1
|
Szabó V, Varsányi B, Barboni M, Takács Á, Knézy K, Molnár MJ, Nagy ZZ, György B, Rivolta C. Insights into eye genetics and recent advances in ocular gene therapy. Mol Cell Probes 2025; 79:102008. [PMID: 39805344 DOI: 10.1016/j.mcp.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The rapid advancements in the field of genetics have significantly propelled the development of gene therapies, paving the way for innovative treatments of various hereditary disorders. This review focuses on the genetics of ophthalmologic conditions, highlighting the currently approved ophthalmic gene therapy and exploring emerging therapeutic strategies under development. Inherited retinal dystrophies represent a heterogeneous group of genetic disorders that manifest across a broad spectrum from infancy to late middle age. Key clinical features include nyctalopia (night blindness), constriction of the visual field, impairments in color perception, reduced central visual acuity, and rapid eye movements. Recent technological advancements, such as multimodal imaging, psychophysical assessments, and electrophysiological testing, have greatly enhanced our ability to understand disease progression and establish genotype-phenotype correlations. Additionally, the integration of molecular diagnostics into clinical practice is revolutionizing patient stratification and the design of targeted interventions, underscoring the transformative potential of personalized medicine in ophthalmology. The review also covers the challenges and opportunities in developing gene therapies for other ophthalmic conditions, such as age-related macular degeneration and optic neuropathies. We discuss the viral and non-viral vector systems used in ocular gene therapy, highlighting their advantages and limitations. Additionally, we explore the potential of emerging technologies like CRISPR/Cas9 in treating genetic eye diseases. We briefly address the regulatory landscape, concerns, challenges, and future directions of gene therapy in ophthalmology. We emphasize the need for long-term safety and efficacy data as these innovative treatments move from bench to bedside.
Collapse
Affiliation(s)
- Viktória Szabó
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Balázs Varsányi
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Ganglion Medical Center, Váradi Str. 10/A, Pécs, 7621, Hungary.
| | - Mirella Barboni
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Ágnes Takács
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Krisztina Knézy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Mária Judit Molnár
- Semmelweis University, Institute of Genomic Medicine and Rare Disorders, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
| | - Zoltán Zsolt Nagy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| |
Collapse
|
2
|
Leenders M, Gaastra M, Jayagopal A, Malone KE. Prevalence Estimates and Genetic Diversity for Autosomal Dominant Retinitis Pigmentosa Due to RHO, c.68C>A (p.P23H) Variant. Am J Ophthalmol 2024; 268:340-347. [PMID: 39278389 DOI: 10.1016/j.ajo.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE To provide the most up-to-date clinical prevalence estimate for autosomal dominant retinitis pigmentosa (adRP) patients due to RHO c.68C>A, (p.P23H) in the United States, supported by two independent approaches; literature based meta-analysis of reported patients and population genetics modeling. DESIGN Systematic review and meta-analysis plus population genetics modeling. METHODS Systematic review of the literature describing RP patients attributed to RHO variants was conducted to support a meta-analysis used to estimate the clinical prevalence of the RHO P23H patients diagnosed in the US. In parallel, large-scale genetic diversity studies describing the US population and non-European cohorts of the Americas (PAGE II), were evaluated to ascertain the allele frequencies of variant RHO c.68C>A, (p.P23H). The genetic prevalence for variant RHO c.68C>A, (p.P23H) was calculated using Hardy-Weinberg equilibrium. Further demographic data, including age and average age of onset for visual impairment were incorporated into a basic distribution model to estimate clinical prevalence of genetically predisposed persons. RESULTS The estimated clinical prevalence of adRP due to RHO P23H based on literature review was approximately 2000-3000 patients. In comparison the genetic prevalence of persons with RHO c.68C>A, (p.P23H) in the United States was an estimated 6176 (90% CI: 3333-11398) and only half of them are expected to cluster with European genetic ancestry. This variant was found enriched in subgroups of African American or other non-European biogeographic ancestries. Of the estimated 6200 persons carrying this variant in the US, ∼3500 (estimate range: 1900-6500) are expected to show clinical signs of visual impairment as modeled by average age of onset previously reported for patients with this variant. CONCLUSIONS We utilized two independent approaches to estimate the total number of adRP patients due to RHO c.68C>A, (p.P23H) in the United States; systematic literature review based meta-analysis and population genetics modeling. Both approaches yielded similar, overlapping estimates of adRP patients due to RHO P23H. However, comparison of these estimates provides some indication for a diagnosis gap. Unexpectedly, this variant is present at relatively higher frequency in some predominantly non-European genetic ancestries in the US. While this genetic analysis supports our estimates of clinical prevalence of adRP due to RHO P23H in the United States, it also has implications for diagnosing potential adRP patients due to this variant, raising questions of genotype-phenotype correlation and access to genetic testing.
