1
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Do H, Meena NK, Raben N. Failure of Autophagy in Pompe Disease. Biomolecules 2024; 14:573. [PMID: 38785980 PMCID: PMC11118179 DOI: 10.3390/biom14050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Nina Raben
- M6P Therapeutics, 20 S. Sarah Street, St. Louis, MO 63108, USA; (H.D.); (N.K.M.)
| |
Collapse
|
3
|
Zhang N, Liu F, Zhao Y, Sun X, Wen B, Lu JQ, Yan C, Li D. Defect in degradation of glycogenin-exposed residual glycogen in lysosomes is the fundamental pathomechanism of Pompe disease. J Pathol 2024; 263:8-21. [PMID: 38332735 DOI: 10.1002/path.6255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Na Zhang
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiaohan Sun
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Bing Wen
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Division of Neuropathology, McMaster University, Hamilton, Ontario, Canada
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
- Qingdao Key Laboratory of Rare Diseases, Qilu Hospital (Qingdao) of Shandong University, Qingdao, PR China
| | - Duoling Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, PR China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
4
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
6
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Sánchez-Porras V, Guevara-Morales JM, Echeverri-Peña OY. From Acid Alpha-Glucosidase Deficiency to Autophagy: Understanding the Bases of POMPE Disease. Int J Mol Sci 2023; 24:12481. [PMID: 37569856 PMCID: PMC10419125 DOI: 10.3390/ijms241512481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Pompe disease (PD) is caused by mutations in the GAA gene, which encodes the lysosomal enzyme acid alpha-glucosidase, causing lysosomal glycogen accumulation, mainly in muscular tissue. Autophagic buildup is considered the main factor affecting skeletal muscle, although other processes are also involved. Uncovering how these mechanisms are interconnected could be an approximation to address long-lasting concerns, like the differential skeletal and cardiac involvement in each clinical phenotype. In this sense, a network reconstruction based on a comprehensive literature review of evidence found in PD enriched with the STRING database and other scientific articles is presented. The role of autophagic lysosome reformation, PGC-1α, MCOLN1, calcineurin, and Keap1 as intermediates between the events involved in the pathologic cascade is discussed and contextualized within their relationship with mTORC1/AMPK. The intermediates and mechanisms found open the possibility of new hypotheses and questions that can be addressed in future experimental studies of PD.
Collapse
Affiliation(s)
| | - Johana Maria Guevara-Morales
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Ed. 54, Lab 303A, Bogotá 110231, Colombia;
| | - Olga Yaneth Echeverri-Peña
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Ed. 54, Lab 303A, Bogotá 110231, Colombia;
| |
Collapse
|
8
|
Rohm M, Volke L, Schlaffke L, Rehmann R, Südkamp N, Roos A, Schänzer A, Hentschel A, Vorgerd M. Dysregulation of Metabolism and Proteostasis in Skeletal Muscle of a Presymptomatic Pompe Mouse Model. Cells 2023; 12:1602. [PMID: 37371072 DOI: 10.3390/cells12121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pompe disease is a rare genetic metabolic disorder caused by mutations in acid-alpha glucoside (GAA) leading to pathological lysosomal glycogen accumulation associated with skeletal muscle weakness, respiratory difficulties and cardiomyopathy, dependent from the GAA residual enzyme activity. This study aimed to investigate early proteomic changes in a mouse model of Pompe disease and identify potential therapeutic pathways using proteomic analysis of skeletal muscles from pre-symptomatic Pompe mice. For this purpose, quadriceps samples of Gaa6neo/6neo mutant (Pompe) and wildtype mice, at the age of six weeks, were studied with three biological replicates for each group. The data were validated with skeletal muscle morphology, immunofluorescence studies and western blot analysis. Proteomic profiling identified 538 significantly upregulated and 16 significantly downregulated proteins in quadriceps muscles derived from Pompe animals compared to wildtype mice. The majority of significantly upregulated proteins were involved in metabolism, translation, folding, degrading and vesicular transport, with some having crucial roles in the etiopathology of other neurological or neuromuscular diseases. This study highlights the importance of the early diagnosis and treatment of Pompe disease and suggests potential add-on therapeutic strategies targeting protein dysregulations.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Leon Volke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, 45147 Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, 35390 Giessen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
9
|
The role of autophagic cell death in cardiac disease. J Mol Cell Cardiol 2022; 173:16-24. [PMID: 36084743 DOI: 10.1016/j.yjmcc.2022.08.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes undergo various forms of cell death during heart disease such as myocardial infarction and heart failure. Understanding the mechanisms of cell death in cardiomyocytes is one of the most fundamental issues in the treatment of heart failure. Among the several kinds of cell death mechanisms, this review will focus on autophagy-related cardiomyocyte cell death. Although autophagy plays an essential role in mediating cellular quality control mechanisms for cell survival, dysregulation of autophagy can cause cell death, referred to as autophagy-dependent cell death or type II programmed cell death. The recent discovery of autosis as a modality of autophagy-dependent cell death with unique morphological and biochemical features has allowed us to broaden our understanding of the mechanistic role of autophagy in cell death. Here, we discuss autophagy-dependent cardiomyocyte cell death, including autosis, in pathophysiological conditions of the heart.
