1
|
Sohn S, Reid S, Bowen M, Corbex E, Le Gall L, Sidlauskaite E, Hourde C, Morel B, Mariot V, Dumonceaux J. Molecular, Histological, and Functional Changes in Acta1-MCM;FLExDUX4/+ Mice. Int J Mol Sci 2024; 25:11377. [PMID: 39518930 PMCID: PMC11545788 DOI: 10.3390/ijms252111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
DUX4 is the major gene responsible for facioscapulohumeral dystrophy (FSHD). Several mouse models expressing DUX4 have been developed, the most commonly used by academic laboratories being ACTA1-MCM/FLExDUX4. In this study, molecular and histological modifications in the tibialis anterior and quadriceps muscles were investigated in this model at different time points. We investigated several changes that could be used as markers of therapeutic efficacy. Our results confirm the progressive muscular dystrophy previously described but also highlight biases associated with tamoxifen injections and the complexity of choosing the genes used to calculate a DUX4-pathway gene composite score. We also developed a comprehensive force test that better reflects the movements made in everyday life. This functional force-velocity-endurance model, which describes the force production capacities at all velocity and fatigue levels, was applied on 12-13-week-old animals without tamoxifen. Our data highlight that previously unsuspected muscle properties are also affected by the expression of DUX4, leading to a weaker muscle with a lower initial muscle force but with preserved power and endurance capacity. Importantly, this force-velocity-endurance approach can be used in humans for clinical evaluations.
Collapse
Affiliation(s)
- Solene Sohn
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Sophie Reid
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Maximilien Bowen
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Emilio Corbex
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Laura Le Gall
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Eva Sidlauskaite
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Christophe Hourde
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Baptiste Morel
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| |
Collapse
|
2
|
Xie Q, Ma G, Song Y. Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature. APPLIED SCIENCES 2024; 14:8222. [DOI: 10.3390/app14188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect.
Collapse
Affiliation(s)
- Qi Xie
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Guangmei Ma
- Department of Physical Education Teaching and Research, Xinjiang University, Wulumuqi 830046, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Beck SL, Yokota T. Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape. Int J Mol Sci 2024; 25:9065. [PMID: 39201751 PMCID: PMC11354670 DOI: 10.3390/ijms25169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling condition, and patients may also present with various extramuscular symptoms. FSHD is caused by the aberrant expression of double homeobox 4 (DUX4) in skeletal muscle, arising from compromised epigenetic repression of the D4Z4 array. DUX4 encodes the DUX4 protein, a transcription factor that activates myotoxic gene programs to produce the FSHD pathology. Therefore, sequence-specific oligonucleotides aimed at reducing DUX4 levels in patients is a compelling therapeutic approach, and one that has received considerable research interest over the last decade. This review aims to describe the current preclinical landscape of oligonucleotide therapies for FSHD. This includes outlining the mechanism of action of each therapy and summarizing the preclinical results obtained regarding their efficacy in cellular and/or murine disease models. The scope of this review is limited to oligonucleotide-based therapies that inhibit the DUX4 gene, mRNA, or protein in a way that does not involve gene editing.
Collapse
Affiliation(s)
- Samuel L. Beck
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Lu-Nguyen N, Snowden S, Popplewell L, Malerba A. Systemic Pharmacotherapeutic Treatment of the ACTA1-MCM/FLExDUX4 Preclinical Mouse Model of FSHD. Int J Mol Sci 2024; 25:6994. [PMID: 39000102 PMCID: PMC11241187 DOI: 10.3390/ijms25136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| | - Stuart Snowden
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; (N.L.-N.); (S.S.)
| |
Collapse
|
5
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
6
|
Salsi V, Vattemi GNA, Tupler RG. The FSHD jigsaw: are we placing the tiles in the right position? Curr Opin Neurol 2023; 36:455-463. [PMID: 37338810 PMCID: PMC10487374 DOI: 10.1097/wco.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies, involving over 870,000 people worldwide and over 20 FSHD national registries. Our purpose was to summarize the main objectives of the scientific community on this topic and the moving trajectories of research from the past to the present. RECENT FINDINGS To date, research is mainly oriented toward deciphering the molecular and pathogenetic basis of the disease by investigating DUX4-mediated muscle alterations. Accordingly, FSHD drug development has been escalating in the last years in an attempt to silence DUX4 or to block its downstream effectors. Breakthroughs in the field include the awareness that new biomarkers and outcome measures are required for tracking disease progression and patient stratification. The need to develop personalized therapeutic strategies is also crucial according to the phenotypic variability observed in FSHD subjects. SUMMARY We analysed 121 literature reports published between 2021 and 2023 to assess the most recent advances in FSHD clinical and molecular research.