Collapse
Affiliation(s)
- Matthijs Leenders
- Technical University (M.L.), Delft, The Netherlands; Erasmus Medical Center (M.L.), Rotterdam, The Netherlands; GeneScape (M.L., M.G., K.E.M.), Leiden, The Netherlands
| | | | - Ash Jayagopal
- Opus Genetics (A.J.), Durham, North Carolina, USA; Ocuphire Pharma (A.J.), Farmington Hills, Michigan, USA
| | - Karen E Malone
- GeneScape (M.L., M.G., K.E.M.), Leiden, The Netherlands.
| |
Collapse
|
3
|
Moseley J, Leest T, Larsson K, Magrelli A, Stoyanova-Beninska V. Inherited retinal dystrophies and orphan designations in the European Union. Eur J Ophthalmol 2024; 34:1631-1641. [PMID: 38500388 PMCID: PMC11542323 DOI: 10.1177/11206721241236214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inherited Retinal Dystrophies (IRD) are diverse rare diseases that affect the retina and lead to visual impairment or blindness. Research in this field is ongoing, with over 60 EU orphan medicinal products designated in this therapeutic area by the Committee for Orphan Medicinal Products (COMP) at the European Medicines Agency (EMA). Up to now, COMP has used traditional disease terms, like retinitis pigmentosa, for orphan designation regardless of the product's mechanism of action. The COMP reviewed the designation approach for IRDs taking into account all previous Orphan Designations (OD) experience in IRDs, the most relevant up to date scientific literature and input from patients and clinical experts. Following the review, the COMP decided that there should be three options available for orphan designation concerning the condition: i) an amended set of OD groups for therapies that might be used in a broad spectrum of conditions, ii) a gene-specific designation for targeted therapies, and iii) an occasional term for products that do not fit in the above two categories. The change in the approach to orphan designation in IRDs caters for different scenarios to allow an optimum approach for future OD applications including the option of a gene-specific designation. By applying this new approach, the COMP increases the regulatory clarity, efficiency, and predictability for sponsors, aligns EU regulatory tools with the latest scientific and medical developments in the field of IRDs, and ensures that all potentially treatable patients will be included in the scope of an OD.
Collapse
Affiliation(s)
- Jane Moseley
- European Medicines Agency, Amsterdam, The Netherlands
| | - Tim Leest
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Armando Magrelli
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- National Center for Drug Research and Evaluation- Istituto Superiore di Sanità, Rome, Italy
| | - Violeta Stoyanova-Beninska
- Committee for Orphan Medicinal Products at the European Medicines Agency, Amsterdam, The Netherlands
- Medicines Evaluation Board (MEB), Utrecht, The Netherlands
| |
Collapse
|
4
|
Brooks C, Kolson D, Sechrest E, Chuah J, Schupp J, Billington N, Deng WT, Smith D, Sokolov M. Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice. PLoS One 2024; 19:e0308058. [PMID: 39361629 PMCID: PMC11449290 DOI: 10.1371/journal.pone.0308058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin. We found that PANet increased the number of surviving photoreceptors in P23H rhodopsin mice and recognized rhodopsin as a substate in vitro. This data supports the feasibility and efficacy of using a xenogeneic unfoldase as a therapeutic approach in mouse models of human neurodegenerative diseases. We also showed that an archaeal proteasome, called the T20S can degrade rhodopsin in vitro and demonstrated that it is feasible and safe to express gateless T20S proteasomes in vivo in mouse rod photoreceptors. Expression of archaeal proteasomes may be an effective therapeutic approach to stimulate protein degradation in retinopathies and neurodegenerative diseases with protein-misfolding etiology.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Douglas Kolson
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Sechrest
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Janelle Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Wen-Tao Deng
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - David Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
5
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024; 14:903. [PMID: 39199291 PMCID: PMC11352491 DOI: 10.3390/biom14080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Retinitis pigmentosa (RP) poses a significant threat to eye health worldwide, with prevalence rates of 1 in 5000 worldwide. This genetically diverse retinopathy is characterized by the loss of photoreceptor cells and atrophy of the retinal pigment epithelium. Despite the involvement of more than 3000 mutations across approximately 90 genes in its onset, finding an effective treatment has been challenging for a considerable time. However, advancements in scientific research, especially in gene therapy, are significantly expanding treatment options for this most prevalent inherited eye disease, with the discovery of new compounds, gene-editing techniques, and gene loci offering hope for more effective treatments. Gene therapy, a promising technology, utilizes viral or non-viral vectors to correct genetic defects by either replacing or silencing disease-causing genes, potentially leading to complete recovery. In this review, we primarily focus on the latest applications of gene editing research in RP. We delve into the most prevalent genes associated with RP and discuss advancements in genome-editing strategies currently employed to correct various disease-causing mutations.