Collapse
|
10
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
11
|
Vaidya B, Roy I, Sharma SS. Neuroprotective Potential of HC070, a Potent TRPC5 Channel Inhibitor in Parkinson's Disease Models: A Behavioral and Mechanistic Study. ACS Chem Neurosci 2022; 13:2728-2742. [PMID: 36094343 DOI: 10.1021/acschemneuro.2c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical 5 (TRPC5) channels are predominantly expressed in the striatum and substantia nigra of the brain. These channels are permeable to calcium ions and are activated by oxidative stress. The physiological involvement of TRPC5 channels in temperature and mechanical sensation is well documented; however, evidence for their involvement in the pathophysiology of neurodegenerative disorders like Parkinson's disease (PD) is sparse. Thus, in the present study, the role of TRPC5 channels and their associated downstream signaling was elucidated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+) model of PD. Bilateral intranigral administration of MPTP and 24 h MPP+ exposure were performed to induce PD in the Sprague-Dawley rats and SH-SY5Y cells, respectively. MPTP led to behavioral anomalies and TRPC5 overexpression accompanied by increased calcium influx, apoptosis, oxidative stress, and mitochondrial dysfunctions. In addition, tyrosine hydroxylase (TH) expression was significantly lower in the midbrain and substantia nigra compared to sham animals. Intraperitoneal administration of potent and selective TRPC5 inhibitor, HC070 (0.1 and 0.3 mg/kg) reversed the cognitive and motor deficits seen in MPTP-lesioned rats. It also restored the TH and TRPC5 expression both in the striatum and midbrain. Furthermore, in vitro and in vivo studies suggested improvements in mitochondrial health along with reduced oxidative stress, apoptosis, and calcium-mediated excitotoxicity. Together, these results showed that inhibition of TRPC5 channels plays a crucial part in the reversal of pathology in the MPTP/MPP+ model of Parkinson's disease.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali 160062, Punjab, India
| |
Collapse
|
12
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
13
|
Nilsson MI, Crozier M, Di Carlo A, Xhuti D, Manta K, Roik LJ, Bujak AL, Nederveen JP, Tarnopolsky MG, Hettinga B, Meena NK, Raben N, Tarnopolsky MA. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol Genet Metab 2022; 137:228-240. [PMID: 35718712 DOI: 10.1016/j.ymgme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Donald Xhuti
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Liza J Roik
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adam L Bujak
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Bart Hettinga
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
14
|
Kok K, Kuo CL, Katzy RE, Lelieveld LT, Wu L, Roig-Zamboni V, van der Marel GA, Codée JDC, Sulzenbacher G, Davies GJ, Overkleeft HS, Aerts JMFG, Artola M. 1,6- epi-Cyclophellitol Cyclosulfamidate Is a Bona Fide Lysosomal α-Glucosidase Stabilizer for the Treatment of Pompe Disease. J Am Chem Soc 2022; 144:14819-14827. [PMID: 35917590 PMCID: PMC9389588 DOI: 10.1021/jacs.2c05666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
α-Glucosidase inhibitors are potential therapeutics
for the
treatment of diabetes, viral infections, and Pompe disease. Herein,
we report a 1,6-epi-cyclophellitol cyclosulfamidate
as a new class of reversible α-glucosidase inhibitors that displays
enzyme inhibitory activity by virtue of its conformational mimicry
of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase
(GAA), ER α-glucosidases, and, at higher concentrations, intestinal
α-glucosidases, displaying an excellent selectivity over the
human β-glucosidases GBA and GBA2 and glucosylceramide synthase
(GCS). Cyclosulfamidate 4 stabilizes recombinant human
GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma
and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA
more effectively than existing small-molecule chaperones and does
so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic
alternative to Miglustat for Pompe disease.
Collapse
Affiliation(s)
- Ken Kok
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Rebecca E Katzy
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Lindsey T Lelieveld
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Liang Wu
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Véronique Roig-Zamboni
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Gijsbert A van der Marel
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gerlind Sulzenbacher
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Gideon J Davies
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
15
|
Rovelli V, Zuvadelli J, Piotto M, Scopari A, Dionigi AR, Ercoli V, Paci S, Cefalo G, Salvatici E, Banderali G. L-alanine supplementation in Pompe disease (IOPD): a potential therapeutic implementation for patients on ERT? A case report. Ital J Pediatr 2022; 48:48. [PMID: 35346323 PMCID: PMC8962230 DOI: 10.1186/s13052-022-01249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pompe disease (PD) is a disorder of glycogen metabolism conditioning a progressive and life conditioning myopathy. Enzyme replacement therapy (ERT) is currently the best treatment option for PD, but is not resolutive. While other potential therapeutic approaches have been reported before, these have never been tried as co- treatments. L-alanine oral supplementation (LAOS) has been proven to reduce muscle breakdown: we hereby report the first case of supplementation on a PD patient on ERT.
