1
|
Mirvis E, Benjamin R. Are we there yet? CAR-T therapy in multiple myeloma. Br J Haematol 2024; 205:2175-2189. [PMID: 39558776 PMCID: PMC11637742 DOI: 10.1111/bjh.19896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
The last few years have seen a revolution in cellular immunotherapies for multiple myeloma (MM) with novel antigen targets. The principle new target is B-cell maturation antigen (BCMA). Autologous chimeric antigen receptor T-cell (CAR-T) therapy directed against BCMA was first approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2021, although approval by the National Institute for Health and Care Excellent (NICE) is awaited. Initial response rates in patients with heavily pretreated MM have been impressive, but patients are still relapsing. Furthermore, CAR-T manufacturing is expensive and time-consuming, and T-cell fitness is impaired by prior MM treatment. Numerous strategies to improve outcomes and delivery of cellular immunotherapy are under investigation, including next-generation CARs, allogeneic 'off-the-shelf' CARs and targeting of other MM antigens including G protein-coupled receptor, class C, group 5, member D (GPRC5D), Fc receptor homologue 5 (FcRH5), cluster of differentiation (CD)19, signalling lymphocyte activation molecule family member 7 (SLAMF7) and several others. In this exciting and rapidly evolving treatment landscape, this review evaluates the most recent clinical and preclinical data pertaining to these new cellular immunotherapies and explores strategies to overcome resistance pathways. On the protracted journey to a long-term cure, we outline the challenges that lie ahead and ask, 'Are we there yet?'
Collapse
Affiliation(s)
- Eitan Mirvis
- School of Cancer & Pharmaceutical Sciences, King's College LondonLondonUK
- Department of HaematologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Reuben Benjamin
- School of Cancer & Pharmaceutical Sciences, King's College LondonLondonUK
- Department of HaematologyKing's College Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Li YR, Fang Y, Niu S, Chen Y, Lyu Z, Yang L. Managing allorejection in off-the-shelf CAR-engineered cell therapies. Mol Ther 2024:S1525-0016(24)00762-7. [PMID: 39600090 DOI: 10.1016/j.ymthe.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has revolutionized the treatment of various diseases, including cancers and autoimmune disorders. However, all US Food and Drug Administration (FDA)-approved CAR-T cell therapies are autologous, and their widespread clinical application is limited by several challenges, such as complex individualized manufacturing, high costs, and the need for patient-specific selection. Allogeneic off-the-shelf CAR-engineered cell therapy offers promising potential due to its immediate availability, consistent quality, potency, and scalability in manufacturing. Nonetheless, significant challenges, including the risks of graft-versus-host disease (GvHD) and host-cell-mediated allorejection, must be addressed. Strategies such as knocking out endogenous T cell receptors (TCRs) or using alternative therapeutic cells with low GvHD risk have shown promise in clinical trials aimed at reducing GvHD. However, mitigating allorejection remains critical for ensuring the long-term sustainability and efficacy of off-the-shelf cell products. In this review, we discuss the immunological basis of allorejection in CAR-engineered therapies and explore various strategies to overcome this challenge. We also highlight key insights from recent clinical trials, particularly related to the sustainability and immunogenicity of allogeneic CAR-engineered cell products, and address manufacturing considerations aimed at minimizing allorejection and optimizing the efficacy of this emerging therapeutic approach.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Zhou Z, Liu X, Zhang X, Wen S, Hua H, Xu Z, Wang F. Effects of Consolidation Therapy With Autologous Hematopoietic Stem Cell Transplantation After BCMA-CAR T-Cell Therapy on the Survival of Patients With Relapsed or Refractory Multiple Myeloma. Transplant Cell Ther 2024; 30:1080.e1-1080.e11. [PMID: 39236790 DOI: 10.1016/j.jtct.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Despite the success of chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory multiple myeloma (RRMM), failure after CAR T-cell therapy remains an unmet medical need. An effective consolidation therapy after CAR T-cell therapy may improve the prognosis of RRMM. To investigate the effects of consolidation therapy with autologous hematopoietic stem cell transplantation (AHCT) after B-cell maturation antigen (BCMA)-targeted CAR T-cell therapy on the prognosis of RRMM patients. This retrospective study included 39 RRMM patients who received BCMA-targeted CAR T-cell therapy. Basic clinical, therapy, and outcome data were collected, and factors associated with survival were analyzed. Among the 39 RRMM patients included in the study, 15 had high-risk cytogenetics and 11 had extramedullary disease (EMD). All 39 patients reached peak CAR T-cell expansion within 28 days after infusion. Twenty-six patients developed cytokine release syndrome, including 12 grade 1 and 14 grade 2 cases. Survival analysis revealed that high-risk cytogenetics, high tumor load (International Staging System [ISS] stage III), and EMD were negatively associated with progression-free survival (PFS) and overall survival (OS). Thirteen patients received consolidation AHCT therapy 50-276 days after CAR T-cell therapy, with a median interval of 92 days. No serious complications occurred after consolidation AHCT. Survival analysis showed that consolidation AHCT effectively improved OS and PFS over maintenance chemotherapy. Moreover, Cox regression analysis identified low tumor load (ISS stage I/II) and consolidation AHCT as independent predictors of superior PFS and OS and high-risk cytogenetics as an independent risk factor for poor PFS. Consolidation AHCT after CAR T-cell therapy in RRMM patients can improve patient survival.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuejun Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shupeng Wen
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Hua
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zheng Xu
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fuxu Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024; 68:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
5
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
7
|
Shi S, Zhang L, Zheng A, Xie F, Kesse S, Yang Y, Peng J, Xu Y. Enhanced anti-tumor efficacy of electroporation (EP)-mediated DNA vaccine boosted by allogeneic lymphocytes in pre-established tumor models. Cancer Immunol Immunother 2024; 73:248. [PMID: 39358555 PMCID: PMC11447239 DOI: 10.1007/s00262-024-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Tumor-reactive T cells play a crucial role in anti-tumor responses, but T cells induced by DNA vaccination are time-consuming processes and exhibit limited anti-tumor efficacy. Therefore, we evaluated the anti-tumor effectiveness of reactive T cells elicited by electroporation (EP)-mediated DNA vaccine targeting epidermal growth factor receptor variant III (pEGFRvIII plasmid), in conjunction with adoptive cell therapy (ACT), involving the transfer of lymphocytes from a pEGFRvIII EP-vaccinated healthy donor. METHODS The validation of the established pEGFRvIII plasmid and EGFRvIII-positive cell model was confirmed through immunofluorescence and western blot analysis. Flow cytometry and cytotoxicity assays were performed to evaluate the functionality of antigen-specific reactive T cells induced by EP-mediated pEGFRvIII vaccines, ACT, or their combination. The anti-tumor effectiveness of EP-mediated pEGFRvIII vaccines alone or combined with ACT was evaluated in the B16F10-EGFRvIII tumor model. RESULTS EP-mediated pEGFRvIII vaccines elicited serum antibodies and a robust cellular immune response in both healthy and tumor-bearing mice. However, this response only marginally inhibited early-stage tumor growth in established tumor models. EP-mediated pEGFRvIII vaccination followed by adoptive transfer of lymphocytes from vaccinated healthy donors led to notable anti-tumor efficacy, attributed to the synergistic action of antigen-specific CD4+ Th1 cells supplemented by ACT and antigen-specific CD8+ T cells elicited by the EP-mediated DNA vaccination. CONCLUSIONS Our preclinical studies results demonstrate an enhanced anti-tumor efficacy of EP-mediated DNA vaccination boosted with adoptively transferred, vaccinated healthy donor-derived allogeneic lymphocytes.
