1
|
Ferreira da Silva CV, da Silva CJF, Bacila Sade Y, Naressi Scapin SM, Thompson FL, Thompson C, da Silva-Boghossian CM, de Oliveira Santos E. Prospecting Specific Protein Patterns for High Body Mass Index (BMI), Metabolic Syndrome and Type 2 Diabetes in Saliva and Blood Plasma From a Brazilian Population. Proteomics Clin Appl 2024; 18:e202300238. [PMID: 39073314 DOI: 10.1002/prca.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Obesity and its associated metabolic disorders, such as T2DM and MeS, are a growing public health problem worldwide. Our goal was the identification of protein patterns that are uniquely characteristic of higher BMI, MeS, and T2DM in a Brazilian population. EXPERIMENTAL DESIGN Saliva and plasma proteomes, clinical parameters were analyzed in a population from the state of Rio de Janeiro, Brazil, a mixed-race population. Volunteers were sorted by their BMI into normal (n = 29), overweight (n = 25), and obese (n = 15) and were compared with individuals with MeS (n = 23) and T2DM (n = 11). RESULTS The Random Forest (RF) predictive model revealed that three clinical variables, BMI, HOMA-IR, and fasting blood glucose, are most important for predicting MeS and T2DM. A total of six plasmatic proteins (ABCD4, LDB1, PDZ, podoplanin, lipirin-alpha-3, and WRS) and six salivary proteins (hemoglobin subunit beta, POTEE, T cell receptor alpha variable 9-2, lactotransferrin, cystatin-S, carbonic anhydrase 6), are enhanced in T2DM and in MeS. CONCLUSIONS AND CLINICAL RELEVANCE Our data revealed similar alterations in protein composition across individuals with abnormal weight gain, T2DM, and MeS. This finding confirms the close link between these conditions at the molecular level in the studied population, potentially enhancing our understanding of these diseases and paving the way for the development of novel diagnostic tools.
Collapse
Affiliation(s)
| | - Carlos José Ferreira da Silva
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| | - Youssef Bacila Sade
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| | | | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Eidy de Oliveira Santos
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| |
Collapse
|
2
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
3
|
Min EK, Kim SR, Lee CM, Na KH, Park CH, Oh BC, Jung Y, Hong IS. Identification of memory mechanism in tissue-resident stem cells via ANGPTL4 beyond immune cells upon viral antigen exposure. Mol Ther 2024; 32:3042-3058. [PMID: 38582960 PMCID: PMC11403228 DOI: 10.1016/j.ymthe.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Although memory functions of immune cells characterized by increased resistance to subsequent infections after initial pathogen exposure are well-established, it remains unclear whether non-immune cells, especially tissue-resident stem cells, exhibit similar memory mechanisms. The present study revealed that detrimental effects of initial viral antigen exposure (human papillomavirus [HPV]) on diverse stem cell functions were significantly exacerbated upon subsequent secondary exposure both in vitro and in vivo. Importantly, endometrial stem cells exhibited robust memory functions following consecutive HPV antigen exposures, whereas fully differentiated cells such as fibroblasts and vesicular cells did not show corresponding changes in response to the same antigen exposures. Deficiency of angiopoietin-like 4 (ANGPTL4) achieved through small hairpin RNA knockdown in vitro and knockout (KO) mice in vivo highlighted the critical role of ANGPTL4 in governing memory functions associated with various stem cell processes. This regulation occurred through histone H3 methylation alterations and PI3K/Akt signaling pathways in response to successive HPV antigen exposures. Furthermore, memory functions associated with various stem cell functions that were evident in wild-type mice following consecutive exposures to HPV antigen were not observed in ANGPTL4 KO mice. In summary, our findings strongly support the presence of memory mechanism in non-immune cells, particularly tissue-resident stem cells.
Collapse
Affiliation(s)
- Eun-Kyung Min
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Choon-Mi Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Kun-Hee Na
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea.
