1
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-stage CD8 + CAR T-cell differentiation in patients with large B-cell lymphoma. Nat Commun 2025; 16:4205. [PMID: 40328775 PMCID: PMC12055983 DOI: 10.1038/s41467-025-59298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Advancements in chimeric antigen receptor (CAR) T-cell therapy for treating diffuse large B-cell lymphoma (DLBCL) have been limited by an incomplete understanding of CAR T-cell differentiation in patients. Here, we show via single-cell, multi-modal, and longitudinal analyses, that CD8+ CAR T cells from DLBCL patients successfully treated with axicabtagene ciloleucel undergo two distinct waves of clonal expansion in vivo. The first wave is dominated by an exhausted-like effector memory phenotype during peak expansion (day 8-14). The second wave is dominated by a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny from the infusion product and are biologically uncoupled. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. We demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter A Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Justin P Kline
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Liang Z, Xie H, Wu D. Immune mediated inflammatory diseases: moving from targeted biologic therapy, stem cell therapy to targeted cell therapy. Front Immunol 2025; 16:1520063. [PMID: 40260258 PMCID: PMC12009864 DOI: 10.3389/fimmu.2025.1520063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
Despite the advancements in targeted biologic therapy for immune-mediated inflammatory diseases (IMIDs), significant challenges persist, including challenges in drug maintenance, primary and secondary non-responses, and adverse effects. Recent data have strengthened the evidence supporting stem cell therapy as an experimental salvage therapy into a standard treatment option. Recent preclinical and clinical studies suggested that chimeric antigen receptor T cell (CAR-T) therapy, which depleting tissue and bone marrow B cells, may lead to improvement, even inducing long-lasting remissions for patients with IMIDs. In this review, we address the unmet needs of targeted biologic therapy, delineate the critical differences between stem cell transplantation and CAR-T therapy, evaluate the current status of CAR-T therapy for IMIDs and explore its potential and existing limitations.
Collapse
Affiliation(s)
- Zhenguo Liang
- Department of Rheumatology and Immunology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hui Xie
- Department of Clinical Research and Development, Antengene Corporation, Shanghai, China
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-Stage CD8 + CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641715. [PMID: 40161759 PMCID: PMC11952315 DOI: 10.1101/2025.03.05.641715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has expanded therapeutic options for patients with diffuse large B-cell lymphoma (DLBCL). However, progress in improving clinical outcomes has been limited by an incomplete understanding of CAR T-cell differentiation in patients. To comprehensively investigate CAR T-cell differentiation in vivo, we performed single-cell, multimodal, and longitudinal analyses of CD28-costimulated CAR T cells from infusion product and peripheral blood (day 8-28) of patients with DLBCL who were successfully treated with axicabtagene ciloleucel. Here, we show that CD8+ CAR T cells undergo two distinct waves of clonal expansion. The first wave is dominated by CAR T cells with an exhausted-like effector memory phenotype during the peak expansion period (day 8-14). The second wave is dominated by CAR T cells with a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny and are biologically uncoupled. Furthermore, lineage tracing analysis via each CAR T cell's endogenous TCR clonotype demonstrates that the two waves originate from different effector precursors in the infusion product. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. These findings suggest that pre-infusion heterogeneity mediates the two waves of in vivo clonal expansion. Our findings provide evidence against the intuitive idea that the post-peak contraction in CAR abundance is solely apoptosis or extravasation of short-lived CAR T cells from peak expansion. Rather, our findings demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nick Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Yang S, Wang G, Chen J, Zhang W, Wu J, Liu W, Bai L, Huang P, Mi J, Xu J. Myeloma cell-intrinsic ANXA1 elevation and T cell dysfunction contribute to BCMA-negative relapse after CAR-T therapy. Mol Ther 2025:S1525-0016(25)00175-3. [PMID: 40057828 DOI: 10.1016/j.ymthe.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Multiple myeloma (MM) relapse still occurs after a durable response to anti-B cell maturation antigen (BCMA) chimeric antigen receptor-engineered T (CAR-T) cell therapy with less-defined factors. Herein, we investigated a CAR-T-exposed MM patient who relapsed after 12 months of remission by single-cell transcriptome sequencing. The bone marrow CAR-T population at relapse exhibited exhaustion and proliferation attenuation. The recurrent myeloma cells were deficient in or weakly expressed TNFRSF17 (BCMA) but possessed an identical immunoglobulin clonality to the baseline tumor. Interestingly, combined with the transcriptome profile of the myeloma strains, MM cells with BCMA negativity featured high ANXA1 expression that was identified as an inferior prognostic indicator for MM patients. At a single-cell resolution, BCMA-negative myeloma could be present in the MM patients without CAR-T cell exposure and displayed an increased level of intrinsic ANXA1 transcripts. In vitro assays unveiled that Annexin A1 (ANXA1) elevation conferred growth capacity to BCMA-negative myeloma cells via AMPKα signaling activation and disturbed CAR-T cell fitness. Blockade of Annexin A1 reduced BCMA-negative myeloma cell proliferation. Murine models further demonstrated that Annexin A1 inhibition could effectively diminish BCMA-negative myeloma that escaped from CAR-T's attack. Together, our data identified ANXA1 as a potential target for BCMA-negative myeloma clearance. The ANXA1-targeting strategy might be helpful for CAR-T treatment optimization.