Collapse
Affiliation(s)
- Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Luchen Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Anjie Zheng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Fang Xie
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Yang Yang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Pharmacy, Dali University, No. 22, Snowman Rd, Dali City, 671000, People's Republic of China.
| |
Collapse
|
8
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Korst CLBM, O’Neill C, Bruins WSC, Cosovic M, Twickler I, Verkleij CPM, Le Clerre D, Themeli M, Chion-Sotinel I, Zweegman S, Galetto R, Mutis T, van de Donk NWCJ. Preclinical activity of allogeneic SLAMF7-specific CAR T-cells (UCARTCS1) in multiple myeloma. J Immunother Cancer 2024; 12:e008769. [PMID: 39060023 PMCID: PMC11284884 DOI: 10.1136/jitc-2023-008769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Autologous BCMA-specific CAR T-cell therapies have substantial activity in multiple myeloma (MM). However, due to logistical limitations and BCMAlow relapses, there is a need for alternatives. UCARTCS1 cells are 'off-the-shelf' allogeneic CAR T-cells derived from healthy donors targeting SLAMF7 (CS1), which is highly expressed in MM cells. In this study, we evaluated the preclinical activity of UCARTCS1 in MM cell lines, in bone marrow (BM) samples obtained from MM patients and in an MM mouse model. METHODS Luciferase-transduced MM cell lines were incubated with UCARTCS1 cells or control (non-transduced, SLAMF7/TCRαβ double knock-out) T-cells at different effector to target ratios for 24 hours. MM cell lysis was assessed by bioluminescence. Anti-MM activity of UCARTCS1 was also evaluated in 29 BM samples obtained from newly diagnosed patients (n=10), daratumumab-naïve relapsed/refractory patients (n=10) and daratumumab-refractory patients (n=9) in 24-hour flow cytometry-based cytotoxicity assays. Finally, UCARTCS1 activity was assessed in mouse xenograft models. RESULTS UCARTCS1 cells induced potent CAR-mediated, and dose-dependent lysis of both MM cell lines and primary MM cells. There was no difference in ex vivo activity of UCARTCS1 between heavily pretreated and newly diagnosed patients. In addition, efficacy of UCARTCS1 was not affected by SLAMF7 expression level on MM cells, proportion of tumor cells, or frequency of regulatory T-cells in BM samples obtained from MM patients. UCARTCS1 treatment eliminated SLAMF7+ non-malignant immune cells in a dose-dependent manner, however lysis of normal cells was less pronounced compared to that of MM cells. Additionally, durable anti-MM responses were observed with UCARTCS1 in an MM xenograft model. CONCLUSIONS These results demonstrate that UCARTCS1 has potent anti-MM activity against MM cell lines and primary MM cells, as well as in an MM xenograft model and support the evaluation of UCARTCS1 in patients with advanced MM.
Collapse
Affiliation(s)
- Charlotte L B M Korst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Chloe O’Neill
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Wassilis S C Bruins
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Meliha Cosovic
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Inoka Twickler
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | | | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Lu Q, Li H, Wu Z, Zhu Z, Zhang Z, Yang D, Tong A. BCMA/CD47-directed universal CAR-T cells exhibit excellent antitumor activity in multiple myeloma. J Nanobiotechnology 2024; 22:279. [PMID: 38783333 PMCID: PMC11112799 DOI: 10.1186/s12951-024-02512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND BCMA-directed autologous chimeric antigen receptor T (CAR-T) cells have shown excellent clinical efficacy in relapsed or refractory multiple myeloma (RRMM), however, the current preparation process for autologous CAR-T cells is complicated and costly. Moreover, the upregulation of CD47 expression has been observed in multiple myeloma, and anti-CD47 antibodies have shown remarkable results in clinical trials. Therefore, we focus on the development of BCMA/CD47-directed universal CAR-T (UCAR-T) cells to improve these limitations. METHODS In this study, we employed phage display technology to screen nanobodies against BCMA and CD47 protein, and determined the characterization of nanobodies. Furthermore, we simultaneously disrupted the endogenous TRAC and B2M genes of T cells using CRISPR/Cas9 system to generate TCR and HLA double knock-out T cells, and developed BCMA/CD47-directed UCAR-T cells and detected the antitumor activity in vitro and in vivo. RESULTS We obtained fourteen and one specific nanobodies against BCMA and CD47 protein from the immunized VHH library, respectively. BCMA/CD47-directed UCAR-T cells exhibited superior CAR expression (89.13-98.03%), and effectively killing primary human MM cells and MM cell lines. BCMA/CD47-directed UCAR-T cells demonstrated excellent antitumor activity against MM and prolonged the survival of tumor-engrafted NCG mice in vivo. CONCLUSIONS This work demonstrated that BCMA/CD47-directed UCAR-T cells exhibited potent antitumor activity against MM in vitro and in vivo, which provides a potential strategy for the development of a novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiguo Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhixiong Zhu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Aiping Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
11
|
Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, Yang L. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat Biotechnol 2024:10.1038/s41587-024-02226-y. [PMID: 38744947 DOI: 10.1038/s41587-024-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wenbin Guo
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aarushi Bajpai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Seet
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M Larson
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Degagné É, Donohoue PD, Roy S, Scherer J, Fowler TW, Davis RT, Reyes GA, Kwong G, Stanaway M, Larroca Vicena V, Mutha D, Guo R, Edwards L, Schilling B, Shaw M, Smith SC, Kohrs B, Kufeldt HJ, Churchward G, Ruan F, Nyer DB, McSweeney K, Irby MJ, Fuller CK, Banh L, Toh MS, Thompson M, Owen AL, An Z, Gradia S, Skoble J, Bryan M, Garner E, Kanner SB. High-Specificity CRISPR-Mediated Genome Engineering in Anti-BCMA Allogeneic CAR T Cells Suppresses Allograft Rejection in Preclinical Models. Cancer Immunol Res 2024; 12:462-477. [PMID: 38345397 PMCID: PMC10985478 DOI: 10.1158/2326-6066.cir-23-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.
Collapse
Affiliation(s)
| | | | - Suparna Roy
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Devin Mutha
- Caribou Biosciences, Inc., Berkeley, California
| | - Raymond Guo
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - McKay Shaw
- Caribou Biosciences, Inc., Berkeley, California
| | | | - Bryan Kohrs
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Finey Ruan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | - Lynda Banh
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | - Zili An
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Mara Bryan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | |
Collapse
|
13
|
Bazou D, Dowling P. Editorial: Multiple Myeloma: Molecular Mechanism and Targeted Therapy. Int J Mol Sci 2024; 25:3799. [PMID: 38612612 PMCID: PMC11011281 DOI: 10.3390/ijms25073799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell disorder representing the second most common blood cancer [...].
Collapse
Affiliation(s)
- Despina Bazou
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, W23 F2K8 Kildare, Ireland
| |
Collapse
|
14
|
Kirouac DC, Zmurchok C, Morris D. Making drugs from T cells: The quantitative pharmacology of engineered T cell therapeutics. NPJ Syst Biol Appl 2024; 10:31. [PMID: 38499572 PMCID: PMC10948391 DOI: 10.1038/s41540-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Engineered T cells have emerged as highly effective treatments for hematological cancers. Hundreds of clinical programs are underway in efforts to expand the efficacy, safety, and applications of this immuno-therapeutic modality. A primary challenge in developing these "living drugs" is the complexity of their pharmacology, as the drug product proliferates, differentiates, traffics between tissues, and evolves through interactions with patient immune systems. Using publicly available clinical data from Chimeric Antigen Receptor (CAR) T cells, we demonstrate how mathematical models can be used to quantify the relationships between product characteristics, patient physiology, pharmacokinetics and clinical outcomes. As scientists work to develop next-generation cell therapy products, mathematical models will be integral for contextualizing data and facilitating the translation of product designs to clinical strategy.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Notch Therapeutics, Vancouver, BC, Canada.