Collapse
Affiliation(s)
| | | | | | | | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| |
Collapse
|
6
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
7
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Kandoi S, Martinez C, Chen KX, Mehine M, Reddy LVK, Mansfield BC, Duncan JL, Lamba DA. Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with RHO copy number variation. eLife 2024; 12:RP90575. [PMID: 38661530 PMCID: PMC11045220 DOI: 10.7554/elife.90575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.
Collapse
Affiliation(s)
- Sangeetha Kandoi
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Kevin Xu Chen
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | | | - L Vinod K Reddy
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Brian C Mansfield
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
- Immunology and Regenerative Medicine, GenentechSouth San FranciscoUnited States
| |
Collapse
|
9
|
Lin X, Liu ZL, Zhang X, Wang W, Huang ZQ, Sun SN, Jin ZB. Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation. Exp Eye Res 2024; 241:109856. [PMID: 38479725 DOI: 10.1016/j.exer.2024.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) causes progressive vision loss and is potentially incurable, accounting for 25% of adRP cases. Studies on RHO-adRP mechanism were at large based on the biochemical and cellular properties, especially class-3. Nonetheless, the absence of an appropriate model for class-3 RHO-adRP has impeded comprehensive exploration. Here, induced pluripotent stem cells (iPSCs) were generated from a healthy control and two sibling RP patients with the same point mutation, c.403C>T (p.R135W). The first three-dimensional (3D) retinal organoid model of a class-3 RHO point mutation from patient-derived iPSCs was generated. Significant defects were observed in rod photoreceptors in terms of localization, morphology, transcriptional profiling and single cell resolution, to better understand the human disease resulting from RHO mutations from a developmental perspective. This first human model of class-3 RHO-adRP provides a representation of patient's retina in vitro and displays features of RHO-adRP retinal organoids relevant for therapeutic development.
Collapse
Affiliation(s)
- Xiao Lin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhuo-Lin Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhi-Qin Huang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shu-Ning Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
10
|
Sun X, Liang C, Chen Y, Cui T, Han J, Dai M, Zhang Y, Zhou Q, Li W. Knockout and Replacement Gene Surgery to Treat Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Hum Gene Ther 2024; 35:151-162. [PMID: 38368562 DOI: 10.1089/hum.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Mutations in the rhodopsin (RHO) gene are the predominant causes of autosomal dominant retinitis pigmentosa (adRP). Given the diverse gain-of-function mutations, therapeutic strategies targeting specific sequences face significant challenges. Here, we provide a universal approach to conquer this problem: we have devised a CRISPR-Cas12i-based, mutation-independent gene knockout and replacement compound therapy carried by a dual AAV2/8 system. In this study, we successfully delayed the progression of retinal degeneration in the classic mouse disease model RhoP23H, and also RhoP347S, a new native mouse mutation model we developed. Our research expands the horizon of potential options for future treatments of RHO-mediated adRP.
Collapse
Affiliation(s)
- Xuehan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Chen Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiabao Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China; and
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
11
|
Vasudevan S, Senapati S, Pendergast M, Park PSH. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa. Nat Commun 2024; 15:1451. [PMID: 38365903 PMCID: PMC10873427 DOI: 10.1038/s41467-024-45748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA, 560116, India
| | - Maryanne Pendergast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Tsutsui S, Murakami Y, Fujiwara K, Koyanagi Y, Akiyama M, Takeda A, Ikeda Y, Sonoda KH. Genotypes and clinical features of RHO-associated retinitis pigmentosa in a Japanese population. Jpn J Ophthalmol 2024; 68:1-11. [PMID: 38070066 DOI: 10.1007/s10384-023-01036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE To report the genotypes and clinical features of RHO-associated retinitis pigmentosa (RHO-RP) in the Kyushu region of Japan. STUDY DESIGN Retrospective, single-center study. METHODS Sixteen RP patients with pathogenic RHO variants seen at Kyushu University Hospital were investigated. Clinical data including age, best-corrected visual acuity (BCVA) in logarithm of the minimum angle of resolution (logMAR) units, visual field, fundus photography, and optical coherence tomography were retrospectively obtained. Visual outcomes were compared between classical and sector phenotypes and among genetic variants. RESULTS The mean age at the first visit was 54.0 ± 15.7 years, with a mean follow-up of 7.6 ± 4.0 years. Fourteen patients (87.5%) showed the classical RP phenotype, of whom four were associated with p.[Pro23Leu] and two had p.[Pro347Leu] variants. In addition, two patients with the sector phenotype harbored p.[Ala164Val] variants. Among the classical RHO-RP patients, the mean BCVA decreased from 0.60 to 1.08 logMAR over the follow-up period (7.4 ± 4.1 years) whereas BCVA was preserved at 0.04 logMAR in sector RHO-RP patients (9.0 ± 3.0 years). Genotype-to-phenotype analysis demonstrated that p.[Pro347Leu] was associated with severe vision loss at an earlier age. Macular complications such as epiretinal membrane and cystoid macular edema were observed in 5 classical RHO-RP patients. CONCLUSION p.[Pro23Leu], but not p.[Pro23His], was a frequent variant causing RHO-RP in the Kyushu region of Japan. As reported in previous studies, patients with the p.[Pro347Leu] variant showed a more severe phenotype, and variants causing sector RHO-RP were associated with a good prognosis.