Collapse
Affiliation(s)
- Valentina Salsi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena
| | - Gaetano Nicola Alfio Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Rossella Ginevra Tupler
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena
- Department of Molecular Cell and Cancer Biology
- Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
7
|
Kakimoto T, Ogasawara A, Ishikawa K, Kurita T, Yoshida K, Harada S, Nonaka T, Inoue Y, Uchida K, Tateoka T, Ohta T, Kumagai S, Sasaki T, Aihara H. A Systemically Administered Unconjugated Antisense Oligonucleotide Targeting DUX4 Improves Muscular Injury and Motor Function in FSHD Model Mice. Biomedicines 2023; 11:2339. [PMID: 37760780 PMCID: PMC10525656 DOI: 10.3390/biomedicines11092339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), one of the most common muscular dystrophies, is caused by an abnormal expression of the DUX4 gene in skeletal muscles, resulting in muscle weakness. In this study, we investigated MT-DUX4-ASO, a novel gapmer antisense oligonucleotide (ASO). MT-DUX4-ASO decreased the expression of DUX4 and its target genes in FSHD patient-derived myoblasts. For the first time, we demonstrated that a systemically administered ASO, even without a ligand for drug delivery, could significantly improve muscle injury and motor function in the ACTA1-MCM/FLExDUX4 (DUX4-TG) mouse model of FSHD. Tamoxifen (TMX) injection transiently induces skeletal-muscle-specific DUX4 expression in DUX4-TG mice, while the skeletal muscles of TMX-untreated DUX4-TG mice have leaky DUX4 expression in a small subset of myofibers similar to those of FSHD patients. Subcutaneous 10 mg/kg of MT-DUX4-ASO at two-week intervals significantly suppressed muscular DUX4 target gene expression, histological muscle injury, and blood muscle injury marker elevation in TMX-untreated DUX4-TG mice. Notably, MT-DUX4-ASO at 10 mg/kg every other week significantly prevented the TMX-induced declines in treadmill test running speed and muscle force in DUX4-TG mice. Thus, the systemically administered unconjugated MT-DUX4-ASO suppressed disease progression in DUX4-TG mice, extending the potential of unconjugated ASOs as a promising FSHD treatment strategy.
Collapse
Affiliation(s)
- Tetsuhiro Kakimoto
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nishimura Y, Bittel AJ, Stead CA, Chen YW, Burniston JG. Facioscapulohumeral Muscular Dystrophy is Associated With Altered Myoblast Proteome Dynamics. Mol Cell Proteomics 2023; 22:100605. [PMID: 37353005 PMCID: PMC10392138 DOI: 10.1016/j.mcpro.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Proteomic studies in facioscapulohumeral muscular dystrophy (FSHD) could offer new insight into disease mechanisms underpinned by post-transcriptional processes. We used stable isotope (deuterium oxide; D2O) labeling and peptide mass spectrometry to investigate the abundance and turnover rates of proteins in cultured muscle cells from two individuals affected by FSHD and their unaffected siblings (UASb). We measured the abundance of 4420 proteins and the turnover rate of 2324 proteins in each (n = 4) myoblast sample. FSHD myoblasts exhibited a greater abundance but slower turnover rate of subunits of mitochondrial respiratory complexes and mitochondrial ribosomal proteins, which may indicate an accumulation of "older" less viable mitochondrial proteins in myoblasts from individuals affected by FSHD. Treatment with a 2'-O-methoxyethyl modified antisense oligonucleotide targeting exon 3 of the double homeobox 4 (DUX4) transcript tended to reverse mitochondrial protein dysregulation in FSHD myoblasts, indicating the effect on mitochondrial proteins may be a DUX4-dependent mechanism. Our results highlight the importance of post-transcriptional processes and protein turnover in FSHD pathology and provide a resource for the FSHD research community to explore this burgeoning aspect of FSHD.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam J Bittel
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia, USA
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia, USA.