Case presentation
F. is a 9 y.o. infantile onset Pompe Disease (IOPD) girl ERT-treated since age 1 developing a progressive myopathy. We started her on LAOS and performed assessments at baseline, 6 and 9 months. At baseline, F.’s weight, height and BMI were within normal ranges, while body composition showed low fat mass -FM and high resting energy expenditure—REE levels. After LAOS, a progressive FM increase and REE reduction could be observed both at 6 and 9 months.
Conclusions
ERT is not curative for PD patients thus additional treatments could be considered to improve outcomes. Our patient showed physical signs of inability to accumulate energy when exclusively on ERT, while FM increase and REE reduction occurred when supplemented with LAOS, likely reflecting anabolic pathways’ implementation. This is the first case reporting potential LAOS benefits in PD-on ERT patients. Longitudinal case control studies are yet needed to evaluate possible efficacy of combined LAOS And ERT treatment in PD patients.
Collapse
|
16
|
Ravaglia S, de Giuseppe R, Carlucci A, Jehne S, Crescimanno G, Ahmad L, Paoletti M, Clemente G, Pichiecchio A, Bazzano R, Cirio S, Valente EM, Danesino C, De Filippi P, Tartara A, Cena H. Bioimpedance Phase Angle as a Prognostic Tool in Late-Onset Pompe Disease: A Single-Centre Prospective Study With a 15-year Follow-Up. Front Cell Dev Biol 2022; 10:793566. [PMID: 35252175 PMCID: PMC8896115 DOI: 10.3389/fcell.2022.793566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Late-onset Pompe disease (LOPD) is an autosomal-recessive metabolic myopathy caused by deficiency of the lysosomal enzyme Acid Alpha—Glucosidase (GAA), leading to glycogen accumulation in proximal and axial muscles, and in the diaphragm. Enzyme Replacement Therapy (ERT) with recombinant GAA became available in 2006. Since then, several outcome measures have been investigated for the adequate follow-up of disease progression and treatment response, usually focusing on respiratory and motor function. Prognostic factors predicting outcome have not been identified till now. Methods: In this single Centre, prospective study, we evaluate the response to enzyme replacement therapy in 15 patients (7 males) with LOPD in different stages of disease, aged 49.4 ± 16.1, followed-up for 15 years. Treatment response was measured by the 6-min walking test, vital capacity in supine and upright position, respiratory muscle strength, muscle MRI, manual muscle testing. We investigated the usefulness of Body Impedance Vectorial Analysis for serial body composition assessment. Results: Although most patients with LOPD benefit from long-term treatment, some secondary decline may occur after the first 3–5 years. Some nutritional (lower body mass index, higher fat free mass, higher phase angle) and disease parameters (higher creatinine and shorter disease duration at the beginning of treatment) seem to predict a better motor outcome. Lower Phase Angle, possibly reflecting loss of integrity of skeletal muscle membranes and thus treatment mis-targeting, seems to correlate with worse treatment response on long-term follow-up. Conclusion: Body Impedance Vectorial Analysis is a fast, easily performed and cheap tool that may be able to predict long-term treatment response in patients with LOPD. Low Phase angle may serve as a marker of muscle quality and may be used to predict the response to a muscle-targeted intervention such as ERT, thus improving the identification of patients needing a closer follow-up due to higher fragility and risk of deterioration.