- The University of British Columbia, School of Biomedical Engineering, Vancouver, BC, Canada.
- Metrum Research Group, Tariffville, CT, USA.
| | | | | |
Collapse
|
15
|
Sun F, Cheng Y, Wanchai V, Guo W, Mery D, Xu H, Gai D, Siegel E, Bailey C, Ashby C, Al Hadidi S, Schinke C, Thanendrarajan S, Ma Y, Yi Q, Orlowski RZ, Zangari M, van Rhee F, Janz S, Bishop G, Tricot G, Shaughnessy JD, Zhan F. Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth. Nat Commun 2024; 15:615. [PMID: 38242888 PMCID: PMC10798961 DOI: 10.1038/s41467-024-44873-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Anti-multiple myeloma B cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies represent a promising treatment strategy with high response rates in myeloma. However, durable cures following anti-BCMA CAR-T cell treatment of myeloma are rare. One potential reason is that a small subset of minimal residual myeloma cells seeds relapse. Residual myeloma cells following BCMA-CAR-T-mediated treatment show less-differentiated features and express stem-like genes, including CD24. CD24-positive myeloma cells represent a large fraction of residual myeloma cells after BCMA-CAR-T therapy. In this work, we develop CD24-CAR-T cells and test their ability to eliminate myeloma cells. We find that CD24-CAR-T cells block the CD24-Siglec-10 pathway, thereby enhancing macrophage phagocytic clearance of myeloma cells. Additionally, CD24-CAR-T cells polarize macrophages to a M1-like phenotype. A dual-targeted BCMA-CD24-CAR-T exhibits improved efficacy compared to monospecific BCMA-CAR-T-cell therapy. This work presents an immunotherapeutic approach that targets myeloma cells and promotes tumor cell clearance by macrophages.
Collapse
Affiliation(s)
- Fumou Sun
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Yan Cheng
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Visanu Wanchai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wancheng Guo
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - David Mery
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hongwei Xu
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Dongzheng Gai
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eric Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Clyde Bailey
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Carolina Schinke
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sharmilan Thanendrarajan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Stony Brook, NY, 11790, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maurizio Zangari
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gail Bishop
- Department of Microbiology and Immunology, University of Iowa and VA Medical Center, Iowa City, IA, 52242, USA
| | - Guido Tricot
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - John D Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
16
|
Zhou J, Shi F, Luo X, Lei B, Shi Z, Huang C, Zhang Y, Li X, Wang H, Li XY, He X. The persistence and antitumor efficacy of CAR-T cells are modulated by tonic signaling within the CDR. Int Immunopharmacol 2024; 126:111239. [PMID: 37979453 DOI: 10.1016/j.intimp.2023.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable clinical efficacy, but challenges related to relapse and CAR-T cell exhaustion persist. One contributing factor to this exhaustion is CAR tonic signaling, where CAR-T cells self-activate without antigen stimulation, leading to reduced persistence and impaired antitumor activity. To address this issue, we conducted a preclinical study evaluating tonic signaling using nanobody-derived CAR-T cells. Our investigation revealed that specific characteristics of the complementary determining regions (CDRs), including low solubility, polarity, positive charge, energy, and area of ionic and positive CDR patches of amino acids, were associated with low antigen-independent tonic signaling. Significantly, we observed that stronger tonic signaling directly impacted CAR-T cell proliferation in vitro, consequently leading to CAR-T cell exhaustion and diminished persistence and effectiveness in vivo. Our findings provide compelling preclinical evidence and lay the foundation for the clinical assessment of CAR-T cells with distinct tonic signaling patterns. Understanding the role of CDRs in modulating tonic signaling holds promise for advancing the development of more efficient and durable CAR-T cell therapies, thereby enhancing the treatment of cancer and addressing the challenges of relapse in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jincai Zhou
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| | - Feifei Shi
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xinran Luo
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Bixia Lei
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Zhongjun Shi
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Chenyu Huang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Yuting Zhang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xiaopei Li
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Huajing Wang
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China
| | - Xian-Yang Li
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| | - Xiaowen He
- R&D Department, OriCell Therapeutics Co. Ltd., 1227 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
17
|
Baysal MA, Chakraborty A, Tsimberidou AM. Enhancing the Efficacy of CAR-T Cell Therapy: A Comprehensive Exploration of Cellular Strategies and Molecular Dynamics. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:20-28. [PMID: 39119270 PMCID: PMC11308461 DOI: 10.33696/cancerimmunol.6.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.
Collapse
Affiliation(s)
- Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Karpov DS, Sosnovtseva AO, Pylina SV, Bastrich AN, Petrova DA, Kovalev MA, Shuvalova AI, Eremkina AK, Mokrysheva NG. Challenges of CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes: How Not to Engineer a "Trojan Horse". Int J Mol Sci 2023; 24:17320. [PMID: 38139149 PMCID: PMC10743607 DOI: 10.3390/ijms242417320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of insulin-producing β-cells in the pancreas by cytotoxic T-cells. To date, there are no drugs that can prevent the development of T1D. Insulin replacement therapy is the standard care for patients with T1D. This treatment is life-saving, but is expensive, can lead to acute and long-term complications, and results in reduced overall life expectancy. This has stimulated the research and development of alternative treatments for T1D. In this review, we consider potential therapies for T1D using cellular regenerative medicine approaches with a focus on CRISPR/Cas-engineered cellular products. However, CRISPR/Cas as a genome editing tool has several drawbacks that should be considered for safe and efficient cell engineering. In addition, cellular engineering approaches themselves pose a hidden threat. The purpose of this review is to critically discuss novel strategies for the treatment of T1D using genome editing technology. A well-designed approach to β-cell derivation using CRISPR/Cas-based genome editing technology will significantly reduce the risk of incorrectly engineered cell products that could behave as a "Trojan horse".
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Svetlana V. Pylina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Asya N. Bastrich
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Darya A. Petrova
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anna K. Eremkina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Natalia G. Mokrysheva
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| |
Collapse
|
19
|
Kirouac DC, Zmurchok C, Deyati A, Sicherman J, Bond C, Zandstra PW. Deconvolution of clinical variance in CAR-T cell pharmacology and response. Nat Biotechnol 2023; 41:1606-1617. [PMID: 36849828 PMCID: PMC10635825 DOI: 10.1038/s41587-023-01687-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) expansion and persistence vary widely among patients and predict both efficacy and toxicity. However, the mechanisms underlying clinical outcomes and patient variability are poorly defined. In this study, we developed a mathematical description of T cell responses wherein transitions among memory, effector and exhausted T cell states are coordinately regulated by tumor antigen engagement. The model is trained using clinical data from CAR-T products in different hematological malignancies and identifies cell-intrinsic differences in the turnover rate of memory cells and cytotoxic potency of effectors as the primary determinants of clinical response. Using a machine learning workflow, we demonstrate that product-intrinsic differences can accurately predict patient outcomes based on pre-infusion transcriptomes, and additional pharmacological variance arises from cellular interactions with patient tumors. We found that transcriptional signatures outperform T cell immunophenotyping as predictive of clinical response for two CD19-targeted CAR-T products in three indications, enabling a new phase of predictive CAR-T product development.
Collapse
Affiliation(s)
| | | | | | | | - Chris Bond
- Notch Therapeutics, Vancouver, BC, Canada
| | - Peter W Zandstra
- Notch Therapeutics, Vancouver, BC, Canada
- School of Biomedical Engineering and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Calviño C, Ceballos C, Alfonso A, Jauregui P, Calleja-Cervantes ME, San Martin-Uriz P, Rodriguez-Marquez P, Martin-Mallo A, Iglesias E, Abizanda G, Rodriguez-Diaz S, Martinez-Turrillas R, Illarramendi J, Viguria MC, Redondo M, Rifon J, Villar S, Lasarte JJ, Inoges S, Lopez-Diaz de Cerio A, Hernaez M, Prosper F, Rodriguez-Madoz JR. Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia. Front Immunol 2023; 14:1270843. [PMID: 37795087 PMCID: PMC10546312 DOI: 10.3389/fimmu.2023.1270843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.