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
| |
Collapse
|
9
|
Murphy K, Zhang A, Bittel AJ, Chen YW. Molecular and Phenotypic Changes in FLExDUX4 Mice. J Pers Med 2023; 13:1040. [PMID: 37511653 PMCID: PMC10381554 DOI: 10.3390/jpm13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the aberrant expression of the double homeobox 4 (DUX4) gene. The FLExDUX4 mouse model carries an inverted human DUX4 transgene which has leaky DUX4 transgene expression at a very low level. No overt muscle pathology was reported before 16 weeks. The purpose of this study is to track and characterize the FLExDUX4 phenotypes for a longer period, up to one year old. In addition, transcriptomic changes in the muscles of 2-month-old mice were investigated using RNA-seq. The results showed that male FLExDUX4 mice developed more severe phenotypes and at a younger age in comparison to the female mice. These include lower body and muscle weight, and muscle weakness measured by grip strength measurements. Muscle pathological changes were observed at older ages, including fibrosis, decreased size of type IIa and IIx myofibers, and the development of aggregates containing TDP-43 in type IIb myofibers. Muscle transcriptomic data identified early molecular changes in biological pathways regulating circadian rhythm and adipogenesis. The study suggests a slow progressive change in molecular and muscle phenotypes in response to the low level of DUX4 expression in the FLExDUX4 mice.
Collapse
Affiliation(s)
- Kelly Murphy
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Adam J Bittel
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Yi-Wen Chen
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
10
|
Erdmann H, Scharf F, Gehling S, Benet-Pagès A, Jakubiczka S, Becker K, Seipelt M, Kleefeld F, Knop KC, Prott EC, Hiebeler M, Montagnese F, Gläser D, Vorgerd M, Hagenacker T, Walter MC, Reilich P, Neuhann T, Zenker M, Holinski-Feder E, Schoser B, Abicht A. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain 2023; 146:1388-1402. [PMID: 36100962 DOI: 10.1093/brain/awac336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) remains a challenge in clinical practice as it cannot be detected by standard sequencing methods despite being the third most common muscular dystrophy. The conventional diagnostic strategy addresses the known genetic parameters of FSHD: the required presence of a permissive haplotype, a size reduction of the D4Z4 repeat of chromosome 4q35 (defining FSHD1) or a pathogenic variant in an epigenetic suppressor gene (consistent with FSHD2). Incomplete penetrance and epistatic effects of the underlying genetic parameters as well as epigenetic parameters (D4Z4 methylation) pose challenges to diagnostic accuracy and hinder prediction of clinical severity. In order to circumvent the known limitations of conventional diagnostics and to complement genetic parameters with epigenetic ones, we developed and validated a multistage diagnostic workflow that consists of a haplotype analysis and a high-throughput methylation profile analysis (FSHD-MPA). FSHD-MPA determines the average global methylation level of the D4Z4 repeat array as well as the regional methylation of the most distal repeat unit by combining bisulphite conversion with next-generation sequencing and a bioinformatics pipeline and uses these as diagnostic parameters. We applied the diagnostic workflow to a cohort of 148 patients and compared the epigenetic parameters based on FSHD-MPA to genetic parameters of conventional genetic testing. In addition, we studied the correlation of repeat length and methylation level within the most distal repeat unit with age-corrected clinical severity and age at disease onset in FSHD patients. The results of our study show that FSHD-MPA is a powerful tool to accurately determine the epigenetic parameters of FSHD, allowing discrimination between FSHD patients and healthy individuals, while simultaneously distinguishing FSHD1 and FSHD2. The strong correlation between methylation level and clinical severity indicates that the methylation level determined by FSHD-MPA accounts for differences in disease severity among individuals with similar genetic parameters. Thus, our findings further confirm that epigenetic parameters rather than genetic parameters represent FSHD disease status and may serve as a valuable biomarker for disease status.