Collapse
Affiliation(s)
- Saki Tsutsui
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
13
|
Xiong M, Ou C, Yu C, Qiu J, Lu J, Fu C, Peng Q, Zeng M, Song H. Qi-Shen-Tang alleviates retinitis pigmentosa by inhibiting ferroptotic features via the NRF2/GPX4 signaling pathway. Heliyon 2023; 9:e22443. [PMID: 38034716 PMCID: PMC10687062 DOI: 10.1016/j.heliyon.2023.e22443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Ferroptosis has been observed during retinal photoreceptor cell death, suggesting that it plays a role in retinitis pigmentosa (RP) pathogenesis. Qi-Shen-Tang (QST) is a combination of two traditional Chinese medicines used for the treatment of ophthalmic diseases; however, its mechanism of action in RP and ferroptosis remains unclear. Therefore, this study aimed to explore the effect and potential molecular mechanisms of QST on RP. QST significantly improved tissue morphology and function of the retina in the RP model mice. A significant increase in retinal blood flow and normalization of the fundus structure were observed in mice in the treatment group. After QST treatment, the level of iron and the production of malondialdehyde decreased significantly; the levels of superoxide dismutase and glutathione increased significantly; and the protein expression of glutathione peroxidase 4 (GPX4), glutathione synthetase, solute carrier family 7 member 11, and nuclear factor erythroid 2-related factor 2 (NRF2) increased significantly. The molecular docking results demonstrated potential interactions between the small molecules of QST and the key proteins of NRF2/GPX4 signaling pathway. Our results indicate that QST may inhibit ferroptosis by inhibiting the NRF2/GPX4 signaling pathway, thereby reducing RP-induced damage to retinal tissue.
Collapse
Affiliation(s)
- Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chen Ou
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jingyue Qiu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jing Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chaojun Fu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
14
|
Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, Mittas DM, Karguth N, Otify DY, Böhm S, Weber VJ, Bartoschek MD, Splith V, Brümmer M, Ferreira R, Boon N, Wögenstein GM, Grimm C, Wijnholds J, Mehlfeld V, Michalakis S, Fenske S, Biel M, Becirovic E. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun 2023; 14:6578. [PMID: 37852949 PMCID: PMC10584818 DOI: 10.1038/s41467-023-42386-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.
Collapse
Affiliation(s)
- Lisa Maria Riedmayr
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | | | - David Manuel Mittas
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Nina Karguth
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Dina Yehia Otify
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | - Valentin Johannes Weber
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | | | | | - Manuela Brümmer
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Raphael Ferreira
- Genetics Department, Harvard Medical School, Boston, MA, 02115, USA
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
| | - Gabriele Maria Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, Netherlands
| | - Verena Mehlfeld
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Stefanie Fenske
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, 81377, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland.
| |
Collapse
|
15
|
Peiroten L, Zrenner E, Haq W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca 2+ at Elevated Levels. Bioengineering (Basel) 2023; 10:1208. [PMID: 37892938 PMCID: PMC10604554 DOI: 10.3390/bioengineering10101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The electrical stimulation (stim) of retinal neurons enables blind patients to experience limited artificial vision. A rapid response outage of the stimulated ganglion cells (GCs) allows for a low visual sensation rate. Hence, to elucidate the underlying mechanism, we investigated different stim parameters and the role of the neuromodulator calcium (Ca2+). METHODS Subretinal stim was applied on retinal explants (blind rd1 mouse) using multielectrode arrays (MEAs) or single metal electrodes, and the GC activity was recorded using Ca2+ imaging or MEA, respectively. Stim parameters, including voltage, phase polarity, and frequency, were investigated using specific blockers. RESULTS At lower stim frequencies (<5 Hz), GCs responded synaptically according to the stim pulses (stim: biphasic, cathodic-first, -1.6/+1.5 V). In contrast, higher stim frequencies (≥5 Hz) also activated GCs directly and induced a rapid GC spike response outage (<500 ms, MEA recordings), while in Ca2+ imaging at the same frequencies, increased intracellular Ca2+ levels were observed. CONCLUSIONS Our study elucidated the mechanisms involved in stim-dependent GC spike response outage: sustained high-frequency stim-induced spike outage, accompanied by electrogenically clamped intracellular Ca2+ levels at elevated levels. These findings will guide future studies optimizing stim paradigms for electrical implant applications for interfacing neurons.