Collapse
MESH Headings
- Animals
- Humans
- Aged
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
Collapse
Affiliation(s)
- Cristina Calviño
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Candela Ceballos
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Ana Alfonso
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Patricia Jauregui
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Maria E. Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Paula Rodriguez-Marquez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Angel Martin-Mallo
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Elena Iglesias
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Gloria Abizanda
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | | | - Rebeca Martinez-Turrillas
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Jorge Illarramendi
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Maria C. Viguria
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Margarita Redondo
- Hematology Department, Hospital Universitario de Navarra, IdiSNA, Pamplona, Spain
| | - Jose Rifon
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Sara Villar
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Juan J. Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascension Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mikel Hernaez
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Data Science and Artificial Intelligence Institute (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Juan R. Rodriguez-Madoz
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
22
|
Aparicio C, Acebal C, González-Vallinas M. Current approaches to develop "off-the-shelf" chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp Hematol Oncol 2023; 12:73. [PMID: 37605218 PMCID: PMC10440917 DOI: 10.1186/s40164-023-00435-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising advances in cancer treatment. It is based on genetically modified T cells to express a CAR, which enables the recognition of the specific tumour antigen of interest. To date, CAR-T cell therapies approved for commercialisation are designed to treat haematological malignancies, showing impressive clinical efficacy in patients with relapsed or refractory advanced-stage tumours. However, since they all use the patient´s own T cells as starting material (i.e. autologous use), they have important limitations, including manufacturing delays, high production costs, difficulties in standardising the preparation process, and production failures due to patient T cell dysfunction. Therefore, many efforts are currently being devoted to contribute to the development of safe and effective therapies for allogeneic use, which should be designed to overcome the most important risks they entail: immune rejection and graft-versus-host disease (GvHD). This systematic review brings together the wide range of different approaches that have been studied to achieve the production of allogeneic CAR-T cell therapies and discuss the advantages and disadvantages of every strategy. The methods were classified in two major categories: those involving extra genetic modifications, in addition to CAR integration, and those relying on the selection of alternative cell sources/subpopulations for allogeneic CAR-T cell production (i.e. γδ T cells, induced pluripotent stem cells (iPSCs), umbilical cord blood T cells, memory T cells subpopulations, virus-specific T cells and cytokine-induced killer cells). We have observed that, although genetic modification of T cells is the most widely used approach, new approaches combining both methods have emerged. However, more preclinical and clinical research is needed to determine the most appropriate strategy to bring this promising antitumour therapy to the clinical setting.
Collapse
Affiliation(s)
- Cristina Aparicio
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Carlos Acebal
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Margarita González-Vallinas
- Unit of Excellence Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), Universidad de Valladolid (UVa)-CSIC, Valladolid, Spain.
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
23
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
24
|
Lin RJ, Sutton J, Bentley T, Vargas-Inchaustegui DA, Nguyen D, Cheng HY, Yoon H, Van Blarcom TJ, Sasu BJ, Panowski SH, Sommer C. Constitutive Turbodomains enhance expansion and antitumor activity of allogeneic BCMA CAR T cells in preclinical models. SCIENCE ADVANCES 2023; 9:eadg8694. [PMID: 37540748 PMCID: PMC10403208 DOI: 10.1126/sciadv.adg8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The magnitude of CAR T cell expansion has been associated with clinical efficacy. Although cytokines can augment CAR T cell proliferation, systemically administered cytokines can result in toxicities. To gain the benefits of cytokine signaling while mitigating toxicities, we designed constitutively active synthetic cytokine receptor chimeras (constitutive Turbodomains) that signal in a CAR T cell-specific manner. The modular design of Turbodomains enables diverse cytokine signaling outputs from a single homodimeric receptor chimera and allows multiplexing of different cytokine signals. Turbodomains containing an IL-2/15Rβ-derived signaling domain closely mimicked IL-15 signaling and enhanced CAR T cell potency. Allogeneic TurboCAR T cells targeting BCMA showed no evidence of aberrant proliferation yet displayed enhanced expansion and antitumor activity, prolonging survival and preventing extramedullary relapses in mouse models. These results illustrate the potential of constitutive Turbodomains to achieve selective potentiation of CAR T cells and demonstrate the safety and efficacy of allogeneic BCMA TurboCAR T cells, supporting clinical evaluation in multiple myeloma.
Collapse
Affiliation(s)
- Regina J. Lin
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Janette Sutton
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Trevor Bentley
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | - Duy Nguyen
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Hsin-Yuan Cheng
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Hayung Yoon
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | - Barbra J. Sasu
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Siler H. Panowski
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Cesar Sommer
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| |
Collapse
|
25
|
Ahmed N, Wesson W, Mushtaq MU, Bansal R, AbdelHakim H, Bromert S, Appenfeller A, Ghazal BA, Singh A, Abhyankar S, Ganguly S, McGuirk J, Abdallah AO, Shune L. "Waitlist mortality" is high for myeloma patients with limited access to BCMA therapy. Front Oncol 2023; 13:1206715. [PMID: 37601685 PMCID: PMC10436079 DOI: 10.3389/fonc.2023.1206715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Background The first-in-class approved BCMA CAR-T therapy was idecabtagene vicleucel (ide-cel), approved in March 2021, for RRMM patients who progressed after 4 or more lines of therapy. Despite the promising outcomes, there were limited apheresis/production slots for ide-cel. We report outcomes of patients at our institution who were on the "waitlist" to receive ide-cel in 2021 and who could not secure a slot. Methods We conducted a retrospective review of RRMM patients evaluated at the University of Kansas Cancer Center for ide-cel from 3/2021-7/2021. A retrospective chart review was performed to determine patient and disease characteristics. Descriptive statistics were reported using medians for continuous variables. Survival analysis from initial consult was performed using Kaplan-Meier Survival estimator. Results Forty patients were eligible and were on the "waitlist" for CAR-T. The median follow-up was 14 months (2-25mo). Twenty-four patients (60%) secured a production slot and 16 (40%) did not. The median time from consult to collection was 38 days (8-703). The median time from collection to infusion was 42 days (34-132 days). The median overall survival was higher in the CAR-T group (NR vs 9 mo, p<0.001). Conclusions Many patients who were eligible for ide-cel were not able to secure a timely slot in 2021. Mortality was higher in this group, due to a lack of comparable alternatives. Increasing alternate options as well as improvement in manufacturing and access is an area of high importance to improve RRMM outcomes.
Collapse
Affiliation(s)
- Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - William Wesson
- School of Medicine, University of Kansas, Kansas, KS, United States
| | - Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Rajat Bansal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Haitham AbdelHakim
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Sarah Bromert
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Allison Appenfeller
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Batool Abu Ghazal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Anurag Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Sunil Abhyankar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Siddhartha Ganguly
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Joseph McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Al-Ola Abdallah
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| | - Leyla Shune
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, United States
| |
Collapse
|
26
|
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol 2023; 14:1190379. [PMID: 37304291 PMCID: PMC10248525 DOI: 10.3389/fimmu.2023.1190379] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.