Collapse
Affiliation(s)
- Hannes Erdmann
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | - Anna Benet-Pagès
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Institute of Neurogenomics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sibylle Jakubiczka
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | | | - Maria Seipelt
- Department of Neurology, Universitätsklinikum Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Felix Kleefeld
- Department of Neurology and Experimental Neurology, Charité Berlin, 10117 Berlin, Germany
| | | | | | - Miriam Hiebeler
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Matthias Vorgerd
- Department of Neurology, Berufgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, 44789 Bochum, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, Universitätsklinikum Magdeburg, Otto-von-Guericke Universität, 39120 Magdeburg, Germany
| | - Elke Holinski-Feder
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Department of Medicine IV, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Angela Abicht
- Medical Genetics Center (MGZ), 80335 Munich, Germany
- Friedrich-Baur-Institute, Department of Neurology, Klinikum der Universität, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| |
Collapse
|
11
|
Padberg GW, van Engelen BGM, Voermans NC. Facioscapulohumeral Disease as a myodevelopmental disease: Applying Ockham's razor to its various features. J Neuromuscul Dis 2023; 10:411-425. [PMID: 36872787 DOI: 10.3233/jnd-221624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an exclusively human neuromuscular disease. In the last decades the cause of FSHD was identified: the loss of epigenetic repression of the D4Z4 repeat on chromosome 4q35 resulting in inappropriate transcription of DUX4. This is a consequence of a reduction of the array below 11 units (FSHD1) or of a mutation in methylating enzymes (FSHD2). Both require the presence of a 4qA allele and a specific centromeric SSLP haplotype. Muscles become involved in a rostro-caudally order with an extremely variable progression rate. Mild disease and non-penetrance in families with affected individuals is common. Furthermore, 2% of the Caucasian population carries the pathological haplotype without clinical features of FSHD.In order to explain the various features of FSHD we applied Ockham's Razor to all possible scenarios and removed unnecessary complexities. We postulate that early in embryogenesis a few cells escape epigenetic silencing of the D4Z4 repeat. Their number is assumed to be roughly inversely related to the residual D4Z4 repeat size. By asymmetric cell division, they produce a rostro-caudal and medio-lateral decreasing gradient of weakly D4Z4-repressed mesenchymal stem cells. The gradient tapers towards an end as each cell-division allows renewed epigenetic silencing. Over time, this spatial gradient translates into a temporal gradient based on a decreasing number of weakly silenced stem cells. These cells contribute to a mildly abnormal myofibrillar structure of the fetal muscles. They also form a downward tapering gradient of epigenetically weakly repressed satellite cells. When activated by mechanical trauma, these satellite cells de-differentiate and express DUX4. When fused to myofibrils they contribute to muscle cell death in various ways. Over time and dependent on how far the gradient reaches the FSHD phenotype becomes progressively manifest. We thus hypothesize FSHD to be a myodevelopmental disease with a lifelong attempt to restore DUX4 repression.
Collapse
Affiliation(s)
- G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Lee SH, Ng CX, Wong SR, Chong PP. MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics. Curr Drug Targets 2023; 24:484-508. [PMID: 36999414 DOI: 10.2174/1389450124666230329123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sharon Rachel Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
13
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
14
|
Lim KRQ, Yokota T. Knocking Down DUX4 in Immortalized Facioscapulohumeral Muscular Dystrophy Patient-Derived Muscle Cells. Methods Mol Biol 2022; 2587:197-208. [PMID: 36401032 DOI: 10.1007/978-1-0716-2772-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The third most common muscular dystrophy in the world, facioscapulohumeral muscular dystrophy (FSHD), is an inherited disorder characterized by distinct asymmetric, progressive skeletal muscle weakness that begins in the upper body and spreads to other regions with age. It is caused by mutations that induce aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is highly cytotoxic in skeletal muscle, dysregulating numerous signaling pathways as a result of its transcription factor activity. A promising set of approaches being developed to treat FSHD uses antisense oligonucleotides (AOs) to inhibit DUX4 transcript expression. Both steric-blocking and gapmer AOs have been shown to induce efficient DUX4 transcript knockdown in vitro and in vivo. Here, we describe a protocol that allows reliable screening of DUX4-targeting AOs through the evaluation of DUX4 transcript expression by quantitative real-time polymerase chain reaction. We also describe methods to assess the efficacy of these AOs by looking at their effect on the expression of DUX4 downstream target and potential off-target genes, as well as on the amelioration of in vitro muscle cell phenotypes.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Lu-Nguyen N, Dickson G, Malerba A, Popplewell L. Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 2022; 10:biomedicines10071623. [PMID: 35884928 PMCID: PMC9313434 DOI: 10.3390/biomedicines10071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Silencing the expression of the double homeobox 4 (DUX4) gene offers great potential for the treatment of facioscapulohumeral muscular dystrophy (FSHD). Several research groups have recently reported promising results using systemic antisense therapy in a transgenic small animal model of FSHD, the ACTA1-MCM/FLExDUX4 mouse model. However, the treatment was applied in non-DUX4-induced mice or shortly after DUX4 activation, which resulted in conditions that do not correctly represent the situation in a clinic. Here, we generated progressive FSHD-like pathology in ACTA1-MCM/FLExDUX4 mice and then treated the animals with vivoPMO-PACS4, an antisense compound that efficiently downregulates DUX4. To best mimic the translation of this treatment in clinical settings, the systemic antisense oligonucleotide administration was delayed to 3 weeks after the DUX4 activation so that the pathology was established at the time of the treatment. The chronic administration of vivoPMO-PACS4 for 8 weeks downregulated the DUX4 expression by 60%. Consequently, the treated mice showed an increase by 18% in body-wide muscle mass and 32% in muscle strength, and a reduction in both myofiber central nucleation and muscle fibrosis by up to 29% and 37%, respectively. Our results in a more suitable model of FSHD pathology confirm the efficacy of vivoPMO-PACS4 administration, and highlight the significant benefit provided by the long-term treatment of the disease.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- Correspondence: (A.M.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Correspondence: (A.M.); (L.P.)