Collapse
Affiliation(s)
- Shuangshuang Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guixiang Wang
- Yangtze River Delta Health Institute, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; SJTU-BGI Innovation Research Center, BGI-Shenzhen, Shanghai 200240, China
| | - Jiahuan Chen
- Yangtze River Delta Health Institute, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; SJTU-BGI Innovation Research Center, BGI-Shenzhen, Shanghai 200240, China
| | - Wu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jing Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | - Ling Bai
- SJTU-BGI Innovation Research Center, BGI-Shenzhen, Shanghai 200240, China
| | - Peide Huang
- SJTU-BGI Innovation Research Center, BGI-Shenzhen, Shanghai 200240, China; BGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianqing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Wehbe F, Adams L, Babadoudou J, Yuen S, Kim YS, Tanaka Y. Inferring disease progression stages in single-cell transcriptomics using a weakly supervised deep learning approach. Genome Res 2025; 35:135-146. [PMID: 39622637 PMCID: PMC11789631 DOI: 10.1101/gr.278812.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Application of single-cell/nucleus genomic sequencing to patient-derived tissues offers potential solutions to delineate disease mechanisms in humans. However, individual cells in patient-derived tissues are in different pathological stages, and hence, such cellular variability impedes subsequent differential gene expression analyses. To overcome such a heterogeneity issue, we present a novel deep learning approach, scIDST, that infers disease progression levels of individual cells with weak supervision framework. The disease progression-inferred cells display significant differential expression of disease-relevant genes, which cannot be detected by comparative analysis between patients and healthy donors. In addition, we demonstrate that pretrained models by scIDST are applicable to multiple independent data resources and are advantageous to infer cells related to certain disease risks and comorbidities. Taken together, scIDST offers a new strategy of single-cell sequencing analysis to identify bona fide disease-associated molecular features.
Collapse
Affiliation(s)
- Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Levi Adams
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
- Department of Biology, Bates College, Lewiston, Maine 04240, USA
| | - Jordan Babadoudou
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Samantha Yuen
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada;
| |
Collapse
|
7
|
Alb M, Reiche K, Rade M, Sewald K, Loskill P, Cipriano M, Maulana TI, van der Meer AD, Weener HJ, Clerbaux LA, Fogal B, Patel N, Adkins K, Lund E, Perkins E, Cooper C, van den Brulle J, Morgan H, Rubic-Schneider T, Ling H, DiPetrillo K, Moggs J, Köhl U, Hudecek M. Novel strategies to assess cytokine release mediated by chimeric antigen receptor T cells based on the adverse outcome pathway concept. J Immunotoxicol 2024; 21:S13-S28. [PMID: 39655500 DOI: 10.1080/1547691x.2024.2345158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 12/18/2024] Open
Abstract
The success of cellular immunotherapies such as chimeric antigen receptor (CAR) T cell therapy has led to their implementation as a revolutionary treatment option for cancer patients. However, the safe translation of such novel immunotherapies, from non-clinical assessment to first-in-human studies is still hampered by the lack of suitable in vitro and in vivo models recapitulating the complexity of the human immune system. Additionally, using cells derived from human healthy volunteers in such test systems may not adequately reflect the altered state of the patient's immune system thus potentially underestimating the risk of life-threatening conditions, such as cytokine release syndrome (CRS) following CAR T cell therapy. The IMI2/EU project imSAVAR (immune safety avatar: non-clinical mimicking of the immune system effects of immunomodulatory therapies) aims at creating a platform for novel tools and models for enhanced non-clinical prediction of possible adverse events associated with immunomodulatory therapies. This platform shall in the future guide early non-clinical safety assessment of novel immune therapeutics thereby also reducing the costs of their development. Therefore, we review current opportunities and challenges associated with non-clinical in vitro and in vivo models for the safety assessment of CAR T cell therapy ranging from organ-on-chip models up to advanced biomarker screening.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/therapy
- Cytokine Release Syndrome/diagnosis
- Animals
- T-Lymphocytes/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cytokines/metabolism
- Cytokines/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Miriam Alb
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kristin Reiche
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Rade
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Katherina Sewald
- Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM, Hannover, Germany
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | - Tengku Ibrahim Maulana
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | | | - Huub J Weener
- Applied Stem Cell Technologies, University of Twente, Enschede, the Netherlands
| | | | - Birgit Fogal
- Department on Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceutical, Inc, Ridgefield, CT, USA
| | - Nirav Patel
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Karissa Adkins
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Emma Lund
- Labcorp Drug Development Inc, Derbyshire, UK
| | | | | | | | - Hannah Morgan
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Hui Ling
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | - Jonathan Moggs
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Ulrike Köhl
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| |
Collapse
|
8
|
Van der Vreken A, Vanderkerken K, De Bruyne E, De Veirman K, Breckpot K, Menu E. Fueling CARs: metabolic strategies to enhance CAR T-cell therapy. Exp Hematol Oncol 2024; 13:66. [PMID: 38987856 PMCID: PMC11238373 DOI: 10.1186/s40164-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.