Collapse
Affiliation(s)
- Sabrina Ravaglia
- IRCCS Mondino Foundation, Pavia, Italy
- *Correspondence: Sabrina Ravaglia,
| | - Rachele de Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Annalisa Carlucci
- Pneumologia Riabilitativa, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Dipartimento di Medicina e Chirurgia, Università dell’Insubria, Varese, Italy
| | - Susan Jehne
- Oberhavel Kliniken—Marwitzer Hennigsdorf, Hennigsdorf, Germany
| | - Grazia Crescimanno
- Italian National Research Council, Institute for Biomedical Research and Innovation, Palermo, Italy Regional Center for Prevention and Treatment of Respiratory Complications of Rare Genetic Neuromuscular Diseases, Villa Sofia-Cervello Hospital, Palermo, Italy
| | | | | | | | | | - Rosella Bazzano
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Serena Cirio
- Pneumologia Riabilitativa, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Dipartimento di Medicina e Chirurgia, Università dell’Insubria, Varese, Italy
| | | | - Cesare Danesino
- Department of Molecular Medicine, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | | - Alice Tartara
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
17
|
Ikeda S, Zablocki D, Sadoshima J. The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol 2021; 165:1-8. [PMID: 34919896 DOI: 10.1016/j.yjmcc.2021.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Abstract
Autophagy mediates cellular quality control mechanisms and energy homeostasis through lysosomal degradation. Autophagy is typically viewed as an adaptive process that allows cells to survive against stress, such as nutrient deprivation and hypoxia. However, autophagy also mediates cell death during development and in response to stress. Cell death accompanied by autophagy activation and accumulation of autophagosomes has been classified as type II programmed cell death. Compared to the wealth of knowledge regarding the adaptive role of autophagy, however, the molecular mechanisms through which autophagy induces cell death and its functional significance are poorly understood. Autophagy is activated excessively under some conditions, causing uncontrolled degradation of cellular materials and cell death. An imbalance between autophagosome formation and lysosomal degradation causes a massive accumulation of autophagosomes, which subsequently causes cellular dysfunction and death. Dysregulation of autophagy induces a unique form of cell death, termed autosis, with defined morphological and biochemical features distinct from other forms of programmed cell death, such as apoptosis and necrosis. In the heart, dysregulated autophagy induces death of cardiomyocytes and actively mediates cardiac injury and dysfunction in some conditions, including reperfusion injury, doxorubicin cardiomyopathy, and lysosomal storage disorders. The goal in this review is to introduce the concept of autophagic cell death and discuss its functional significance in various cardiac conditions.
Collapse
Affiliation(s)
- Shohei Ikeda
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
18
|
Costa-Verdera H, Collaud F, Riling CR, Sellier P, Nordin JML, Preston GM, Cagin U, Fabregue J, Barral S, Moya-Nilges M, Krijnse-Locker J, van Wittenberghe L, Daniele N, Gjata B, Cosette J, Abad C, Simon-Sola M, Charles S, Li M, Crosariol M, Antrilli T, Quinn WJ, Gross DA, Boyer O, Anguela XM, Armour SM, Colella P, Ronzitti G, Mingozzi F. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun 2021; 12:6393. [PMID: 34737297 PMCID: PMC8568898 DOI: 10.1038/s41467-021-26744-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France.,Sorbonne University Paris and INSERM U974, 75013, Paris, France
| | - Fanny Collaud
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | - Pauline Sellier
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | - Umut Cagin
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Julien Fabregue
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Simon Barral
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | | | | | | | | | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | - Marcelo Simon-Sola
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Severine Charles
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Mathew Li
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - Tom Antrilli
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - David A Gross
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | | | | | - Pasqualina Colella
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Federico Mingozzi
- Genethon, 91000, Evry, France. .,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France. .,Sorbonne University Paris and INSERM U974, 75013, Paris, France. .,Spark Therapeutics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Liu S, Feng Y, Huang Y, Jiang X, Tang C, Tang F, Zeng C, Liu L. A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Exp Biol Med (Maywood) 2021; 246:1330-1341. [PMID: 33583210 PMCID: PMC8371306 DOI: 10.1177/1535370221993052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
GM1 gangliosidosis is a rare lysosomal storage disease caused by a deficiency of β-galactosidase due to mutations in the GLB1 gene. We established a C57BL/6 mouse model with Glb1G455R mutation using CRISPR/Cas9 genome editing. The β-galactosidase enzyme activity of Glb1G455R mice measured by fluorometric assay was negligible throughout the whole body. Mutant mice displayed no marked phenotype at eight weeks. After 16 weeks, GM1 ganglioside accumulation in the brain of mutant mice was observed by immunohistochemical staining. Meanwhile, a declining performance in behavioral tests was observed among mutant mice from 16 to 32 weeks. As the disease progressed, the neurological symptoms of mutant mice worsened, and they then succumbed to the disease by 47 weeks of age. We also observed microglia activation and proliferation in the cerebral cortex of mutant mice at 16 and 32 weeks. In these activated microglia, the level of autophagy regulator LC3 was up-regulated but the mRNA level of LC3 was normal. In conclusion, we developed a novel murine model that mimicked the chronic phenotype of human GM1. This Glb1G455R murine model is a practical in vivo model for studying the pathogenesis of GM1 gangliosidosis and exploring potential therapies.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuyu Feng
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaoling Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Fang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
20
|
Wang J, Zhou CJ, Khodabukus A, Tran S, Han SO, Carlson AL, Madden L, Kishnani PS, Koeberl DD, Bursac N. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol 2021; 4:524. [PMID: 33953320 PMCID: PMC8100136 DOI: 10.1038/s42003-021-02059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/31/2021] [Indexed: 01/24/2023] Open
Abstract
In Pompe disease, the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) causes skeletal and cardiac muscle weakness, respiratory failure, and premature death. While enzyme replacement therapy using recombinant human GAA (rhGAA) can significantly improve patient outcomes, detailed disease mechanisms and incomplete therapeutic effects require further studies. Here we report a three-dimensional primary human skeletal muscle ("myobundle") model of infantile-onset Pompe disease (IOPD) that recapitulates hallmark pathological features including reduced GAA enzyme activity, elevated glycogen content and lysosome abundance, and increased sensitivity of muscle contractile function to metabolic stress. In vitro treatment of IOPD myobundles with rhGAA or adeno-associated virus (AAV)-mediated hGAA expression yields increased GAA activity and robust glycogen clearance, but no improvements in stress-induced functional deficits. We also apply RNA sequencing analysis to the quadriceps of untreated and AAV-treated GAA-/- mice and wild-type controls to establish a Pompe disease-specific transcriptional signature and reveal novel disease pathways. The mouse-derived signature is enriched in the transcriptomic profile of IOPD vs. healthy myobundles and partially reversed by in vitro rhGAA treatment, further confirming the utility of the human myobundle model for studies of Pompe disease and therapy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aaron L Carlson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease. Int J Mol Sci 2021; 22:ijms22062850. [PMID: 33799647 PMCID: PMC8001152 DOI: 10.3390/ijms22062850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient’s outcome.