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| |
Collapse
|
4
|
Park S, Min E, Kim S, Kim S, Na K, Park CH, Jung Y, Oh B, Hong I. Exploring Memory Function Beyond Immune Cells: ANGPTL4-Mediated Memory Functions in Tissue Resident Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307545. [PMID: 38666393 PMCID: PMC11267307 DOI: 10.1002/advs.202307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/15/2024] [Indexed: 07/25/2024]
Abstract
Adapted immune cells are known to develop memory functions that increase resistance to subsequent infections after initial pathogen exposure, however, it is unclear whether non-immune cells, like tissue-resident stem cells, have similar memory functions. Here, it is found that tissue-resident stem cells crucial for tissue regeneration show diminished adverse effects on diverse stem cell functions against successive exposure to foreign antigen (β-glucan) to maintain tissue homeostasis and stability both in vitro and in vivo. These data suggest that endometrial stem cells may possess a robust memory function, in contrast, fully differentiated cells like fibroblasts and vesicular cells do not show these memory mechanisms upon consecutive antigen exposure. Moreover, the pivotal role of Angiopoietin-like 4 (ANGPTL4) in regulating the memory functions of endometrial stem cells is identified through specific shRNA knockdown in vitro and knockout mice in vivo experiments. ANGPTL4 is associated with the alteration of diverse stem cell functions and epigenetic modifications, notably through histone H3 methylation changes and two pathways (i.e., PI3K/Akt and FAK/ERK1/2 signaling) upon consecutive antigen exposure. These findings imply the existence of inherent self-defense mechanisms through which local stem cells can adapt and protect themselves from recurrent antigenic challenges, ultimately mitigating adverse consequences.
Collapse
Affiliation(s)
- Se‐Ra Park
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Eun‐kyung Min
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Soo‐Rim Kim
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Suk‐Kyung Kim
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| | - Kun‐Hee Na
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Microbiology, College of MedicineGachon UniversityIncheon21999Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology‐Head and Neck Surgery, Chuncheon Sacred Heart HospitalHallym University College of MedicineChuncheon24201Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of MedicineGachon UniversityIncheon21999Republic of Korea
| | - Byung‐Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheon21999Republic of Korea
| | - In‐Sun Hong
- Department of Health Sciences and Technology, GAIHSTGachon UniversityIncheon21999Republic of Korea
- Department of Molecular Medicine, School of MedicineGachon UniversityIncheon406–840Republic of Korea
| |
Collapse
|
5
|
Hong IS. Endometrial Stem Cells: Orchestrating Dynamic Regeneration of Endometrium and Their Implications in Diverse Endometrial Disorders. Int J Biol Sci 2024; 20:864-879. [PMID: 38250149 PMCID: PMC10797688 DOI: 10.7150/ijbs.89795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The human endometrium, a vital component of the uterus, undergoes dynamic changes during the menstrual cycle to create a receptive environment for embryo implantation. Its remarkable regenerative capacity can be attributed to the presence of tissue-resident stem cell populations within the endometrium. Despite variations in characteristics among different subtypes, endometrial stem cells exhibit notably robust self-renewal capacity and the ability to differentiate into multiple lineages. This review offers a comprehensive insight into the current literature and recent advancements regarding the roles of various endometrial stem cell types during dynamic regeneration of the endometrium during the menstrual cycle. In addition, emerging evidence suggests that dysfunction or depletion of endometrial stem cells may play critical roles in the development and progression of various endometrial disorders, such as endometriosis, uterine fibroids, adenomyosis, infertility, and endometrial cancer. Therefore, we also highlight potential roles of endometrial stem cells in the development and progression of these endometrial diseases, including their ability to accumulate genetic mutations and express genes associated with endometrial diseases. Understanding the dynamic properties of the endometrium and the roles of endometrial stem cells in various endometrial disorders will shed light on potential therapeutic strategies for managing these conditions and improving women's fertility outcomes.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
6
|
Lee JW, Lee HY. Exploring distinct properties of endometrial stem cells through advanced single-cell analysis platforms. Stem Cell Res Ther 2023; 14:379. [PMID: 38124100 PMCID: PMC10734114 DOI: 10.1186/s13287-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Scheliga I, Baston-Buest DM, Poschmann G, Stuehler K, Kruessel JS, Bielfeld AP. Closer to the Reality-Proteome Changes Evoked by Endometrial Scratching in Fertile Females. Int J Mol Sci 2023; 24:13577. [PMID: 37686380 PMCID: PMC10488085 DOI: 10.3390/ijms241713577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Endometrial scratching (ES) has been widely used in assisted reproductive technology to possibly improve pregnancy rates, but its exact mechanism is still not understood or investigated, and its benefits are controversially discussed. Hypothetically, ES may trigger a local immune response, leading to an improved endometrial receptivity. So far, it has been shown that ES affects the gene expression of cytokines, growth factors, and adhesive proteins, potentially modulating inflammatory pathways and adhesion molecule expression. Our pilot study applying proteomic analysis reveals that ES probably has an impact on the proteins involved in immune response pathways and cytoskeleton formation, which could potentially increase endometrial receptivity. Specifically, proteins that are involved in the immune response and cytoskeleton regulation showed a trend toward higher abundance after the first ES. On the other hand, proteins with a decreasing abundance after the first ES play roles in the regulation of the actin cytoskeleton and cellular processes such as intracellular transport, apoptosis, and autophagy. These trends in protein changes suggest that ES may affect endometrial tissue stiffness and extracellular matrix remodeling, potentially enhancing the embryos' implantation. To our knowledge, this pilot study provides, for the first time, data investigating potential changes in the endometrium due to the scratching procedure that might explain its possible benefit for patients in infertility treatment. Furthermore, the proteome of a group of patients suffering from repeated implantation failure was compared to that of the fertile group in order to transfer the basic science to clinical routine and application.