Collapse
Affiliation(s)
| | | | - Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (L.P.)
| |
Collapse
|
16
|
Kong L, Chu G, Ma W, Liang J, Liu D, Liu Q, Wei X, Jia S, Gu H, He Y, Luo W, Cao S, Zhou X, He R, Yuan Z. Mutations in VWA8 cause autosomal-dominant retinitis pigmentosa via aberrant mitophagy activation. J Med Genet 2023; 60:939-950. [PMID: 37012052 DOI: 10.1136/jmg-2022-108888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Although retinitis pigmentosa (RP) is the most common type of hereditary retinal dystrophy, approximately 25%-45% of cases remain without a molecular diagnosis. von Willebrand factor A domain containing 8 (VWA8) encodes a mitochondrial matrix-targeted protein; its molecular function and pathogenic mechanism in RP remain unexplained. METHODS Family members of patients with RP underwent ophthalmic examinations, and peripheral blood samples were collected for exome sequencing, ophthalmic targeted sequencing panel and Sanger sequencing. The importance of VWA8 in retinal development was demonstrated by a zebrafish knockdown model and cellular and molecular analysis. RESULTS This study recruited a Chinese family of 24 individuals with autosomal-dominant RP and conducted detailed ophthalmic examinations. Exome sequencing analysis of six patients revealed heterozygous variants in VWA8, namely, the missense variant c.3070G>A (p.Gly1024Arg) and nonsense c.4558C>T (p.Arg1520Ter). Furthermore, VWA8 expression was significantly decreased both at the mRNA and protein levels. The phenotypes of zebrafish with VWA8 knockdown are similar to those of clinical individuals harbouring VWA8 variants. Moreover, VWA8 defects led to severe mitochondrial damage, resulting in excessive mitophagy and the activation of apoptosis. CONCLUSIONS VWA8 plays a significant role in retinal development and visual function. This finding may provide new insights into RP pathogenesis and potential genes for molecular diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linghui Kong
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiajian Liang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiushi Liu
- Department of Ophthalmology, Fourth People's Hospital of Shenyang, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Jung YH, Kwak JJ, Joo K, Lee HJ, Park KH, Kim MS, Lee EK, Byeon SH, Lee CS, Han J, Lee J, Yoon CK, Woo SJ. Clinical and genetic features of Koreans with retinitis pigmentosa associated with mutations in rhodopsin. Front Genet 2023; 14:1240067. [PMID: 37712069 PMCID: PMC10497939 DOI: 10.3389/fgene.2023.1240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose: To investigate the clinical features, natural course, and genetic characteristics of Koreans with rhodopsin-associated retinitis pigmentosa (RHO-associated RP). Design: We conducted a retrospective, multicenter, observational cohort study. Participants: We reviewed the medical records of 42 patients with RHO-associated RP of 36 families who visited 4 hospitals in Korea. Methods: Patients with molecular confirmation of pathogenic variants of the RHO gene were included. The patients were divided into two subgroups: the generalized and sector RP groups. A central visual field of the better-seeing eye of <10° or a best-corrected visual acuity of the better-seeing eye <20/40 indicated the progression to late-stage RP. Results: The mean age at which symptoms first appeared was 26.3 ± 17.9 years (range: 8-78 years), and the mean follow-up period was 80.9 ± 68.7 months (range: 6-268 months). At the last follow-up visit, the generalized RP group showed a significantly higher rate of visual field impairment progression to late-stage RP than that of the sector RP group (22 of 35 [62.9%] vs. 0 of 7 [0.0%], p = 0.003). No cases in the sector RP group progressed to generalized RP. Best-corrected visual acuity deterioration to late-stage RP was observed only in the generalized RP group (13 of 35 patients; 37.1%), whereas no deterioration was observed in the sector RP group. We identified 16 known and three novel RHO mutations, including two missense mutations (p.T108P and p.G121R) and one deletion mutation (p.P347_A348del). The pathogenic variants were most frequently detected in exon 1 (14 of 36 [38.9%]). The most common pathogenic variants were p.P347L and T17M (5 of 36 [13.9%] families). Among 42 patients of 36 families, 35 patients of 29 families (80.6%) presented with the generalized RP phenotype, and seven patients of seven families (19.4%) presented with the sector RP phenotype. Three variants (p.T17M, p.G101E, and p.E181K) presented with both the generalized and sector RP phenotypes. Conclusion: This multicenter cohort study provided information on the clinical and genetic features of RHO-associated RP in Koreans. It is clinically important to expand the genetic spectrum and understand genotype-phenotype correlations to ultimately facilitate the development of gene therapy.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jay Jiyong Kwak
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyuk Jun Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Seok Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Christopher Seungkyu Lee
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Ki Yoon
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Zeng S, Chen Y, Zhou F, Zhang T, Fan X, Chrzanowski W, Gillies MC, Zhu L. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Deliv Rev 2023; 199:114965. [PMID: 37315899 DOI: 10.1016/j.addr.2023.114965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingying Chen
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Mark C Gillies
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
19
|
Justin GA, Girach A, Maldonado RS. Antisense oligonucleotide therapy for proline-23-histidine autosomal dominant retinitis pigmentosa. Curr Opin Ophthalmol 2023; 34:226-231. [PMID: 36924362 DOI: 10.1097/icu.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW To discuss antisense oligonucleotide (ASON) therapy for autosomal dominant retinitis pigmentosa (adRP) caused by the proline-23-histidine (P23H) mutation in the rhodopsin gene. RECENT FINDINGS Viral and nonviral therapies to treat adRP are currently under investigation. A promising therapeutic option is a nonviral approach using ASONs. This form of genetic therapy has demonstrated a dose-dependent and highly selective reduction of P23H mutant rhodopsin mRNA in animal models, and it is currently being investigated as a human phase 1/2 clinical trial. SUMMARY There are promising new therapies to treat adRP. ASON has shown encouraging results in animal models and has undergone a phase 1 clinical trial. ASON does not use a viral vector, is delivered with standard intravitreal injection, and its effects are reversible.