Collapse
Affiliation(s)
- Deep Shah
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| | - Brian Soper
- Technical Information Services, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Lindsay Shopland
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| |
Collapse
|
27
|
Wang H, Tang L, Kong Y, Liu W, Zhu X, You Y. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. Int J Mol Sci 2023; 24:ijms24119115. [PMID: 37298069 DOI: 10.3390/ijms24119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies has made great progress, but there are still some problems. First, T cells from tumor patients show an exhaustion phenotype; thus, the persistence and function of the CAR-Ts are poor, and achieving a satisfactory curative effect is difficult. Second, some patients initially respond well but quickly develop antigen-negative tumor recurrence. Thirdly, CAR-T treatment is not effective in some patients and is accompanied by severe side effects, such as cytokine release syndrome (CRS) and neurotoxicity. The solution to these problems is to reduce the toxicity and enhance the efficacy of CAR-T therapy. In this paper, we describe various strategies for reducing the toxicity and enhancing the efficacy of CAR-T therapy in hematological malignancies. In the first section, strategies for modifying CAR-Ts using gene-editing technologies or combining them with other anti-tumor drugs to enhance the efficacy of CAR-T therapy are introduced. The second section describes some methods in which the design and construction of CAR-Ts differ from the conventional process. The aim of these methods is to enhance the anti-tumor activity of CAR-Ts and prevent tumor recurrence. The third section describes modifying the CAR structure or installing safety switches to radically reduce CAR-T toxicity or regulating inflammatory cytokines to control the symptoms of CAR-T-associated toxicity. Together, the knowledge summarized herein will aid in designing better-suited and safer CAR-T treatment strategies.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Liu
- Department of Pain Treatment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
28
|
Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol 2023; 14:1188049. [PMID: 37256141 PMCID: PMC10225594 DOI: 10.3389/fimmu.2023.1188049] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a major breakthrough in cancer care since the approval of tisagenlecleucel by the Food and Drug Administration in 2017 for the treatment of pediatric and young adult patients with relapsed or refractory acute lymphocytic leukemia. As of April 2023, six CAR T cell therapies have been approved, demonstrating unprecedented efficacy in patients with B-cell malignancies and multiple myeloma. However, adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity pose significant challenges to CAR T cell therapy. The severity of these adverse events correlates with the pretreatment tumor burden, where a higher tumor burden results in more severe consequences. This observation is supported by the application of CD19-targeted CAR T cell therapy in autoimmune diseases including systemic lupus erythematosus and antisynthetase syndrome. These results indicate that initiating CAR T cell therapy early at low tumor burden or using debulking strategy prior to CAR T cell infusion may reduce the severity of adverse events. In addition, CAR T cell therapy is expensive and has limited effectiveness against solid tumors. In this article, we review the critical steps that led to this groundbreaking therapy and explore ongoing efforts to overcome these challenges. With the promise of more effective and safer CAR T cell therapies in development, we are optimistic that a broader range of cancer patients will benefit from this revolutionary therapy in the foreseeable future.
Collapse
Affiliation(s)
- Aroshi Mitra
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amrita Barua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Luping Huang
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Siddhartha Ganguly
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Section of Hematology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bin He
- Immunobiology and Transplant Science Center, Departments of Surgery and Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
29
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Sasu BJ, Opiteck GJ, Gopalakrishnan S, Kaimal V, Furmanak T, Huang D, Goswami A, He Y, Chen J, Nguyen A, Balakumaran A, Shah NN, Hamadani M, Bone KM, Prashad S, Bowen MA, Pertel T, Embree HD, Gidwani SG, Chang D, Moore A, Leonard M, Amado RG. Detection of chromosomal alteration after infusion of gene-edited allogeneic CAR T cells. Mol Ther 2023; 31:676-685. [PMID: 36518079 PMCID: PMC10014221 DOI: 10.1016/j.ymthe.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity. The inversion represented a dominant clone detected in the context of decreasing absolute CAR Tcell and overall lymphocyte counts. The inversion was not associated with clinical consequences and wasnot detected in the drug product administered to this patient or in any drug product used in this or other trials using the same manufacturing processes. Neither was the inversion detected in this patient at earlier time points or in any other patient enrolled in this or other trials treated with this or other product lots. This case illustrates that spontaneous, possibly RAG-mediated, recombination events unrelated to gene editing can occur in adoptive cell therapy studies, emphasizes the need for ruling out off-target gene editing sites, and illustrates that other processes, such as spontaneous V(D)J recombination, can lead to chromosomal alterations in infused cells independent of gene editing.
Collapse
Affiliation(s)
- Barbra J Sasu
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Vivek Kaimal
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Tom Furmanak
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - David Huang
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Ying He
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Jiamin Chen
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Anh Nguyen
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Nirav N Shah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kathleen M Bone
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sacha Prashad
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | - Thomas Pertel
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - David Chang
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Alison Moore
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Mark Leonard
- Allogene Therapeutics, South San Francisco, CA 94080, USA
| | - Rafael G Amado
- Allogene Therapeutics, South San Francisco, CA 94080, USA.
| |
Collapse
|
31
|
Zhang Y, Tacheva-Grigorova SK, Sutton J, Melton Z, Mak YSL, Lay C, Smith BA, Sai T, Van Blarcom T, Sasu BJ, Panowski SH. Allogeneic CAR T Cells Targeting DLL3 Are Efficacious and Safe in Preclinical Models of Small Cell Lung Cancer. Clin Cancer Res 2023; 29:971-985. [PMID: 36692420 DOI: 10.1158/1078-0432.ccr-22-2293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Delta-like ligand 3 (DLL3) is highly expressed on SCLC and several other types of neuroendocrine cancers, with limited normal tissue RNA expression in brain, pituitary, and testis, making it a promising CAR T-cell target for SCLC and other solid tumor indications. EXPERIMENTAL DESIGN A large panel of anti-DLL3 scFv-based CARs were characterized for both in vitro and in vivo activity. To understand the potential for pituitary and brain toxicity, subcutaneous or intracranial tumors expressing DLL3 were implanted in mice and treated with mouse cross-reactive DLL3 CAR T cells. RESULTS A subset of CARs demonstrated high sensitivity for targets with low DLL3 density and long-term killing potential in vitro. Infusion of DLL3 CAR T cells led to robust antitumor efficacy, including complete responses, in subcutaneous and systemic SCLC in vivo models. CAR T-cell infiltration into intermediate and posterior pituitary was detected, but no tissue damage in brain or pituitary was observed, and the hormone-secretion function of the pituitary was not ablated. CONCLUSIONS In summary, the preclinical efficacy and safety data presented here support further evaluation of DLL3 CAR T cells as potential clinical candidates for the treatment of SCLC.
Collapse
Affiliation(s)
- Yi Zhang
- Allogene Therapeutics, South San Francisco, California
| | | | | | - Zea Melton
- Allogene Therapeutics, South San Francisco, California
| | | | - Cecilia Lay
- Allogene Therapeutics, South San Francisco, California
| | - Bryan A Smith
- Allogene Therapeutics, South San Francisco, California
| | - Tao Sai
- Pfizer Worldwide Research and Development, South San Francisco, California
| | | | - Barbra J Sasu
- Allogene Therapeutics, South San Francisco, California
| | | |
Collapse
|
32
|
Naeem M, Hazafa A, Bano N, Ali R, Farooq M, Razak SIA, Lee TY, Devaraj S. Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy. Life Sci 2023; 316:121409. [PMID: 36681183 DOI: 10.1016/j.lfs.2023.121409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Chimeric antigen receptor (CAR) T therapy has shown remarkable success in discovering novel CAR-T cell products for treating malignancies. Despite of successful results from clinical trials, CAR-T cell therapy is ineffective for long-term disease progression. Numerous challenges of CAR-T cell immunotherapy such as cell dysfunction, cytokine-related toxicities, TGF-β resistance, GvHD risks, antigen escape, restricted trafficking, and tumor cell infiltration still exist that hamper the safety and efficacy of CAR-T cells for malignancies. The accumulated data revealed that these challenges could be overcome with the advanced CRISPR genome editing technology, which is the most promising tool to knockout TRAC and HLA genes, inhibiting the effects of dominant negative receptors (PD-1, TGF-β, and B2M), lowering the risks of cytokine release syndrome (CRS), and regulating CAR-T cell function in the tumor microenvironment (TME). CRISPR technology employs DSB-free genome editing methods that robustly allow efficient and controllable genetic modification. The present review explored the innovative aspects of CRISPR/Cas9 technology for developing next-generation/universal allogeneic CAR-T cells. The present manuscript addressed the ongoing status of clinical trials of CRISPR/Cas9-engineered CAR-T cells against cancer and pointed out the off-target effects associated with CRISPR/Cas9 genome editing. It is concluded that CAR-T cells modified by CRISPR/Cas9 significantly improved antitumor efficacy in a cost-effective manner that provides opportunities for novel cancer immunotherapies.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, 050024 Shijiazhuang, China
| | - Abu Hazafa
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy; Department of Biochemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan.