Collapse
Affiliation(s)
- Iwona Scheliga
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Dunja M Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Kai Stuehler
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Duesseldorf, Germany
| | - Jan-Steffen Kruessel
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Alexandra P Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| |
Collapse
|
8
|
A novel role of follicle-stimulating hormone (FSH) in various regeneration-related functions of endometrial stem cells. Exp Mol Med 2022; 54:1524-1535. [PMID: 36117220 PMCID: PMC9534881 DOI: 10.1038/s12276-022-00858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Follicle-stimulating hormone (FSH) promotes the production and secretion of estrogen, which in turn stimulates the growth and maturation of ovarian follicles. Therefore, consecutive FSH treatment to induce ovarian hyperstimulation (superovulation) is still considered the most cost-effective option for the majority of assisted reproductive technologies (ARTs). However, a relatively high cancellation rate and subsequent low pregnancy outcomes (approximately 15%) are the most challenging aspects of this FSH-based ART. Currently, the main cause for this low implantation rate of FSH-based ART has not yet been revealed. Therefore, we hypothesized that these high cancellation rates with FSH-based superovulation protocols might be associated with the harmful effects of consecutive FSH treatment. Importantly, several recent studies have revealed that tissue-resident stem cell deficiency can significantly reduce cyclic endometrial regeneration and subsequently decrease the pregnancy outcome. In this context, we investigated whether FSH treatment could directly inhibit endometrial stem cell functions and consequently suppress endometrial regeneration. Consistent with our hypothesis, our results revealed for the first time that FSH could inhibit various regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, and multilineage differentiation capacities, via the PI3K/Akt and ERK1/2 signaling pathways both in vitro and in vivo. Follicle-stimulating hormone (FSH) is commonly administered to treat female infertility by stimulating the ovaries, but FSH treatment can also inhibit key cellular and physiological processes required for successful pregnancy. In the light of pregnancy outcomes as low as 15 percent after FSH-based assisted reproduction technologies, In-Sun Hong at Gachon University, Incheon, South Korea, and colleagues investigated the effects of FSH. Working with cultured human stem cells from the lining of the uterus, they found that FSH could inhibit multiple cellular regenerative functions that normally maintain this lining. They also identified a specific molecular signaling pathway involved in mediating these inhibitory effects. Studies in mice supported the cell culture results. The findings could help improve infertility treatment strategies by guiding research into methods to alleviate the unwanted effects of FSH.
Collapse
|
9
|
Oviductal Extracellular Vesicles Enhance Porcine In Vitro Embryo Development by Modulating the Embryonic Transcriptome. Biomolecules 2022; 12:biom12091300. [PMID: 36139139 PMCID: PMC9496104 DOI: 10.3390/biom12091300] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Oviductal extracellular vesicles (oEVs) have been identified as important components of the oviductal fluid (OF) and have been pointed to as key modulators of gamete/embryo-maternal interactions. Here, we determined the functional impact of oEVs on embryo development and the embryonic transcriptome in porcine. Experiment 1 examined the effect of oEVs and OF on embryo development. In vitro-produced embryos were cultured with oEVs or OF for 2 or 7 days using an in vitro sequential system or without supplementation (control). Experiment 2 analyzed transcriptomic alterations of EV-treated embryos versus control and the oEVs RNA cargo by RNA-sequencing. Two days of EV treatment enhanced embryo development over time when compared to other treatments. Different RNA expression profiles between embryos treated with EVs for two or seven days and untreated controls were obtained, with 54 and 59 differentially expressed (DE) genes and six and seven DE miRNAs, respectively. In oEV RNA cargo, 12,998 RNAs and 163 miRNAs were identified. Integrative analyses pointed to specific oEV components that might act as modulators of the embryonic transcriptome, such as S100A11, ANXA2 or miR-21-5p. Overall, the findings suggested that oEVs could be a potential strategy to improve porcine IVP outcomes, particularly by using two days of EV treatment.