Collapse
Affiliation(s)
- Grant A Justin
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA
| | | | - Ramiro S Maldonado
- Department of Ophthalmology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
21
|
Sakai D, Hiraoka M, Matsuzaki M, Yokota S, Hirami Y, Onishi A, Nakamura M, Takahashi M, Kurimoto Y, Maeda A. Genotype and phenotype characteristics of RHO-associated retinitis pigmentosa in the Japanese population. Jpn J Ophthalmol 2023; 67:138-148. [PMID: 36648560 DOI: 10.1007/s10384-023-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuhiro Matsuzaki
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akishi Onishi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
22
|
Haq W, Basavaraju S, Speck A, Zrenner E. Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns. J Neural Eng 2022; 19. [PMID: 36066085 DOI: 10.1088/1741-2552/ac8ad0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022]
Abstract
Objective. Retinal electrical stimulation using multi-electrode arrays (MEAs) aims to restore visual object perception in blind patients. However, the rate and duration of the artificial visual sensations are limited due to the rapid response decay of the stimulated neurons. Hence, we investigated a novel nature-inspired saccadic-like stimulation paradigm (biomimetic) to evoke sustained retinal responses. For implementation, the macroelectrode was replaced by several contiguous microelectrodes and activated non-simultaneously but alternating topologically.Approach.MEAs with hexagonally arranged electrodes were utilized to simulate and record mouse retinal ganglion cells (RGCs). Two shapes were presented electrically using MEAs: a 6e-hexagon (six hexagonally arranged 10µm electrodes; 6e-hexagon diameter: 80µm) and a double-bar (180µm spaced, 320µm in length). Electrodes of each shape were activated in three different modes (simultaneous, circular, and biomimetic ('zig-zag')), stimulating at different frequencies (1-20 Hz).Main results.The biomimetic stimulation generated enhanced RGC responses increasing the activity rate by 87.78%. In the spatiotemporal context, the electrical representation of the 6e-hexagon produced sustained and local RGC responses (∼130µm corresponding to ∼2.5° of the human visual angle) for up to 90 s at 10 Hz stimulation and resolved the electrically presented double-bar. In contrast, during conventional simultaneous stimulation, the responses were poor and declined within seconds. Similarly, the applicability of the biomimetic mode for retinal implants (7 × 8 pixels) was successfully demonstrated. An object shape impersonating a smile was presented electrically, and the recorded data were used to emulate the implant's performance. The spatiotemporal pixel mapping of the activity produced a complete retinal image of the smile.Significance.The application of electrical stimulation in the biomimetic mode produced locally enhanced RGC responses with significantly reduced fading effects and yielded advanced spatiotemporal performance reflecting the presented electrode shapes in the mapped activity imprint. Therefore, it is likely that the RGC responses persist long enough to evoke visual perception and generate a seamless image, taking advantage of the flicker fusion. Hence, replacing the implant's macroelectrodes with microelectrodes and their activation in a topologically alternating biomimetic fashion may overcome the patient's perceptual image fading, thereby enhancing the spatiotemporal characteristics of artificial vision.