| | - Naheed Bano
- Department of Fisheries and Aquaculture, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Rashid Ali
- Department of Zoology, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Tze Yan Lee
- School of Liberal Arts, Science and Technology (PUScLST) Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Sutha Devaraj
- Faculty of Medicine, AIMST University, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
33
|
Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat Med 2023; 29:422-429. [PMID: 36690811 DOI: 10.1038/s41591-022-02182-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023]
Abstract
ALLO-715 is a first-in-class, allogeneic, anti-BCMA CAR T cell therapy engineered to abrogate graft-versus-host disease and minimize CAR T rejection. We evaluated escalating doses of ALLO-715 after lymphodepletion with an anti-CD52 antibody (ALLO-647)-containing regimen in 43 patients with relapsed/refractory multiple myeloma as part A of the ongoing first-in-human phase 1 UNIVERSAL trial. Primary objectives included determination of the safety and tolerability of ALLO-715 and the safety profile of the ALLO-647-containing lymphodepletion regimen. Key secondary endpoints were response rate and duration of response. Grade ≥3 adverse events were reported in 38 (88.0%) of patients. Cytokine release syndrome was observed in 24 patients (55.8%), with 1 grade ≥3 event (2.3%) and neurotoxicity in 6 patients (14%), with no grade ≥3 events. Infections occurred in 23 patients (53.5%), with 10 (23.3%) of grade ≥3. Overall, 24 patients (55.8%) had a response. Among patients treated with 320 × 106 CAR+ T cells and a fludarabine-, cyclophosphamide- and ALLO-647-based lymphodepletion regimen (n = 24), 17 (70.8%) had a response including 11 (45.8%) with very good partial response or better and 6 (25%) with a complete response/stringent complete response. The median duration of response was 8.3 months. These initial results support the feasibility and safety of allogeneic CAR T cell therapy for myeloma.
Collapse
|
34
|
Malise TTA, Nweke EE, Takundwa MM, Fru PF, Thimiri Govinda Raj DB. Treatment Strategies for Multiple Myeloma Treatment and the Role of High-Throughput Screening for Precision Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:167-185. [PMID: 37243923 DOI: 10.1007/5584_2023_775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the past few years, development of approved drug candidates has improved the disease management of multiple myeloma (MM). However, due to drug resistance, some of the patients do not respond positively, while some of the patients acquire drug resistance, thereby these patients eventually relapse. Hence, there are no other therapeutic options for multiple myeloma patients. Therefore, this necessitates a precision-based approach to multiple myeloma therapy. The use of patient's samples to test drug sensitivity to increase efficacy and reduce treatment-related toxicities is the goal of functional precision medicine. Platforms such as high-throughput-based drug repurposing technology can be used to select effective single drug and drug combinations based on the efficacy and toxicity studies within a time frame of couple of weeks. In this article, we describe the clinical and cytogenetic features of MM. We highlight the various treatment strategies and elaborate on the role of high-throughput screening platforms in a precision-based approach towards clinical treatment.
Collapse
Affiliation(s)
| | - Ekene Emmanuel Nweke
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Mutsa M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Pascaline Fonteh Fru
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak B Thimiri Govinda Raj
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa.
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
- Faculty of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
35
|
Zhou Z, Li J, Hong J, Chen S, Chen M, Wang L, Lin W, Ye Y. Interleukin-15 and chemokine ligand 19 enhance cytotoxic effects of chimeric antigen receptor T cells using zebrafish xenograft model of gastric cancer. Front Immunol 2022; 13:1002361. [PMID: 36618357 PMCID: PMC9816141 DOI: 10.3389/fimmu.2022.1002361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been proven effective for the treatment of B-cell-mediated malignancies. Currently, the development of efficient tools that supply CAR T cells for the treatment of other malignancies would have great impact. In this study, interleukin (IL)-15 and C-C motif chemokine ligand 19 (CCL19) were introduced into natural killer group 2D (NKG2D)-based CARs to generate 15×19 CAR T cells, which remarkably increased T-cell expansion and promoted the production of central memory T (Tcm) cells. 15×19 CAR T cells showed greater cytotoxicity to gastric cell lines than conventional CAR T cells and produced higher levels of IL-15 and CCL-19, which resulted in increased responder T cell chemotaxis and reduced expression of T cell exhaustion markers. A live zebrafish model was used for single-cell visualization of local cytotoxicity and metastatic cancers. Administration of 15×19 CAR T cells resulted in significant shrinking of gastric cancer xenograft tumors and expansion of 15×19 CAR T cells in zebrafish models. Taken together, these findings demonstrate that 15×19 CAR T cells are highly efficient in killing gastric cancer cells, are effective to avoid off-target effects, and migrate to local and metastatic sites for long-term surveillance of cancers.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China,School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China,School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China
| | - Jingwen Hong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Mingshui Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China,School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China,School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China,*Correspondence: Yunbin Ye, ; Wansong Lin,
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China,Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China,School of Basic Medical Sciences, Fujian Medical University, Fuzhu, Fujian, China,*Correspondence: Yunbin Ye, ; Wansong Lin,
| |
Collapse
|
36
|
Banerjee R, Lee SS, Cowan AJ. Innovation in BCMA CAR-T therapy: Building beyond the Model T. Front Oncol 2022; 12:1070353. [PMID: 36505779 PMCID: PMC9729952 DOI: 10.3389/fonc.2022.1070353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Autologous chimeric antigen receptor T-cell (CAR-T) therapies targeting B-cell maturation antigen (BCMA) have revolutionized the field of multiple myeloma in the same way that the Ford Model T revolutionized the original CAR world a century ago. However, we are only beginning to understand how to improve the efficacy and usability of these cellular therapies. In this review, we explore three automotive analogies for innovation with BCMA CAR-T therapies: stronger engines, better mileage, and hassle-free delivery. Firstly, we can build stronger engines in terms of BCMA targeting: improved antigen binding, tools to modulate antigen density, and armoring to better reach the antigen itself. Secondly, we can improve "mileage" in terms of response durability through ex vivo CAR design and in vivo immune manipulation. Thirdly, we can implement hassle-free delivery through rapid manufacturing protocols and off-the-shelf products. Just as the Model T set a benchmark for car manufacturing over 100 years ago, idecabtagene vicleucel and ciltacabtagene autoleucel have now set the starting point for BCMA CAR-T therapy with their approvals. As with any emerging technology, whether automotive or cellular, the best in innovation and optimization is yet to come.