Collapse
|
22
|
Li Z, Li B, Wang J, Lu Y, Chen AFY, Sun K, Yu Y, Chen S. GAA deficiency promotes angiogenesis through upregulation of Rac1 induced by autophagy disorder. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118969. [PMID: 33513417 DOI: 10.1016/j.bbamcr.2021.118969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is vital for vertebrate development and adult homeostasis. Acid α-glucosidase (GAA) is a glycoside hydrolase involved in the lysosomal breakdown of glycogen. Our previous study showed that GAA was highly expressed in mouse pulmonary veins. While whether GAA was involved in angiogenesis remained largely unknown, thus, we performed knockdown experiments both in vivo and in vitro and endothelial cell function experiments to clarify this concern point. We identified that GAA expressed widely at different levels during zebrafish embryonic development and GAA morphants showed excessive angiogenesis of ISV at later stage. In GAA knockdown HUVECs, the migration and tube formation capacity were increased, resulted from the formation of large lamellipodia-like protrusions at the edge of cells. By analyzing autophagic flux, we found that autophagy disorder was the mechanism of GAA knockdown-induced excessive angiogenesis. The block of autophagic flux caused upregulation of Rac1, a small GTPase, and the latter promoted excessive sprouts in zebrafish and enhanced angiogenic behavior in HUVECs. In addition, overexpression of transcription factor E3, a master regulator of autophagy, rescued upregulation of RAC1 and enhanced angiogenic function in GAA-knockdown HUVECs. Also, inhibition of Rac1 partly restored enhanced angiogenic function in GAA-knockdown HUVECs. Taken together, our study firstly reported a novel function of GAA in angiogenesis which is mediated by upregulation of Rac1 induced by autophagy disorder.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baolei Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Alex F Y Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
23
|
Effect of long term enzyme replacement therapy in late onset Pompe disease: A single-centre experience. Neuromuscul Disord 2021; 31:91-100. [PMID: 33451932 DOI: 10.1016/j.nmd.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Late onset Pompe disease (LOPD) is a slowly progressive metabolic myopathy with variable clinical severity. The advent of enzyme replacement therapy (ERT) has modified the natural course of the disease, though the treatment effect on adult patients is modest compared to infants with the classic form. This study aims to describe the long-term clinical outcome of the Greek LOPD cohort, as assessed by 6 min walk test, muscle strength using MRC grading scale and spirometry. ERT efficacy was estimated using statistical methodology that is novel in the context of Pompe disease, which at the same time is well-suited to longitudinal studies with small samples and missing data (local non-linear regression analysis). Improvement over baseline was significant at 1 year for motor performance and muscle strength (p < 0.05), and at 2 years for FVC-U and FVC-S (p < 0.05). A subgroup analysis showed that the onset of the disease before adulthood (18 years), a male gender, and a latency of more than 2 years between the onset of symptoms and ERT administration are unfavorable prognostic factors. Conclusively, this study presents longitudinal data from the Greek LOPD cohort supporting previous observations, that therapeutic delay is related to worse prognosis and treatment effects may decline after several years of ERT.