| |
Collapse
|
16
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
17
|
Zhang YN, Hou X, Piao J, Yuan W, Zhou BN, Zhao X, Hao Z, Zhuang Y, Xu L, Dong Y, Liu D. Delivery and Controllable Release of Anti-Sense DNA Based on Frame-Guided Assembly Strategy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Masteika IF, Sathya A, Homma S, Miller BM, Boyce FM, Miller JB. Downstream events initiated by expression of FSHD-associated DUX4: Studies of nucleocytoplasmic transport, γH2AX accumulation, and Bax/Bak-dependence. Biol Open 2022; 11:274475. [PMID: 35191484 PMCID: PMC8890089 DOI: 10.1242/bio.059145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormal expression in skeletal muscle of the double homeobox transcription factor DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Though multiple changes are known to be initiated by aberrant DUX4 expression, the downstream events initiated by DUX4 remain incompletely understood. In this study, we examined plausible downstream events initiated by DUX4. First, we found that nucleocytoplasmic protein export appeared to be decreased upon DUX4 expression as indicated by nuclear accumulation of a shuttle-GFP reporter. Second, building on studies from other labs, we showed that phospho(Ser139)-H2AX (γH2AX), an indicator of double-strand DNA breaks, accumulated both in human FSHD1 myotube nuclei upon endogenous DUX4 expression and in Bax-/-;Bak-/- (double knockout), SV40-immortalized mouse embryonic fibroblasts upon exogenous DUX4 expression. In contrast, DUX4-induced caspase 3/7 activation was prevented in Bax-/-;Bak-/- double knockout SV40-MEFs, but not by single knockouts of Bax, Bak, or Bid. Thus, aberrant DUX4 expression appeared to alter nucleocytoplasmic protein transport and generate double-strand DNA breaks in FSHD1 myotube nuclei, and the Bax/Bak pathway is required for DUX4-induced caspase activation but not γH2AX accumulation. These results add to our knowledge of downstream events induced by aberrant DUX4 expression and suggest possibilities for further mechanistic investigation.
Collapse
Affiliation(s)
- Isabel F Masteika
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Anvitha Sathya
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Sachiko Homma
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bess M Miller
- Biological & Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeffrey Boone Miller
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
19
|
Abstract
RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.
Collapse
Affiliation(s)
- Karen Anthony
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, UK
| |
Collapse
|
20
|
Bouwman LF, den Hamer B, van den Heuvel A, Franken M, Jackson M, Dwyer CA, Tapscott SJ, Rigo F, van der Maarel SM, de Greef JC. Systemic delivery of a DUX4-targeting antisense oligonucleotide to treat facioscapulohumeral muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:813-827. [PMID: 34729250 PMCID: PMC8526479 DOI: 10.1016/j.omtn.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/17/2021] [Indexed: 01/16/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent skeletal muscle dystrophies. Skeletal muscle pathology in individuals with FSHD is caused by inappropriate expression of the transcription factor DUX4, which activates different myotoxic pathways. At the moment there is no molecular therapy that can delay or prevent skeletal muscle wasting in FSHD. In this study, a systemically delivered antisense oligonucleotide (ASO) targeting the DUX4 transcript was tested in vivo in ACTA1-MCM;FLExDUX4 mice that express DUX4 in skeletal muscles. We show that the DUX4 ASO was well tolerated and repressed the DUX4 transcript, DUX4 protein, and mouse DUX4 target gene expression in skeletal muscles. In addition, the DUX4 ASO alleviated the severity of skeletal muscle pathology and partially prevented the dysregulation of inflammatory and extracellular matrix genes. DUX4 ASO-treated ACTA1-MCM;FLExDUX4 mice performed better on a treadmill; however, the hanging grid and four-limb grip strength tests were not improved compared to control ASO-treated ACTA1-MCM;FLExDUX4 mice. This study shows that systemic delivery of ASOs targeting DUX4 is a promising therapeutic strategy for FSHD and strategies that further improve the ASO efficacy in skeletal muscle are warranted.
