airenne
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| |
Collapse
|
49
|
Nyns ECA, Jin T, Bart CI, Bax WH, Zhang G, Poelma RH, de Vries AAF, Pijnappels DA. Ultrasound-Guided Optogenetic Gene Delivery for Shock-Free Ventricular Rhythm Restoration. Circ Arrhythm Electrophysiol 2021; 15:e009886. [PMID: 34937394 DOI: 10.1161/circep.121.009886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), the Netherlands (E.C.A.N., C.I.B., W.H.B., A.A.F.d.V., D.A.P.)
| | - Tianyi Jin
- Department of Microelectronics, Delft University of Technology, the Netherlands (T.J., G.Z., R.H.P.)
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), the Netherlands (E.C.A.N., C.I.B., W.H.B., A.A.F.d.V., D.A.P.)
| | - Wilhelmina H Bax
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), the Netherlands (E.C.A.N., C.I.B., W.H.B., A.A.F.d.V., D.A.P.)
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, the Netherlands (T.J., G.Z., R.H.P.)
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, the Netherlands (T.J., G.Z., R.H.P.)
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), the Netherlands (E.C.A.N., C.I.B., W.H.B., A.A.F.d.V., D.A.P.)
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), the Netherlands (E.C.A.N., C.I.B., W.H.B., A.A.F.d.V., D.A.P.)
| |
Collapse
|
50
|
Korpela H, Hätinen OP, Nieminen T, Mallick R, Toivanen P, Airaksinen J, Valli K, Hakulinen M, Poutiainen P, Nurro J, Ylä-Herttuala S. Adenoviral VEGF-B186R127S gene transfer induces angiogenesis and improves perfusion in ischemic heart. iScience 2021; 24:103533. [PMID: 34917905 PMCID: PMC8666349 DOI: 10.1016/j.isci.2021.103533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias. AdVEGF-B186R127S induces angiogenesis and improves perfusion in the ischemic heart No significant side effects were observed after AdVEGF-B186R127S therapy VEGF-B186 is angiogenic only prior to its proteolytic processing C-terminal fragment of VEGF-B186 is associated with ventricular arrhythmias
Collapse
Affiliation(s)
- Henna Korpela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Airaksinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Valli
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|