Collapse
Affiliation(s)
- Rahul Banerjee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sarah S. Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Andrew J. Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
37
|
Watchmaker PB, Colton M, Pineo-Cavanaugh PL, Okada H. Future development of chimeric antigen receptor T cell therapies for patients suffering from malignant glioma. Curr Opin Oncol 2022; 34:661-669. [PMID: 35855503 PMCID: PMC9560977 DOI: 10.1097/cco.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy has been successful in some haematologic malignancies, but the central nervous system (CNS) presents unique obstacles to its use against tumours arising therein. This review discusses recent improvements in the delivery and design of these cells to improve the efficacy and safety of this treatment against malignant gliomas. RECENT FINDINGS The immunosuppressive environment of the CNS affects the functionality of CAR T cells, but recent developments using metabolic manipulation and cytokine delivery have shown that the performance of CAR T cells can be improved in this environment. Emerging techniques can improve the delivery of CAR T cells to the CNS parenchyma, which is normally well protected from peripheral immune cells. The implementation of novel antigens and CAR-expression regulation strategies will improve the specificity and efficacy of these cells. Finally, although autologous T cells have historically been the standard, recent developments have made the use of allogeneic T cells or natural killer (NK) cells more clinically feasible. SUMMARY The discoveries highlighted in this review will aid the development of CAR cells that are safer, more resilient against immunosuppressive signals in the CNS, and able to specifically target intracranial tumour cells.
Collapse
Affiliation(s)
| | - Maggie Colton
- Department of Neurosurgery, University of California, San Francisco
| | | | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy
| |
Collapse
|
38
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
39
|
Rive CM, Yung E, Dreolini L, Brown SD, May CG, Woodsworth DJ, Holt RA. Selective B cell depletion upon intravenous infusion of replication-incompetent anti-CD19 CAR lentivirus. Mol Ther Methods Clin Dev 2022; 26:4-14. [PMID: 35755944 PMCID: PMC9198363 DOI: 10.1016/j.omtm.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/25/2022] [Indexed: 12/27/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. If engineered for improved safety, direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion, and anti-tumor activity could provide an alternative, universal approach. To explore this approach we administered approximately 20 million replication-incompetent vesicular stomatitis virus G protein (VSV-G) lentiviral particles carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain, or a GFP-only control transgene, to wild-type C57BL/6 mice by tail vein infusion. The dynamics of immune cell subsets isolated from peripheral blood were monitored at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5% ± 0.58% (mean ± SD) and 7.8% ± 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CAR or FMC63-CAR lentivector, respectively, followed by a rapid decline in each case of the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). No significant CAR-positive populations were observed within other immune cell subsets or other tissues. These results indicate that direct intravenous infusion of conventional VSV-G-pseudotyped lentiviral particles carrying a CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild-type mice.
Collapse
Affiliation(s)
- Craig M. Rive
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Eric Yung
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Scott D. Brown
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Christopher G. May
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Daniel J. Woodsworth
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author Robert A. Holt, PhD, Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
40
|
Diorio C, Murray R, Naniong M, Barrera L, Camblin A, Chukinas J, Coholan L, Edwards A, Fuller T, Gonzales C, Grupp SA, Ladd A, Le M, Messana A, Musenge F, Newman H, Poh YC, Poulin H, Ryan T, Shraim R, Tasian SK, Vincent T, Young L, Zhang Y, Ciaramella G, Gehrke J, Teachey DT. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood 2022; 140:619-629. [PMID: 35560156 PMCID: PMC9373016 DOI: 10.1182/blood.2022015825] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Allogeneic chimeric antigen receptor T-cell (CART) therapies require multiple gene edits to be clinically tractable. Most allogeneic CARTs have been created using gene editing techniques that induce DNA double-stranded breaks (DSBs), resulting in unintended on-target editing outcomes with potentially unforeseen consequences. Cytosine base editors (CBEs) install C•G to T•A point mutations in T cells, with between 90% and 99% efficiency to silence gene expression without creating DSBs, greatly reducing or eliminating undesired editing outcomes following multiplexed editing as compared with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Using CBE, we developed 7CAR8, a CD7-directed allogeneic CART created using 4 simultaneous base edits. We show that CBE, unlike CRISPR-Cas9, does not impact T-cell proliferation, lead to aberrant DNA damage response pathway activation, or result in karyotypic abnormalities following multiplexed editing. We demonstrate 7CAR8 to be highly efficacious against T-cell acute lymphoblastic leukemia (T-ALL) using multiple in vitro and in vivo models. Thus, CBE is a promising technology for applications requiring multiplexed gene editing and can be used to manufacture quadruple-edited 7CAR8 cells, with high potential for clinical translation for relapsed and refractory T-ALL.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | | | | | | | - John Chukinas
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Tori Fuller
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Stephan A Grupp
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | | | | | | | - Haley Newman
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | | | | | - Theresa Ryan
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Rawan Shraim
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah K Tasian
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| | - Tiffaney Vincent
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | | | - David T Teachey
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and
| |
Collapse
|
41
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
42
|
Lin RJ, Nager AR, Park S, Sutton J, Lay C, Melton Z, Zhang Y, Boldajipour B, Van Blarcom TJ, Panowski SH, Sasu BJ, Chaparro-Riggers J. Design and Validation of Inducible TurboCARsTM with Tunable Induction and Combinatorial Cytokine Signaling. Cancer Immunol Res 2022; 10:1069-1083. [PMID: 35881865 DOI: 10.1158/2326-6066.cir-21-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Although cytokine support can enhance CAR T-cell function, co-administering cytokines or engineering CAR T cells to secrete cytokines can result in toxicities. To mitigate these safety risks, we engineered iTurboCARTM T cells that coexpress a novel inducible Turbo (iTurbo) cytokine signaling domain. iTurbo domains consist of modular components that are customizable to a variety of activating inputs, as well as cytokine signaling outputs multiplexable for combinatorial signaling outcomes. Unlike most canonical cytokine receptors that are heterodimeric, iTurbo domains leverage a compact, homodimeric design that minimizes viral vector cargo. Using an iTurbo domain activated by the clinically validated dimerizer, AP1903, homodimeric iTurbo domains instigated signaling that mimicked the endogenous heterodimeric cytokine receptor. Different iTurbo domains programmed iTurboCAR T cells towards divergent phenotypes and resulted in improved anti-tumor efficacy. iTurbo domains, therefore, offer the flexibility for user-programmable signaling outputs, permitting control over cellular phenotype and function, while minimizing viral cargo footprint.
Collapse
Affiliation(s)
- Regina J Lin
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | | | - Spencer Park
- Weill Cornell Medicine, Seattle, WA, United States
| | - Janette Sutton
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Cecilia Lay
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Zea Melton
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Yi Zhang
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | | | | | | | - Barbra J Sasu
- Allogene Therapuetics Inc, South San Francisco, CA, United States
| | | |
Collapse
|
43
|
Development of minimal physiologically-based pharmacokinetic-pharmacodynamic models for characterizing cellular kinetics of CAR T cells following local deliveries in mice. J Pharmacokinet Pharmacodyn 2022; 49:525-538. [PMID: 35869348 PMCID: PMC9508025 DOI: 10.1007/s10928-022-09818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have revolutionized the treatment of hematologic malignancies and have potentials for solid tumor treatment. To overcome limited CAR T cell infiltration to solid tumors, local delivery of CAR T cells is a practical strategy that has shown promising therapeutic outcome and safety profile in the clinic. It is of great interest to understand the impact of dosing routes on CAR T cell distribution, subsequent proliferation and tumor killing in a quantitative manner to identify key factors that contribute to CAR T efficacy and safety. In this study, we established mouse minimal physiologically-based pharmacokinetic (mPBPK) models combined with pharmacodynamic (PD) components to delineate CAR T cell distribution, proliferation, tumor growth, and tumor cell killing in the cases of pleural and liver tumors. The pleural tumor model reasonably captured published CAR T cellular kinetic and tumor growth profiles in mice. The mPBPK-PD simulation of a liver tumor mouse model showed a substantial increase in initial tumor infiltration and earlier CAR T cell proliferation with local hepatic artery delivery compared to portal vein and intravenous (i.v.) injections whereas portal vein injection showed little difference from i.v. administration, suggesting the importance of having the injection site close to tumor for maximal effect of non-systemic administration. Blood flow rate in the liver tumor was found to be a sensitive parameter for cellular kinetics and efficacy, indicating a potential role of tumor vascularization in the efficacy of CAR T cell therapies.