Collapse
|
24
|
de Wet S, Du Toit A, Loos B. Spermidine and Rapamycin Reveal Distinct Autophagy Flux Response and Cargo Receptor Clearance Profile. Cells 2021; 10:cells10010095. [PMID: 33430464 PMCID: PMC7827520 DOI: 10.3390/cells10010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy flux is the rate at which cytoplasmic components are degraded through the entire autophagy pathway and is often measured by monitoring the clearance rate of autophagosomes. The specific means by which autophagy targets specific cargo has recently gained major attention due to the role of autophagy in human pathologies, where specific proteinaceous cargo is insufficiently recruited to the autophagosome compartment, albeit functional autophagy activity. In this context, the dynamic interplay between receptor proteins such as p62/Sequestosome-1 and neighbour of BRCA1 gene 1 (NBR1) has gained attention. However, the extent of receptor protein recruitment and subsequent clearance alongside autophagosomes under different autophagy activities remains unclear. Here, we dissect the concentration-dependent and temporal impact of rapamycin and spermidine exposure on receptor recruitment, clearance and autophagosome turnover over time, employing micropatterning. Our results reveal a distinct autophagy activity response profile, where the extent of autophagosome and receptor co-localisation does not involve the total pool of either entities and does not operate in similar fashion. These results suggest that autophagosome turnover and specific cargo clearance are distinct entities with inherent properties, distinctively contributing towards total functional autophagy activity. These findings are of significance for future studies where disease specific protein aggregates require clearance to preserve cellular proteostasis and viability and highlight the need of discerning and better tuning autophagy machinery activity and cargo clearance.
Collapse
Affiliation(s)
| | | | - Ben Loos
- Correspondence: ; Tel.: +27-21-808-9196; Fax: +27-21-808-3145
| |
Collapse
|
25
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
26
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
27
|
Meena NK, Ralston E, Raben N, Puertollano R. Enzyme Replacement Therapy Can Reverse Pathogenic Cascade in Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:199-214. [PMID: 32671132 PMCID: PMC7334420 DOI: 10.1016/j.omtm.2020.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease, a deficiency of glycogen-degrading lysosomal acid alpha-glucosidase (GAA), is a disabling multisystemic illness that invariably affects skeletal muscle in all patients. The patients still carry a heavy burden of the disease, despite the currently available enzyme replacement therapy. We have previously shown that progressive entrapment of glycogen in the lysosome in muscle sets in motion a whole series of “extra-lysosomal” events including defective autophagy and disruption of a variety of signaling pathways. Here, we report that metabolic abnormalities and energy deficit also contribute to the complexity of the pathogenic cascade. A decrease in the metabolites of the glycolytic pathway and a shift to lipids as the energy source are observed in the diseased muscle. We now demonstrate in a pre-clinical study that a recently developed replacement enzyme (recombinant human GAA; AT-GAA; Amicus Therapeutics) with much improved lysosome-targeting properties reversed or significantly improved all aspects of the disease pathogenesis, an outcome not observed with the current standard of care. The therapy was initiated in GAA-deficient mice with fully developed muscle pathology but without obvious clinical symptoms; this point deserves consideration.
Collapse
Affiliation(s)
- Naresh Kumar Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Nina Raben, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Corresponding author Rosa Puertollano, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
28
|
Ma YS, Wang XF, Zhang YJ, Luo P, Long HD, Li L, Yang HQ, Xie RT, Jia CY, Lu GX, Chang ZY, Zhang JJ, Xue SB, Lv ZW, Yu F, Xia Q, Fu D. Inhibition of USP14 Deubiquitinating Activity as a Potential Therapy for Tumors with p53 Deficiency. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:147-157. [PMID: 32055678 PMCID: PMC7005481 DOI: 10.1016/j.omto.2019.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
Functional elimination of p53 is a common feature of a large percentage of human malignancies. Here, we report the development of a pharmacological strategy aimed at restoring p53 function and its use for targeted therapy in p53-deficient mice. Specific inhibition of deubiquitinases ubiquitin-specific peptidase 14 (USP14) resulted in durable tumor regressions of autochthonous lymphomas and sarcomas in p53-deficient mice without affecting normal tissues, and therapeutic response was correlated with an increase in the ubiquitination of constitutive photomorphogenesis 9 (COP9) signalosome subunit 5 (COPS5), a key negative regulatory effector for p53. Inhibition of USP14 resulted in durable tumor regression through COPS5 deubiquitilation and a p53-dependent and -independent regulation mechanism by USP14. This series highlights the utility of proteasome deubiquitinating activity inhibition as a novel treatment paradigm for p53-deficient cancers. In addition, it provides preliminary evidence that inhibition of USP14 resulted in durable tumor regression through COPS5 deubiquitilation and p53-dependent and -independent regulation mechanism by USP14. These findings suggest that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target for patients with p53 deficiency.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun-Jie Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Pei Luo
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Deng Long
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ru-Ting Xie