Collapse
Affiliation(s)
- Arne Van der Vreken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Team Laboratory of Cellular and Molecular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium.
| |
Collapse
|
9
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
10
|
Qin C, Zhang M, Mou DP, Zhou LQ, Dong MH, Huang L, Wang W, Cai SB, You YF, Shang K, Xiao J, Wang D, Li CR, Hao Y, Heming M, Wu LJ, Meyer Zu Hörste G, Dong C, Bu BT, Tian DS, Wang W. Single-cell analysis of anti-BCMA CAR T cell therapy in patients with central nervous system autoimmunity. Sci Immunol 2024; 9:eadj9730. [PMID: 38728414 DOI: 10.1126/sciimmunol.adj9730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Da-Peng Mou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Wang
- Nanjing IASO Biotechnology Co. Ltd., Nanjing, China
| | - Song-Bai Cai
- Nanjing IASO Biotechnology Co. Ltd., Nanjing, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Rui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Tian DS, Qin C, Dong MH, Heming M, Zhou LQ, Wang W, Cai SB, You YF, Shang K, Xiao J, Wang D, Li CR, Zhang M, Bu BT, Meyer Zu Hörste G, Wang W. B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol Med 2024; 16:966-987. [PMID: 38409527 PMCID: PMC11018773 DOI: 10.1038/s44321-024-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
B-cell maturation antigen (BCMA), expressed in plasmablasts and plasma cells, could serve as a promising therapeutic target for autoimmune diseases. We reported here chimeric antigen receptor (CAR) T cells targeting BCMA in two patients with highly relapsed and refractory myasthenia gravis (one with AChR-IgG, and one with MuSk-IgG). Both patients exhibited favorable safety profiles and persistent clinical improvements over 18 months. Reconstitution of B-cell lineages with sustained reduced pathogenic autoantibodies might underlie the therapeutic efficacy. To identify the possible mechanisms underlying the therapeutic efficacy of CAR-T cells in these patients, longitudinal single-cell RNA and TCR sequencing was conducted on serial blood samples post infusion as well as their matching infusion products. By tracking the temporal evolution of CAR-T phenotypes, we demonstrated that proliferating cytotoxic-like CD8 clones were the main effectors in autoimmunity, whereas compromised cytotoxic and proliferation signature and profound mitochondrial dysfunction in CD8+ Te cells before infusion and subsequently defect CAR-T cells after manufacture might explain their characteristics in these patients. Our findings may guide future studies to improve CAR T-cell immunotherapy in autoimmune diseases.
Collapse
Affiliation(s)
- Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wen Wang
- Nanjing IASO Biotechnology Co., Ltd, 210018, Nanjing, China
| | - Song-Bai Cai
- Nanjing IASO Biotechnology Co., Ltd, 210018, Nanjing, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Di Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Chun-Rui Li
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
12
|
Ghaffari S, Saleh M, Akbari B, Ramezani F, Mirzaei HR. Applications of single-cell omics for chimeric antigen receptor T cell therapy. Immunology 2024; 171:339-364. [PMID: 38009707 DOI: 10.1111/imm.13720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment modality. The breakthroughs in CAR T cell therapy were, in part, possible with the help of cell analysis methods, such as single-cell analysis. Bulk analyses have provided invaluable information regarding the complex molecular dynamics of CAR T cells, but their results are an average of thousands of signals in CAR T or tumour cells. Since cancer is a heterogeneous disease where each minute detail of a subclone could change the outcome of the treatment, single-cell analysis could prove to be a powerful instrument in deciphering the secrets of tumour microenvironment for cancer immunotherapy. With the recent studies in all aspects of adoptive cell therapy making use of single-cell analysis, a comprehensive review of the recent preclinical and clinical findings in CAR T cell therapy was needed. Here, we categorized and summarized the key points of the studies in which single-cell analysis provided insights into the genomics, epigenomics, transcriptomics and proteomics as well as their respective multi-omics of CAR T cell therapy.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, Wisconsin, USA
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ramezani
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
13
|
Huang Y, Shao M, Teng X, Si X, Wu L, Jiang P, Liu L, Cai B, Wang X, Han Y, Feng Y, Liu K, Zhang Z, Cui J, Zhang M, Hu Y, Qian P, Huang H. Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism. Cell Rep Med 2024; 5:101400. [PMID: 38307031 PMCID: PMC10897548 DOI: 10.1016/j.xcrm.2024.101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Penglei Jiang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Lianxuan Liu
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Bohan Cai
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Xiujian Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Youqin Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Kai Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Liao YM, Hsu SH, Chiou SS. Harnessing the Transcriptional Signatures of CAR-T-Cells and Leukemia/Lymphoma Using Single-Cell Sequencing Technologies. Int J Mol Sci 2024; 25:2416. [PMID: 38397092 PMCID: PMC10889174 DOI: 10.3390/ijms25042416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has greatly improved outcomes for patients with relapsed or refractory hematological malignancies. However, challenges such as treatment resistance, relapse, and severe toxicity still hinder its widespread clinical application. Traditional transcriptome analysis has provided limited insights into the complex transcriptional landscape of both leukemia cells and engineered CAR-T-cells, as well as their interactions within the tumor microenvironment. However, with the advent of single-cell sequencing techniques, a paradigm shift has occurred, providing robust tools to unravel the complexities of these factors. These techniques enable an unbiased analysis of cellular heterogeneity and molecular patterns. These insights are invaluable for precise receptor design, guiding gene-based T-cell modification, and optimizing manufacturing conditions. Consequently, this review utilizes modern single-cell sequencing techniques to clarify the transcriptional intricacies of leukemia cells and CAR-Ts. The aim of this manuscript is to discuss the potential mechanisms that contribute to the clinical failures of CAR-T immunotherapy. We examine the biological characteristics of CAR-Ts, the mechanisms that govern clinical responses, and the intricacies of adverse events. By exploring these aspects, we hope to gain a deeper understanding of CAR-T therapy, which will ultimately lead to improved clinical outcomes and broader therapeutic applications.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Qin C, Dong MH, Zhou LQ, Wang W, Cai SB, You YF, Shang K, Xiao J, Wang D, Li CR, Zhang M, Bu BT, Tian DS, Wang W. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy. Proc Natl Acad Sci U S A 2024; 121:e2315990121. [PMID: 38289960 PMCID: PMC10861907 DOI: 10.1073/pnas.2315990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Wen Wang