Collapse
|
10
|
Park SR, Kim SK, Kim SR, Park JR, Lim S, Hong IS. Novel roles of luteinizing hormone (LH) in tissue regeneration-associated functions in endometrial stem cells. Cell Death Dis 2022; 13:605. [PMID: 35831270 PMCID: PMC9279474 DOI: 10.1038/s41419-022-05054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
Luteinizing hormone (LH) stimulates the synthesis and secretion of the key steroid hormone estrogen, which subsequently promotes ovarian follicular growth and development. Therefore, the administration of exogenous LH to achieve superovulation (multiple ovulations) and an LH surge is commonly used as the most effective therapeutic option in a majority of in vitro fertilization (IVF) clinics. However, a relatively low pregnancy rate (between 20% and 35%) is one of the most challenging aspects of LH-based infertility treatment. Furthermore, the major cause of this low pregnancy rate in LH-based infertility treatment remains unidentified. Recent studies have shown that endometrial stem cell loss or deficiency can significantly decrease tissue regeneration ability during the menstrual cycle and reduce endometrial receptivity. In this context, we postulated that the low pregnancy rates following LH-based ovarian hyperactivation may be the result of the adverse effects of consecutive exogenous LH administration on endometrial stem cells. To the best of our knowledge, this study revealed for the first time that in addition to its previously reported roles in stimulating ovarian functions through the pituitary-gonadal axis, LH brings about the extragonadal suppression of various tissue regeneration-associated functions in endometrial stem cells, such as self-renewal, migration ability, multilineage differentiation potential, and pluripotency/stemness, by inhibiting pro-survival Akt and ERK1/2 signaling pathways in vitro and in vivo, and as a consequence, it decreases the endometrial receptivity.
Collapse
Affiliation(s)
- Se-Ra Park
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Seong-Kwan Kim
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Soo-Rim Kim
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| | - Jeong-Ran Park
- grid.412010.60000 0001 0707 9039Division of Science Education, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Soyi Lim
- grid.411653.40000 0004 0647 2885Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 Republic of Korea ,grid.256155.00000 0004 0647 2973Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840 Republic of Korea
| |
Collapse
|
11
|
Tryptophanyl-tRNA Synthetase 1 Signals Activate TREM-1 via TLR2 and TLR4. Biomolecules 2020; 10:biom10091283. [PMID: 32899943 PMCID: PMC7565148 DOI: 10.3390/biom10091283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
Tryptophanyl-tRNA synthetase 1 (WARS1) is an endogenous ligand of mammalian Toll-like receptors (TLR) 2 and TLR4. Microarray data, using mRNA from WARS1-treated human peripheral blood mononuclear cells (PBMCs), had indicated WARS1 to mainly activate innate inflammatory responses. However, exact molecular mechanism remains to be understood. The triggering receptor expressed on myeloid cells (TREM)-1 is an amplifier of pro-inflammatory processes. We found WARS1 to significantly activate TREM-1 at both mRNA and protein levels, along with its cell surface expression and secretion in macrophages. WARS1 stimulated TREM-1 production via TLR2 and TLR4, mediated by both MyD88 and TRIF, since targeted deletion of TLR4, TLR2, MyD88, and TRIF mostly abrogated TREM-1 activation. Furthermore, WARS1 promoted TREM-1 downstream phosphorylation of DAP12, Syk, and AKT. Knockdown of TREM-1 and inhibition of Syk kinase significantly suppressed the activation of inflammatory signaling loop from MyD88 and TRIF, leading to p38 MAPK, ERK, and NF-κB inactivation. Finally, MyD88, TRIF, and TREM-1 signaling pathways were shown to be cooperatively involved in WARS1-triggered massive production of IL-6, TNF-α, IFN-β, MIP-1α, MCP-1, and CXCL2, where activation of Syk kinase was crucial. Taken together, our data provided a new insight into WARS1′s strategy to amplify innate inflammatory responses via TREM-1.
Collapse
|
12
|
Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Sci Rep 2020; 10:11393. [PMID: 32647121 PMCID: PMC7347541 DOI: 10.1038/s41598-020-68257-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
Collapse
Affiliation(s)
- C Moses
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
| | - S I Hodgetts
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia
| | - F Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - G Ben-Ary
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - K K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - P Blancafort
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia.
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - A R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia.
| |
Collapse
|