Collapse
Affiliation(s)
- Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Sunetra Basavaraju
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Achim Speck
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Eberhart Zrenner
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| |
Collapse
|
23
|
Chien JY, Huang SP. Gene therapy in hereditary retinal dystrophy. Tzu Chi Med J 2022; 34:367-372. [PMID: 36578644 PMCID: PMC9791861 DOI: 10.4103/tcmj.tcmj_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs), such as retinitis pigmentosa, Leber's congenital amaurosis (LCA), Usher syndrome, and retinoschisis, are a group of genetic retinal disorders exhibiting both genetic and phenotypic heterogeneity. Symptoms include progressive retinal degeneration and constricted visual field. Some patients will be legal or completely blind. Advanced sequencing technologies improve the genetic diagnosis of HRD and lead to a new era of research into gene-targeted therapies. Following the first Food and Drug Administration approval of gene augmentation therapy for LCA caused by RPE65 mutations, multiple clinical trials are currently underway applying different techniques. In this review, we provide an overview of gene therapy for HRD and emphasize four distinct approaches to gene-targeted therapy that have the potential to slow or even reverse retinal degeneration: (1) viral vector-based and nonviral gene delivery, (2) RNA-based antisense oligonucleotide, (3) genome editing by the Clustered Regularly Interspaced Short Palindromic Repeat/cas9 system, and (4) optogenetics gene therapy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,Address for correspondence: Dr. Shun-Ping Huang, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
24
|
Kennedy A, Ren HY, Madden VJ, Cyr DM. Lysosome docking to WIPI1 rings and ER-connected phagophores occurs during DNAJB12- and GABARAP-dependent selective autophagy of misfolded P23H-rhodopsin. Mol Biol Cell 2022; 33:ar84. [PMID: 35704470 PMCID: PMC9582645 DOI: 10.1091/mbc.e21-10-0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report on how the endoplasmic reticulum (ER)-associated-autophagy pathway (ERAA) delivers P23H-rhodopsin (P23H-R) to the lysosome. P23H-R accumulates in an ERAD-resistant conformation that is stabilized in a detergent-soluble state by DNAJB12 and Hsp70. P23H-R, DNAJB12, and FIP200 colocalize in discrete foci that punctuate the rim of omegasome rings coated by WIPI1. Loss of DNAJB12 function prevents the association of P23H-R containing ER tubules with omegasomes. P23H-R tubules thread through the wall of WIPI1 rings into their central cavity. Transfer of P23H-R from ER-connected phagophores to lysosomes requires GABARAP and is associated with the transient docking of lysosomes to WIPI1 rings. After departure from WIPI1 rings, new patches of P23H-R are seen in the membranes of lysosomes. The absence of GABARAP prevents transfer of P23H-R from phagophores to lysosomes without interfering with docking. These data identify lysosome docking to omegasomes as an important step in the DNAJB12- and GABARAP-dependent autophagic disposal of dominantly toxic P23H-R.
Collapse
Affiliation(s)
- Andrew Kennedy
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Hong Yu Ren
- Department of Cell Biology and Physiology, School of Medicine, and
| | - Victoria J. Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Douglas M. Cyr
- Department of Cell Biology and Physiology, School of Medicine, and,*Address correspondence to: Douglas M. Cyr ()
| |
Collapse
|
25
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
26
|
Bansal M, Chakraborty D. Commentary: CRISPR gene editing for inherited retinal dystrophies: Towards clinical translation. Indian J Ophthalmol 2022; 70:2326-2327. [PMID: 35791113 PMCID: PMC9426099 DOI: 10.4103/ijo.ijo_1010_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mayank Bansal
- CSIR - Institute of Genomics and Integrative Biology, Delhi; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad; Fortis Memorial Research Institute, Gurugram, India
| | - Debojyoti Chakraborty
- CSIR - Institute of Genomics and Integrative Biology, Delhi; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
28
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
29
|
Caruso SM, Quinn PM, da Costa BL, Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J Clin Invest 2022; 132:158287. [PMID: 35499084 PMCID: PMC9057583 DOI: 10.1172/jci158287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Salvatore Marco Caruso
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Peter M.J. Quinn
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Bruna Lopes da Costa
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Stephen H. Tsang
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
- Institute of Human Nutrition, Department of Ophthalmology and Department of Pathology and Cell Biology
- Columbia Stem Cell Initiative, and
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
30
|
Wu WH, Tsai YT, Huang IW, Cheng CH, Hsu CW, Cui X, Ryu J, Quinn PMJ, Caruso SM, Lin CS, Tsang SH. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Mol Ther 2022; 30:1407-1420. [PMID: 35150888 PMCID: PMC9077379 DOI: 10.1016/j.ymthe.2022.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in rhodopsin (RHO) are the most common causes of autosomal dominant retinitis pigmentosa (adRP), accounting for 20% to 30% of all cases worldwide. However, the high degree of genetic heterogeneity makes development of effective therapies cumbersome. To provide a universal solution to RHO-related adRP, we devised a CRISPR-based, mutation-independent gene ablation and replacement (AR) compound therapy carried by a dual AAV2/8 system. Moreover, we developed a novel hRHOC110R/hRHOWT humanized mouse model to assess the AR treatment in vivo. Results show that this humanized RHO mouse model exhibits progressive rod-cone degeneration that phenocopies hRHOC110R/hRHOWT patients. In vivo transduction of AR AAV8 dual vectors remarkably ablates endogenous RHO expression and overexpresses exogenous WT hRHO. Furthermore, the administration of AR during adulthood significantly hampers photoreceptor degeneration both histologically and functionally for at least 6 months compared with sole gene replacement or surgical trauma control. This study demonstrates the effectiveness of AR treatment of adRP in the human genomic context while revealing the feasibility of its application for other autosomal dominant disorders.