- Nanjing IASO Biotherapeutics Ltd., Nanjing210000, China
| | - Song-Bai Cai
- Nanjing IASO Biotherapeutics Ltd., Nanjing210000, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chun-Rui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
16
|
Fischer L, Grieb N, Born P, Weiss R, Seiffert S, Boldt A, Fricke S, Franz P, Heyn S, Kubasch AS, Baber R, Weidner H, Wang SY, Bach E, Hoffmann S, Ussmann J, Kirchberg J, Hell S, Schwind S, Metzeler KH, Herling M, Jentzsch M, Franke GN, Sack U, Reiche K, Köhl U, Platzbecker U, Vucinic V, Merz M. Cellular dynamics following CAR T cell therapy are associated with response and toxicity in relapsed/refractory myeloma. Leukemia 2024; 38:372-382. [PMID: 38184754 PMCID: PMC10844085 DOI: 10.1038/s41375-023-02129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
B-cell maturation antigen (BCMA)-targeting chimeric antigen receptor (CAR) T cells revolutionized the treatment of relapsed/refractory multiple myeloma (RRMM). However, data on cellular (CAR) T cell dynamics and the association with response, resistance or the occurrence of cytokine release syndrome (CRS) are limited. Therefore, we performed a comprehensive flow cytometry analysis of 27 RRMM patients treated with Idecabtagene vicleucel (Ide-cel) to assess the expansion capacity, persistence and effects on bystander cells of BCMA-targeting CAR T cells. Additionally, we addressed side effects, like cytokine release syndrome (CRS) and cytopenia. Our results show that in vivo expansion of CD8+ CAR T cells is correlated to response, however persistence is not essential for durable remission in RRMM patients. In addition, our data provide evidence, that an increased fraction of CD8+ T cells at day of leukapheresis in combination with successful lymphodepletion positively influence the outcome. We show that patients at risk for higher-grade CRS can be identified already prior to lymphodepletion. Our extensive characterization contributes to a better understanding of the dynamics and effects of BCMA-targeting CAR T cells, in order to predict the response of individual patients as well as side effects, which can be counteracted at an early stage or even prevented.
Collapse
Affiliation(s)
- Luise Fischer
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Nora Grieb
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
- Innovation Center Computer Assisted Surgery (ICCAS), Leipzig, Germany
| | - Patrick Born
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Ronald Weiss
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Sabine Seiffert
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Paul Franz
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Simone Heyn
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Sophie Kubasch
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Ronny Baber
- Institute for Laboratory Medicine Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Leipzig Medical Biobank, University Leipzig, Leipzig, Germany
| | - Heike Weidner
- Bone Lab Dresden, University Hospital Dresden, Dresden, Germany
| | - Song Yau Wang
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Enrica Bach
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Sandra Hoffmann
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Jule Ussmann
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Janine Kirchberg
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Saskia Hell
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Sebastian Schwind
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Klaus H Metzeler
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Marco Herling
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Madlen Jentzsch
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Georg-Nikolaus Franke
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Ulrike Köhl
- Institute for Clinical Immunology, University Hospital of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Vladan Vucinic
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany
| | - Maximilian Merz
- Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Xia Y, Zhao Q, Shen X, Jin Y, Wang J, Zhu J, Chen L. Single-cell transcriptomic atlas throughout anti-BCMA CAR-T therapy in patients with multiple myeloma. Front Immunol 2023; 14:1278749. [PMID: 38035111 PMCID: PMC10682082 DOI: 10.3389/fimmu.2023.1278749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The emergence of chimeric antigen receptor (CAR)-T therapy targeting B cell maturation antigen (BCMA) has improved the prognosis of patients with multiple myeloma (MM); however, the majority of patients eventually experience relapse. Methods In this study, employing the latest single-cell RNA sequencing technology, we examined 24 bone marrow or peripheral blood samples collected throughout the course of anti-BCMA CAR-T therapy, analyzing a total of 59,725 bone marrow cells and 72,479 peripheral blood cells. Results Our findings reveal that tumor cells in relapsed patient exhibit higher expression levels of HSP90B1 and HSPA5, and demonstrate significantly enriched pathways regarding endoplasmic reticulum stress and unfolded protein response. In the analysis of T cells, we observed that patient with impaired effector function and increased expression of immune checkpoints in endogenous T cell are more susceptible to relapse. Notably, T cells from both the bone marrow microenvironment and peripheral blood share highly similar biological characteristics. Discussion Overall, this study provides a comprehensive atlas of endogenous immune cells, particularly in the relatively long term, after CAR-T therapy. It offers clinical evidence for a deeper understanding of the internal environment post CAR-T treatment and for identifying mechanisms underlying relapse.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Hematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Qian Zhao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yuanyuan Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianfeng Zhu
- Department of Hematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
18
|
Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res 2023; 10:52. [PMID: 37941075 PMCID: PMC10631149 DOI: 10.1186/s40779-023-00486-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhong-Pei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:1577-1590. [PMID: 37448343 PMCID: PMC10681459 DOI: 10.1002/psp4.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.
Collapse
Affiliation(s)
| | | | - Cassian Yee
- Department of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|
20
|
Li Z, Zhao L, Zhang Y, Zhu L, Mu W, Ge T, Jin J, Tan J, Cheng J, Wang J, Wang N, Zhou X, Chen L, Chang Z, Liu C, Bian Z, Liu B, Ye L, Lan Y, Huang L, Zhou J. Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Rep 2023; 42:113263. [PMID: 37851569 DOI: 10.1016/j.celrep.2023.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.