Collapse
|
44
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
45
|
Kegyes D, Constantinescu C, Vrancken L, Rasche L, Gregoire C, Tigu B, Gulei D, Dima D, Tanase A, Einsele H, Ciurea S, Tomuleasa C, Caers J. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient? J Hematol Oncol 2022; 15:78. [PMID: 35672793 PMCID: PMC9171942 DOI: 10.1186/s13045-022-01296-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that affects an increasing number of patients worldwide. Despite all the efforts to understand its pathogenesis and develop new treatment modalities, MM remains an incurable disease. Novel immunotherapies, such as CAR T cell therapy (CAR) and bispecific T cell engagers (BiTE), are intensively targeting different surface antigens, such as BMCA, SLAMF7 (CS1), GPRC5D, FCRH5 or CD38. However, stem cell transplantation is still indispensable in transplant-eligible patients. Studies suggest that the early use of immunotherapy may improve outcomes significantly. In this review, we summarize the currently available clinical literature on CAR and BiTE in MM. Furthermore, we will compare these two T cell-based immunotherapies and discuss potential therapeutic approaches to promote development of new clinical trials, using T cell-based immunotherapies, even as bridging therapies to a transplant.
Collapse
Affiliation(s)
- David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Catalin Constantinescu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Louise Vrancken
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Leo Rasche
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Celine Gregoire
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Stefan Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.
| | - Jo Caers
- Laboratory of Hematology, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
46
|
Atilla PA, Atilla E. Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies. Transl Oncol 2022; 22:101459. [PMID: 35617812 PMCID: PMC9136177 DOI: 10.1016/j.tranon.2022.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
Some patients may experience resistance to CD19 CAR T cell and BCMA CAR T cell therapies or relapse after treatment. Mechanisms of resistance to CAR T cell therapies may be related to CAR structure, T cell factors or tumor associated factors. The strategies to overcome the resistance would allow CD19 CAR T cells or BCMA CAR T cell to be applied with a broader perspective.
Chimeric antigen receptor T (CAR T) cell therapy is a new treatment paradigm that has revolutionized the treatment of CD19-positive B cell malignancies and BCMA-positive plasma cell malignancies. The response rates are highly impressive in comparison to historical cohorts, but the responses are not durable. The most recent results from pivotal trials show that current CAR T cell products fail to demonstrate optimal long-term disease control. Resistance to CAR T cells is related to CAR structure, T cell factors, tumor factors and the immunosuppressive microenvironment. Novel strategies are needed following failure with CAR T cell treatment. In this review, we discuss the resistance mechanisms to CAR T cell treatment according to disease and the emerging strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Erden Atilla
- Department of Hematology, Mersin City Hospital, Mersin, Turkey.
| |
Collapse
|
47
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
48
|
Emole J, Lawal O, Lupak O, Dias A, Shune L, Yusuf K. Demographic differences among patients treated with chimeric antigen receptor T-cell therapy in the United States. Cancer Med 2022; 11:4440-4448. [PMID: 35527361 PMCID: PMC9741965 DOI: 10.1002/cam4.4797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is not clear if all Americans have benefitted equally from the availability of chimeric antigen receptor T-cell (CART) therapy. We aimed to evaluate if demographic differences existed among adult patients who received CART therapy and to assess predictors of CART treatment outcomes. METHODS Records of patients ≥18 years who received CART therapy for non-Hodgkin's lymphoma, acute lymphoblastic leukemia, and multiple myeloma in 2018 were evaluated in the National Inpatient Sample. Acute complications and inhospital mortality were compared between two groups of CART recipients: Whites and non-Whites. Logistic regression analysis was used to evaluate the association between sociodemographic factors and inhospital mortality. RESULTS Of 1275 CART recipients that met inclusion criteria, there were 40.4% of females, 66.9% of Whites, Blacks (4.2%), Hispanics (13.3%), Asians or Pacific Islanders (4.2%), and Native Americans (1.3%). Up to 96.8% of CART procedures were performed in urban teaching hospitals, and 85.3% of CART recipients lived in metropolitan counties. Non-Whites, compared to Whites, were younger at the time of CART therapy (p < 0.001). The inhospital mortality rate was higher in non-Whites, though not statistically significant (5.4% vs. 4.4%, p = 0.764). There were no differences in length of hospital stay, hospital charges, or rates of acute toxicities between the two race groups. We found no association between race and treatment outcomes. Gender, neurotoxicity, and Charlson Comorbidity Index were significant predictors of inhospital mortality. CONCLUSIONS CART therapy recipients in the United States were more likely to be Whites and more likely to be residents of metropolitan areas. These observed demographic differences were not associated with treatment outcomes or inhospital mortalities.
Collapse
Affiliation(s)
- Josephine Emole
- Stem Cell Transplantation and Cellular TherapyHenry Ford HospitalDetroitMichiganUSA
| | - Odunayo Lawal
- Clinical and Translational Science ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Oleksandra Lupak
- Hematology/OncologyUniversity of South CarolinaCharlestonSouth CarolinaUSA
| | - Ajoy Dias
- Blood and Marrow TransplantationBeth Israel Deaconess HospitalBostonMassachusettsUSA
| | - Leyla Shune
- Hematological Malignancies and Cellular TherapeuticsThe University of Kansas Health SystemKansas CityUSA
| | - Korede Yusuf
- Public Health ProgramAdelphi UniversityGarden CityNew YorkUSA
| |
Collapse
|
49
|
Al Hadidi S, Zangari M, van Rhee F. Chimeric Antigen Receptor T-Cell Therapy in Multiple Myeloma-Challenges and Potential Solutions. JAMA Oncol 2022; 8:823-824. [PMID: 35482363 DOI: 10.1001/jamaoncol.2022.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Maurizio Zangari
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Frits van Rhee
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
50
|
Paul B, Rodriguez C, Usmani SZ. BCMA-Targeted Biologic Therapies: The Next Standard of Care in Multiple Myeloma Therapy. Drugs 2022; 82:613-631. [PMID: 35412114 PMCID: PMC9554894 DOI: 10.1007/s40265-022-01697-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
With recent advances in myeloma therapy, patients can achieve long-term remissions, but eventually relapses will occur. Triple-class refractory myeloma (disease that is refractory to an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody) and penta-refractory myeloma (disease that is refractory to two proteasome inhibitors, two immunomodulatory agents, and an anti-CD38 antibody) are associated with a particularly poor prognosis, and novel treatments are desperately needed for these patients. Targeting B cell maturation antigen (BCMA), which is ubiquitously expressed on plasma cells, has emerged as a well-tolerated and highly efficacious strategy in patients with relapsed and refractory myeloma. Several mechanisms of targeting BCMA are currently under investigation, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells and natural killer (NK) cells, all with unique side effect profiles. Early phase clinical trials showed unprecedented response rates in highly refractory myeloma patients, leading to the recent approvals of some of these agents. Still, many questions remain with regard to this target, including how best to target it, how to treat patients who have progressed on a BCMA-targeting therapy, and whether response rates will deepen if these agents are used in earlier lines of therapy. In this review, we examine the rationale for targeting BCMA and summarize the data for several agents across multiple classes of BCMA-targeting therapeutics, paying special attention to the diverse mechanisms and unique challenges of each therapeutic class.
Collapse
Affiliation(s)
- Barry Paul
- Division of Plasma Cell Disorders, Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|