Collapse
Affiliation(s)
- Linde F. Bouwman
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Marnix Franken
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michaela Jackson
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chrissa A. Dwyer
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Silvère M. van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jessica C. de Greef
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Corresponding author Jessica C. de Greef, Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
21
|
Off-target effects of base editors: what we know and how we can reduce it. Curr Genet 2021; 68:39-48. [PMID: 34515826 DOI: 10.1007/s00294-021-01211-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The recently discovered CRISPR-Cas9 modification, base editors (BEs), is considered as one of the most promising tools for correcting disease-causing mutations in humans, since it allows point substitutions to be edited without generating double-stranded DNA breaks, and, therefore, with a significant decrease in non-specific activity. Until recently, this method was considered the safest, but at the same time, it is quite effective. However, recent studies of non-specific activity of BEs revealed that some of them lead to the formation of a huge number of off-targets in both DNA and RNA, occurring due to the nature of the Cas9-fused proteins used. In this review article, we have considered and combined data from numerous studies about the most commonly used and more described in detail APOBEC-based BEs and Target-AID version of CBE, as well as ABE7 and ABE8 with their basic modifications into TadA to improve BEs' specificity. In our opinion, modern advances in molecular genetics make it possible to dramatically reduce the off-target activity of base editors due to introducing mutations into the domains of deaminases or inhibition of Cas9 by anti-CRISPR proteins, which returns BEs to the leading position in genome editing technologies.
Collapse
|
22
|
Lu-Nguyen N, Malerba A, Herath S, Dickson G, Popplewell L. Systemic antisense therapeutics inhibiting DUX4 expression ameliorates FSHD-like pathology in an FSHD mouse model. Hum Mol Genet 2021; 30:1398-1412. [PMID: 33987655 PMCID: PMC8283208 DOI: 10.1093/hmg/ddab136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle causes muscle deterioration and weakness in Facioscapulohumeral muscular dystrophy (FSHD). Since the presence of a permissive pLAM1 polyadenylation signal is essential for stabilization of DUX4 mRNA and translation of DUX4 protein, disrupting the function of this structure can prevent expression of DUX4. We and others have shown promising results using antisense approaches to reduce DUX4 expression in vitro and in vivo following local intramuscular administration. Here we demonstrate that further development of the antisense chemistries enhances in vitro antisense efficacy. The optimal chemistry was conjugated to a cell-penetrating moiety and was systemically administered into the tamoxifen-inducible Cre-driver FLExDUX4 double-transgenic mouse model of FSHD. After four weekly treatments, mRNA quantities of DUX4 and target genes were reduced by 50% that led to 12% amelioration in muscle atrophy, 52% improvement in in situ muscle strength, 17% reduction in muscle fibrosis and prevention of shift in the myofiber type profile. Systemic DUX4 inhibition also significantly improved the locomotor activity and reduced the fatigue level by 22%. Our data demonstrate that the optimized antisense approach has potential of being further developed as a therapeutic strategy for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
23
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
24
|
Chiu W, Hsun YH, Chang KJ, Yarmishyn AA, Hsiao YJ, Chien Y, Chien CS, Ma C, Yang YP, Tsai PH, Chiou SH, Lin TY, Cheng HM. Current Genetic Survey and Potential Gene-Targeting Therapeutics for Neuromuscular Diseases. Int J Mol Sci 2020; 21:E9589. [PMID: 33339321 PMCID: PMC7767109 DOI: 10.3390/ijms21249589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).
Collapse
Affiliation(s)
- Wei Chiu
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Ya-Hsin Hsun
- Department of Psychology, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Biological Science, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Kao-Jung Chang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Aliaksandr A. Yarmishyn
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Yu-Jer Hsiao
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Yueh Chien
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Chian-Shiu Chien
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun Ma
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Ping Yang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ping-Hsing Tsai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Hwa Chiou
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu 1001, Taiwan
| | - Ting-Yi Lin
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Min Cheng
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|