Collapse
Affiliation(s)
- Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilin Chang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
21
|
Jeong SR, Kang M. Exploring Tumor-Immune Interactions in Co-Culture Models of T Cells and Tumor Organoids Derived from Patients. Int J Mol Sci 2023; 24:14609. [PMID: 37834057 PMCID: PMC10572813 DOI: 10.3390/ijms241914609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The use of patient-derived tumor tissues and cells has led to significant advances in personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids have emerged as innovative tools that are extensively employed in drug testing, genome editing, and transplantation to guide personalized therapy in clinical settings. However, a major limitation of this emerging technology is the absence of a tumor microenvironment that includes immune and stromal cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis. To address this limitation, co-culture techniques combining tumor organoids and T cells have been developed, offering diverse avenues for studying individualized drug responsiveness. By integrating cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures, immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in co-culture models of tumor organoids has allowed for a better understanding of the advantages and limitations of this novel model, thereby exploring its full potential. This review focuses on the current applications of organoid-T cell co-culture models in cancer research and highlights the remaining challenges that need to be addressed for its broader implementation in anti-cancer therapy.
Collapse
Affiliation(s)
- So-Ra Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06531, Republic of Korea
| |
Collapse
|
22
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
23
|
Anderson ND, Birch J, Accogli T, Criado I, Khabirova E, Parks C, Wood Y, Young MD, Porter T, Richardson R, Albon SJ, Popova B, Lopes A, Wynn R, Hough R, Gohil SH, Pule M, Amrolia PJ, Behjati S, Ghorashian S. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat Med 2023; 29:1700-1709. [PMID: 37407840 PMCID: PMC10353931 DOI: 10.1038/s41591-023-02415-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
In the context of relapsed and refractory childhood pre-B cell acute lymphoblastic leukemia (R/R B-ALL), CD19-targeting chimeric antigen receptor (CAR)-T cells often induce durable remissions, which requires the persistence of CAR-T cells. In this study, we systematically analyzed CD19 CAR-T cells of 10 children with R/R B-ALL enrolled in the CARPALL trial via high-throughput single-cell gene expression and T cell receptor sequencing of infusion products and serial blood and bone marrow samples up to 5 years after infusion. We show that long-lived CAR-T cells developed a CD4/CD8 double-negative phenotype with an exhausted-like memory state and distinct transcriptional signature. This persistence signature was dominant among circulating CAR-T cells in all children with a long-lived treatment response for which sequencing data were sufficient (4/4, 100%). The signature was also present across T cell subsets and clonotypes, indicating that persisting CAR-T cells converge transcriptionally. This persistence signature was also detected in two adult patients with chronic lymphocytic leukemia with decade-long remissions who received a different CD19 CAR-T cell product. Examination of single T cell transcriptomes from a wide range of healthy and diseased tissues across children and adults indicated that the persistence signature may be specific to long-lived CAR-T cells. These findings raise the possibility that a universal transcriptional signature of clinically effective, persistent CD19 CAR-T cells exists.
Collapse
Affiliation(s)
| | - Jack Birch
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Theo Accogli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ignacio Criado
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Rachel Richardson
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sarah J Albon
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Bilyana Popova
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Andre Lopes
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Robert Wynn
- Department of Bone Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, UK
| | - Rachael Hough
- Children and Young People's Cancer Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Satyen H Gohil
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Martin Pule
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Persis J Amrolia
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Sara Ghorashian
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
24
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
25
|
Huang S, Wang X, Wang Y, Wang Y, Fang C, Wang Y, Chen S, Chen R, Lei T, Zhang Y, Xu X, Li Y. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol Cancer 2023; 22:80. [PMID: 37149643 PMCID: PMC10163813 DOI: 10.1186/s12943-023-01783-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has made remarkable progress in cancer immunotherapy, but several challenges with unclear mechanisms hinder its wide clinical application. Single-cell sequencing technologies, with the powerful unbiased analysis of cellular heterogeneity and molecular patterns at unprecedented resolution, have greatly advanced our understanding of immunology and oncology. In this review, we summarize the recent applications of single-cell sequencing technologies in CAR T-cell therapy, including the biological characteristics, the latest mechanisms of clinical response and adverse events, promising strategies that contribute to the development of CAR T-cell therapy and CAR target selection. Generally, we propose a multi-omics research mode to guide potential future research on CAR T-cell therapy.
Collapse
Affiliation(s)
- Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chenglong Fang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runkai Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
26
|
Pierzynowska K, Gaffke L, Zaucha JM, Węgrzyn G. Transcriptomic Approaches in Studies on and Applications of Chimeric Antigen Receptor T Cells. Biomedicines 2023; 11:biomedicines11041107. [PMID: 37189725 DOI: 10.3390/biomedicines11041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a relatively novel approach, providing a powerful tool in the fight against cancer and bringing new hope for patients. However, despite huge possibilities and promising results of preclinical studies and clinical efficacy, there are various drawbacks to this therapy, including toxicity, possible relapses, restrictions to specific kinds of cancers, and others. Studies desiring to overcome these problems include various modern and advanced methods. One of them is transcriptomics, a set of techniques that analyze the abundance of all RNA transcripts present in the cell at certain moment and under certain conditions. The use of this method gives a global picture of the efficiency of expression of all genes, thus revealing the physiological state and regulatory processes occurring in the investigated cells. In this review, we summarize and discuss the use of transcriptomics in studies on and applications of CAR-T cells, especially in approaches focused on improved efficacy, reduced toxicity, new target cancers (like solid tumors), monitoring the treatment efficacy, developing novel analytical methods, and others.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
27
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 PMCID: PMC11734589 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
28
|
LaBelle CA, Zhang RJ, Hunsucker SA, Armistead PM, Allbritton NL. Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation. Cytometry A 2023; 103:208-220. [PMID: 35899783 PMCID: PMC9883594 DOI: 10.1002/cyto.a.24678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.