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zheng-Yan Chang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shao-Bo Xue
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qing Xia
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
29
|
Ren H, Wang G. Autophagy and Lysosome Storage Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:87-102. [DOI: 10.1007/978-981-15-4272-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
31
|
Sasaki Y, Leclerc É, Hamedpour V, Kubota R, Takizawa SY, Sakai Y, Minami T. Simplest Chemosensor Array for Phosphorylated Saccharides. Anal Chem 2019; 91:15570-15576. [DOI: 10.1021/acs.analchem.9b03578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Éric Leclerc
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Vahid Hamedpour
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shin-ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yasuyuki Sakai
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
32
|
Kulessa M, Weyer-Menkhoff I, Viergutz L, Kornblum C, Claeys KG, Schneider I, Plöckinger U, Young P, Boentert M, Vielhaber S, Mawrin C, Bergmann M, Weis J, Ziagaki A, Stenzel W, Deschauer M, Nolte D, Hahn A, Schoser B, Schänzer A. An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease. Neuropathol Appl Neurobiol 2019; 46:359-374. [PMID: 31545528 DOI: 10.1111/nan.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
AIMS Pompe disease is caused by pathogenic mutations in the alpha 1,4-glucosidase (GAA) gene and in patients with late onset Pome disease (LOPD), genotype-phenotype correlations are unpredictable. Skeletal muscle pathology includes glycogen accumulation and altered autophagy of various degrees. A correlation of the muscle morphology with clinical features and the genetic background in GAA may contribute to the understanding of the phenotypic variability. METHODS Muscle biopsies taken before enzyme replacement therapy were analysed from 53 patients with LOPD. On resin sections, glycogen accumulation, fibrosis, autophagic vacuoles and the degree of muscle damage (morphology-score) were analysed and the results were compared with clinical findings. Additional autophagy markers microtubule-associated protein 1A/1B-light chain 3, p62 and Bcl2-associated athanogene 3 were analysed on cryosections from 22 LOPD biopsies. RESULTS The myopathology showed a high variability with, in most patients, a moderate glycogen accumulation and a low morphology-score. High morphology-scores were associated with increased fibrosis and autophagy highlighting the role of autophagy in severe stages of skeletal muscle damage. The morphology-score did not correlate with the patient's age at biopsy, disease duration, nor with the residual GAA enzyme activity or creatine-kinase levels. In 37 patients with LOPD, genetic analysis identified the most frequent mutation, c.-32-13T>G, in 95%, most commonly in combination with c.525delT (19%). No significant correlation was found between the different GAA genotypes and muscle morphology type. CONCLUSIONS Muscle morphology in LOPD patients shows a high variability with, in most cases, moderate pathology. Increased pathology is associated with more fibrosis and autophagy.
Collapse
Affiliation(s)
- M Kulessa
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe University, Frankfurt/Main, Germany
| | - L Viergutz
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - C Kornblum
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - K G Claeys
- Department of Neurology, University Hospital Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - I Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - U Plöckinger
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - P Young
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany.,Medical Park Reithofpark, Bad Feilnbach, Germany
| | - M Boentert
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany
| | - S Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - C Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Bergmann
- Institute of Clinical Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - J Weis
- Institute of Neuropathology, RWTH University Hospital, Aachen, Germany
| | - A Ziagaki
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - W Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - M Deschauer
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - D Nolte
- Institute of Human Genetics, Justus Liebig University Giessen, Giessen, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - B Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU University Munich, Munich, Germany
| | - A Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
33
|
Staiano L, Zappa F. Hijacking intracellular membranes to feed autophagosomal growth. FEBS Lett 2019; 593:3120-3134. [PMID: 31603532 DOI: 10.1002/1873-3468.13637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is widely considered as a housekeeping mechanism that enables cells to survive stress conditions and, in particular, nutrient deprivation. Autophagy begins with the formation of the phagophore that expands and closes around cytosolic material and damaged organelles destined for degradation. The execution of this complex machinery is guaranteed by the coordinated action of more than 40 ATG (autophagy-related) proteins that control the entire process at different stages from the biogenesis of the autophagosome to cargo sequestration and fusion with lysosomes. Autophagosome biogenesis occurs at multiple intracellular sites, such as the endoplasmic reticulum (ER) and the plasma membrane. Soon after the formation of the phagophore, the nascent autophagosome progressively grows in size and ultimately closes by recruiting intracellular membranes. In this review, we focus on the contribution of three membrane sources - the ER, the ER-Golgi intermediate compartment, and the Golgi complex - to autophagosome biogenesis and expansion. We also highlight the interplay between the secretory pathway and autophagy in cells when nutrients are scarce.