Collapse
Affiliation(s)
- Wen-Hsuan Wu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Yi-Ting Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph Ryu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Peter M J Quinn
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | | | - Chyuang-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
31
|
Fenner BJ, Tan TE, Barathi AV, Tun SBB, Yeo SW, Tsai ASH, Lee SY, Cheung CMG, Chan CM, Mehta JS, Teo KYC. Gene-Based Therapeutics for Inherited Retinal Diseases. Front Genet 2022; 12:794805. [PMID: 35069693 PMCID: PMC8782148 DOI: 10.3389/fgene.2021.794805] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogenous group of orphan eye diseases that typically result from monogenic mutations and are considered attractive targets for gene-based therapeutics. Following the approval of an IRD gene replacement therapy for Leber's congenital amaurosis due to RPE65 mutations, there has been an intensive international research effort to identify the optimal gene therapy approaches for a range of IRDs and many are now undergoing clinical trials. In this review we explore therapeutic challenges posed by IRDs and review current and future approaches that may be applicable to different subsets of IRD mutations. Emphasis is placed on five distinct approaches to gene-based therapy that have potential to treat the full spectrum of IRDs: 1) gene replacement using adeno-associated virus (AAV) and nonviral delivery vectors, 2) genome editing via the CRISPR/Cas9 system, 3) RNA editing by endogenous and exogenous ADAR, 4) mRNA targeting with antisense oligonucleotides for gene knockdown and splicing modification, and 5) optogenetic approaches that aim to replace the function of native retinal photoreceptors by engineering other retinal cell types to become capable of phototransduction.
Collapse
Affiliation(s)
- Beau J Fenner
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | | | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore, Singapore
| | - Sia Wey Yeo
- Singapore Eye Research Institute, Singapore, Singapore
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Choi Mun Chan
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore.,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Kelvin Y C Teo
- Singapore National Eye Centre, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
32
|
New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cell Mol Life Sci 2022; 79:58. [PMID: 34997336 PMCID: PMC8741697 DOI: 10.1007/s00018-021-04086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
Collapse
|
33
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
34
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Kaplan HJ, Wang W, Piri N, Dean DC. Metabolic rescue of cone photoreceptors in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:331-335. [PMID: 35070660 PMCID: PMC8757513 DOI: 10.4103/tjo.tjo_46_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. It is a leading cause of visual disability, with an incidence of ~1 in 7000 persons. Although most RP is nonsyndromic, 20%-30% of patients with RP also have an associated nonocular condition. The gene mutations responsible for RP occur overwhelmingly in rod photoreceptors. Visual loss frequently begins with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors. Although the visual disability from rod dysfunction is significant, it is the subsequent loss of central vision later in life due to cone degeneration that is catastrophic. Until recently, the reason for cone dysfunction in RP was unknown. However, it is now recognized that cones degenerate, losing outer segment (OS) synthesis and inner segment (IS) disassembly because of glucose starvation following rod demise. Rod OS phagocytosis by the apical microvilli of retinal pigment epithelium is necessary to transport glucose from the choriocapillaris to the subretinal space. Although cones lose OS with the onset of rod degeneration in RP, regardless of the gene mutation in rods, cone nuclei remain viable for years (i.e. enter cone dormancy) so that therapies aimed at reversing glucose starvation can prevent and/or recover cone function and central vision.
Collapse
Affiliation(s)
- Henry J Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Niloofar Piri
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas C Dean
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| |
Collapse
|
36
|
How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy? Int J Mol Sci 2021; 22:ijms22147545. [PMID: 34299164 PMCID: PMC8304344 DOI: 10.3390/ijms22147545] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 01/14/2023] Open
Abstract
Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.
Collapse
|
37
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
38
|
Piri N, Grodsky J, Kaplan H. Gene therapy for retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:348-351. [PMID: 35070662 PMCID: PMC8757518 DOI: 10.4103/tjo.tjo_47_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RP) is the most common cause of RP in North America. There is no proven cure for the disease, and multiple approaches are being studied. Gene therapy is an evolving field in medicine and ophthalmology. In this review, we will go over the basic concept of gene therapy and the different types of gene therapy that are currently being studied to treat this disease.
Collapse
|