Collapse
Affiliation(s)
- Cody A. LaBelle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Raymond J. Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
29
|
Tian Y, Bai F, Zhang D. New target DDR1: A "double-edged sword" in solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188829. [PMID: 36356724 DOI: 10.1016/j.bbcan.2022.188829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Globally, cancer is a major catastrophic disease that seriously threatens human health. Thus, there is an urgent need to find new strategies to treat cancer. Among them, identifying new targets is one of the best ways to treat cancer at present. Especially in recent years, scientists have discovered many new targets and made breakthroughs in the treatment of cancer, bringing new hope to cancer patients. As one of the novel targets for cancer treatment, DDR1 has attracted much attention due to its unique role in cancer. Hence, here, we focus on a new target, DDR1, which may be a "double-edged sword" of human solid tumors. In this review, we provide a comprehensive overview of how DDR1 acts as a "double-edged sword" in cancer. First, we briefly introduce the structure and normal physiological function of DDR1; Second, we delineate the DDR1 expression pattern in single cells; Next, we sorte out the relationship between DDR1 and cancer, including the abnormal expression of DDR1 in cancer, the mechanism of DDR1 and cancer occurrence, and the value of DDR1 on cancer prognosis. In addition, we introduced the current status of global drug and antibody research and development targeting DDR1 and its future design prospects; Finally, we summarize and look forward to designing more DDR1-targeting drugs in the future to make further progress in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
30
|
De Novellis D, Fontana R, Giudice V, Serio B, Selleri C. Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance. Int J Mol Sci 2022; 24:645. [PMID: 36614086 PMCID: PMC9820921 DOI: 10.3390/ijms24010645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
CD38 and B-cell maturation antigens (BCMAs) are prevalently expressed on neoplastic plasma cells in multiple myeloma (MM), making them ideal therapeutic targets. Anti-CD38 monoclonal antibodies, such as approved daratumumab and isatuximab, are currently the milestone in MM treatment because they induce plasma cell apoptosis and kill through several mechanisms, including antibody-dependent cellular cytotoxicity or phagocytosis. BCMA is considered an excellent target in MM, and three different therapeutic strategies are either already available in clinical practice or under investigation: antibody-drug conjugates, such as belantamab-mafodotin; bispecific T cell engagers; and chimeric antigen receptor-modified T cell therapies. Despite the impressive clinical efficacy of these new strategies in the treatment of newly diagnosed or multi-refractory MM patients, several mechanisms of resistance have already been described, including antigen downregulation, the impairment of antibody-dependent cell cytotoxicity and phagocytosis, T- and natural killer cell senescence, and exhaustion. In this review, we summarize the current knowledge on the mechanisms of action and resistance of anti-CD38 and anti-BCMA agents and their clinical efficacy and safety.
Collapse
Affiliation(s)
- Danilo De Novellis
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Raffaele Fontana
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Bianca Serio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
31
|
Yang G, Jiang J, Yin R, Li Z, Li L, Gao F, Liu C, Zhan X. Two novel predictive biomarkers for osteosarcoma and glycolysis pathways: A profiling study on HS2ST1 and SDC3. Medicine (Baltimore) 2022; 101:e30192. [PMID: 36086752 PMCID: PMC10980373 DOI: 10.1097/md.0000000000030192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/08/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Prognostic biomarkers for osteosarcoma (OS) are still very few, and this study aims to examine 2 novel prognostic biomarkers for OS through combined bioinformatics and experimental approach. MATERIALS AND METHODS Expression profile data of OS and paraneoplastic tissues were downloaded from several online databases, and prognostic genes were screened by differential expression analysis, Univariate Cox analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis to construct prognostic models. The accuracy of the model was validated using principal component analysis, constructing calibration plots, and column line plots. We also analyzed the relationship between genes and drug sensitivity. Gene expression profiles were analyzed by immunocytotyping. Also, protein expressions of the constructed biomarkers in OS and paraneoplastic tissues were verified by immunohistochemistry. RESULTS Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) and Syndecan 3 (SDC3, met all our requirements after screening. The constructed prognostic model indicated that patients in the high-risk group had a much lower patient survival rate than in the low-risk group. Moreover, these genes were closely related to immune cells (P < .05). Drug sensitivity analysis showed that the 2 genes modeled were strongly correlated with multiple drugs. Immunohistochemical analysis showed significantly higher protein expression of both genes in OS than in paraneoplastic tissues. CONCLUSIONS HS2ST1 and SDC3 are significantly dysregulated in OS, and the prognostic models constructed based on these 2 genes have much lower survival rates in the high-risk group than in the low-risk group. HS2ST1 and SDC3 can be used as glycolytic and immune-related prognostic biomarkers in OS.