Collapse
Affiliation(s)
- Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Francesca Zappa
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
34
|
Lim JA, Meena NK, Raben N. Pros and cons of different ways to address dysfunctional autophagy in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:279. [PMID: 31392191 DOI: 10.21037/atm.2019.03.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a major intracellular self-digestion process that brings cytoplasmic materials to the lysosome for degradation. Defective autophagy has been linked to a broad range of human disorders, including cancer, diabetes, neurodegeneration, autoimmunity, cardiovascular diseases, and myopathies. In Pompe disease, a severe neuromuscular disorder, disturbances in autophagic process manifest themselves as progressive accumulation of undegraded cellular debris in the diseased muscle cells. A growing body of evidence has connected this defect to the decline in muscle function and muscle resistance to the currently available treatment-enzyme replacement therapy (ERT). Both induction and inhibition of autophagy have been tested in pre-clinical studies in a mouse model of the disease. Here, we discuss strengths and weaknesses of different approaches to address autophagic dysfunction in the context of Pompe disease.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Naresh Kumar Meena
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
35
|
Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is capable of efficiently regenerating after damage in a process mediated by tissue-resident stem cells called satellite cells. This regenerative potential is often compromised under muscle-degenerative conditions. Consequently, the damage produced during degeneration is not efficiently repaired and the balance between repair and damage is lost. Here we review recent progress on the role of satellite cell-mediated repair in neuromuscular disorders with a focus on Pompe disease, an inherited metabolic myopathy caused by deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Studies performed in patient biopsies as well as in Pompe disease mouse models demonstrate that muscle regeneration activity is compromised despite progressing muscle damage. We describe disease-specific mechanisms of satellite cell dysfunction to highlight the differences between Pompe disease and muscle dystrophies. The mechanisms involved provide possible targets for therapy, such as modulation of autophagy, muscle exercise, and pharmacological modulation of satellite cell activation. Most of these approaches are still experimental, although promising in animal models, still warrant caution with respect to their safety and efficiency profile.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rodrigo Canibano-Fraile
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom J M van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Xu S, Lun Y, Frascella M, Garcia A, Soska R, Nair A, Ponery AS, Schilling A, Feng J, Tuske S, Valle MCD, Martina JA, Ralston E, Gotschall R, Valenzano KJ, Puertollano R, Do HV, Raben N, Khanna R. Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 2019; 4:125358. [PMID: 30843882 DOI: 10.1172/jci.insight.125358] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/17/2019] [Indexed: 01/14/2023] Open
Abstract
Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy. We are developing an rhGAA, ATB200 (Amicus proprietary rhGAA), with high levels of mannose-6-phosphate that are required for efficient cellular uptake and lysosomal trafficking. When administered in combination with the pharmacological chaperone AT2221 (miglustat), which stabilizes the enzyme and improves its pharmacokinetic properties, ATB200/AT2221 was substantially more potent than alglucosidase alfa in a mouse model of Pompe disease. The new investigational therapy is more effective at reversing the primary abnormality - intralysosomal glycogen accumulation - in multiple muscles. Furthermore, unlike the current standard of care, ATB200/AT2221 dramatically reduces autophagic buildup, a major secondary defect in the diseased muscles. The reversal of lysosomal and autophagic pathologies leads to improved muscle function. These data demonstrate the superiority of ATB200/AT2221 over the currently approved ERT in the murine model.
Collapse
Affiliation(s)
- Su Xu
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Yi Lun
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | | | - Anju Nair
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - Jessie Feng
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | | | | | - José A Martina
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Evelyn Ralston
- Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Hung V Do
- Amicus Therapeutics, Cranbury, New Jersey, USA
| | - Nina Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
37
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
38
|
Tan Y, Gong Y, Dong M, Pei Z, Ren J. Role of autophagy in inherited metabolic and endocrine myopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1865:48-55. [PMID: 30343140 DOI: 10.1016/j.bbadis.2018.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
The prevalence of cardiometabolic disease has reached an exponential rate of rise over the last decades owing to high fat/high caloric diet intake and satiety life style. Although the presence of dyslipidemia, insulin resistance, hypertension and obesity mainly contributes to the increased incidence of cardiometabolic diseases, population-based, clinical and genetic studies have revealed a rather important role for inherited myopathies and endocrine disorders in the ever-rising metabolic anomalies. Inherited metabolic and endocrine diseases such as glycogen storage and lysosomal disorders have greatly contributed to the overall prevalence of cardiometabolic diseases. Recent evidence has demonstrated an essential role for proteotoxicity due to autophagy failure and/or dysregulation in the onset of inherited metabolic and endocrine disorders. Given the key role for autophagy in the degradation and removal of long-lived or injured proteins and organelles for the maintenance of cellular and organismal homeostasis, this mini-review will discuss the potential contribution of autophagy dysregulation in the pathogenesis of inherited myopathies and endocrine disorders, which greatly contribute to an overall rise in prevalence of cardiometabolic disorders. Molecular, clinical, and epidemiological aspects will be covered as well as the potential link between autophagy and metabolic anomalies thus target therapy may be engaged for these comorbidities.
Collapse
Affiliation(s)
- Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yan Gong
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
39
|
Puertollano R, Raben N. Pompe disease: how to solve many problems with one solution. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:313. [PMID: 30211201 DOI: 10.21037/atm.2018.06.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosa Puertollano
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|