Collapse
Affiliation(s)
- Guozhi Yang
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Jie Jiang
- Guangxi Medical University, Nanning, P. R. China
| | - Ruifeng Yin
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Zhian Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Lei Li
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Feng Gao
- Department of Orthopedic, Nanyang Central Hospital, Nanyang, China
| | - Chong Liu
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xinli Zhan
- Department of Spine Osteopathic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
32
|
Wilson TL, Kim H, Chou CH, Langfitt D, Mettelman RC, Minervina AA, Allen EK, Métais JY, Pogorelyy MV, Riberdy JM, Velasquez MP, Kottapalli P, Trivedi S, Olsen SR, Lockey T, Willis C, Meagher MM, Triplett BM, Talleur AC, Gottschalk S, Crawford JC, Thomas PG. Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. Cancer Discov 2022; 12:2098-2119. [PMID: 35792801 PMCID: PMC9437573 DOI: 10.1158/2159-8290.cd-21-1508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Taylor L. Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Janice M. Riberdy
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy Lockey
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Catherine Willis
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael M. Meagher
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
33
|
Guedan S, Luu M, Ammar D, Barbao P, Bonini C, Bousso P, Buchholz CJ, Casucci M, De Angelis B, Donnadieu E, Espie D, Greco B, Groen R, Huppa JB, Kantari-Mimoun C, Laugel B, Mantock M, Markman JL, Morris E, Quintarelli C, Rade M, Reiche K, Rodriguez-Garcia A, Rodriguez-Madoz JR, Ruggiero E, Themeli M, Hudecek M, Marchiq I. Time 2EVOLVE: predicting efficacy of engineered T-cells - how far is the bench from the bedside? J Immunother Cancer 2022; 10:jitc-2021-003487. [PMID: 35577501 PMCID: PMC9115015 DOI: 10.1136/jitc-2021-003487] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Maik Luu
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | | | - Paula Barbao
- Department of Hematology and Oncology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Paris, France
| | | | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - David Espie
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Beatrice Greco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Richard Groen
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunolgy, Vienna, Austria
| | | | - Bruno Laugel
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| | | | - Janet L Markman
- Takeda Development Centers Americas, Inc. Lexington, Massachusetts, USA
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London Medical School - Royal Free Campus, London, UK
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michael Rade
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Themeli
- Amsterdam University Medical Centers at Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Michael Hudecek
- 19 Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Germany
| | - Ibtissam Marchiq
- Institut de Recherches internationales Servier (IRIS), Suresnes, France
| |
Collapse
|
34
|
Shi X, Yan L, Shang J, Kang L, Yan Z, Jin S, Zhu M, Chang H, Gong F, Zhou J, Chen G, Pan J, Liu D, Zhu X, Tang F, Liu M, Liu W, Yao F, Yu L, Wu D, Fu C. Anti-CD19 and anti-BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stem-cell transplantation for high-risk newly diagnosed multiple myeloma. Am J Hematol 2022; 97:537-547. [PMID: 35114022 DOI: 10.1002/ajh.26486] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Few prospective studies have examined posttransplant chimeric antigen receptor (CAR) T cell infusion as candidates for front-line consolidation therapy for high-risk multiple myeloma (MM) patients. This single-arm exploratory clinical trial is the first to evaluate the safety and efficacy of sequential anti-CD19 and anti-BCMA CAR-T cell infusion, followed by lenalidomide maintenance after autologous stem cell transplantation (ASCT), in 10 high-risk newly diagnosed multiple myeloma (NDMM) patients. The treatment was generally well tolerated, with hematologic toxicities being the most common grade 3 or higher adverse events. All patients had cytokine release syndrome (CRS), which was grade 1 in 5 patients (50%) and grade 2 in 5 patients (50%). No neurotoxicity was observed after CAR-T cell infusion. The overall response rate was 100%, with the best response being 90% for a stringent complete response (sCR), and 10% for a complete response (CR). At a median follow-up of 42 (36-49) months, seven (70%) of 10 patients showed sustained minimal residual disease (MRD) negativity for more than 2 years. The median progression-free survival (PFS) and overall survival (OS) were not reached. Although the sample size was small and there was a lack of control in this single-arm study, the clinical benefits observed warrant ongoing randomized controlled trials.
Collapse
Affiliation(s)
- Xiaolan Shi
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Lingzhi Yan
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Jingjing Shang
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Liqing Kang
- Shanghai Unicar‐Therapy Bio‐medicine Technology Co. Ltd. Shanghai China
| | - Zhi Yan
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Song Jin
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Mingqing Zhu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Huirong Chang
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Feiran Gong
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Jiazi Zhou
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Guanghua Chen
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Dandan Liu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Xiaming Zhu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Fang Tang
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Minghong Liu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
| | - Wei Liu
- Department of Pathology The First Affiliated Hospital of Soochow University Suzhou China
| | - Feirong Yao
- Department of Radiology The First Affiliated Hospital of Soochow University Suzhou China
| | - Lei Yu
- Shanghai Unicar‐Therapy Bio‐medicine Technology Co. Ltd. Shanghai China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University Suzhou China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University Suzhou China
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology, Soochow University Suzhou China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou China
| |
Collapse
|
35
|
Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int J Mol Sci 2022; 23:ijms23063154. [PMID: 35328572 PMCID: PMC8955360 DOI: 10.3390/ijms23063154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.
Collapse
|
36
|
Wang Y, Zu C, Teng X, Yang L, Zhang M, Hong R, Zhao H, Cui J, Xu H, Hongsheng AC, Hu Y, Huang H. BCMA CAR-T Therapy Is Safe and Effective for Refractory/Relapsed Multiple Myeloma With Central Nervous System Involvement. J Immunother 2022; 45:25-34. [PMID: 34874329 DOI: 10.1097/cji.0000000000000391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) involvement is a rare complication of multiple myeloma (MM) that portends an extremely poor prognosis. Although chimeric antigen receptor (CAR)-T cell therapy is considered a promising strategy for patients with MM, the role of CAR-T cell therapy in MM involving the CNS has not been fully elucidated. In this study, we retrospectively analyzed 4 cases of B-cell maturation antigen CAR-T cell therapy for patients with relapsed/refractory MM involving the CNS. Patients received a range of 2-7 lines of prior therapy, including 1 autologous hematopoietic stem cell transplant. The most common adverse event was cytokine release syndrome, which was observed in all 4 patients, including 2 with grade 1 and 2 with grade 2. No patient was complicated with immune effector cell-associated neurotoxicity syndrome. Within the follow-up (median: 257 d, range: 116-392 d), 3 of 4 patients reached complete remission (CR), and 1 patient reached partial response. At the data cutoff, 1 patient continued to remain in CR at day 220, and the patient with partial response died at day 116. The other 2 patients relapsed at 317 and 111 days with CR durations of 287 and 81 days, respectively. Our results show promising effectiveness and acceptable safety of CAR-T cell therapy for heavily pretreated patients with CNS MM.
Collapse
Affiliation(s)
- Yiyun Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Cheng Zu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Alex Chang Hongsheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
38
|
Mueller K, Saha K. Single Cell Technologies to Dissect Heterogenous Immune Cell Therapy Products. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100343. [PMID: 34957355 PMCID: PMC8693636 DOI: 10.1016/j.cobme.2021.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Single cell tools have dramatically transformed the life sciences; concurrently, autologous and allogeneic immune cell therapies have recently entered the clinic. Here we discuss methods, applications, and considerations for single cell technologies in the context of immune cell manufacturing. Molecular heterogeneity can be profiled at the level of the genome, epigenome, transcriptome, proteome, metabolome, and antigen receptor repertoire, in isolation or in tandem through multi-omic approaches. Such data inform heterogeneity within cell products and can be linked to potency readouts and clinical data, with the ultimate goal of identifying Critical Quality Attributes to predict patient outcomes. Non-destructive approaches hold promise for monitoring cell state and analyzing the impacts of gene edits within engineered products. Destructive omics approaches could be combined with non-destructive technologies to predict therapeutic potency. These technologies are poised to redefine cell manufacturing toward rapid, cost-effective, and high-throughput methods to detect and respond to dynamic cell states.
Collapse
Affiliation(s)
- Katherine Mueller
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
39
|
Li X, Shao M, Zeng X, Qian P, Huang H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther 2021; 6:367. [PMID: 34667157 PMCID: PMC8526712 DOI: 10.1038/s41392-021-00764-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.
Collapse
Affiliation(s)
- Xia Li
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Mi Shao
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Xiangjun Zeng
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - He Huang
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
40
|
Weiskittel TM, Correia C, Yu GT, Ung CY, Kaufmann SH, Billadeau DD, Li H. The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches. Genes (Basel) 2021; 12:1098. [PMID: 34356114 PMCID: PMC8306972 DOI: 10.3390/genes12071098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.
Collapse
Affiliation(s)
- Taylor M. Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| | - Grace T. Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA;
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First, Street SW, Rochester, MN 55905, USA; (T.M.W.); (C.C.); (G.T.Y.); (C.Y.U.); (S.H.K.)
| |
Collapse
|
41
|
Zhao L, Ren L, Gao S, Wang J, Li X, Zhang L, Zhu Y, Li H. Tumor immunology in the age of single-cell genomics. J Leukoc Biol 2021; 110:1069-1079. [PMID: 34184318 DOI: 10.1002/jlb.5mr0321-170r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapies that were developed based on our understandings of tumor immunology have revolutionized cancer treatment. However, the success of immunotherapy is eclipsed by several grand challenges, including low response rate, intrinsic/acquired resistance and adverse effects. While a deeper understanding of the interaction between tumor and our immune system, especially the tumor immune niche, is essential to overcome those challenges, we are limited by the fact that most of our knowledge about tumor immunology is based on studies analyzing bulk populations of cells, which are often unable to fully characterize the various cell types and states engaged in immune cell functions. The advent of cutting single-cell genomic technologies empowers us to dissect the tumor immune niche in a genome-wide and spatially resolved manner in single cells, trace their clonal histories, and unveil their regulatory circuits. Future studies on tumor immunology in the age of single-cell genomics, therefore, hold the promise to develop more effective and precise immunotherapies for human cancers. In this perspective, we will discuss how advanced single-cell genomics approaches will revolutionize tumor immunology research and immunotherapies by catering the demand in the field of tumor immunology.
Collapse
Affiliation(s)
- Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanjie Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
42
|
Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J 2021; 11:84. [PMID: 33927192 PMCID: PMC8085238 DOI: 10.1038/s41408-021-00469-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of various novel therapies over the last decade has changed the therapeutic landscape for multiple myeloma. While the clinical outcomes have improved significantly, the disease remains incurable, typically in patients with relapsed and refractory disease. Chimeric antigen receptor (CAR) T-cell therapies have achieved remarkable clinical success in B-cell malignancies. This scope of research has more recently been extended to the field of myeloma. While B-cell maturation antigen (BCMA) is currently the most well-studied CAR T antigen target in this disease, many other antigens are also undergoing intensive investigations. Some studies have shown encouraging results, whereas some others have demonstrated unfavorable results due to reasons such as toxicity and lack of clinical efficacy. Herein, we provide an overview of CAR T-cell therapies in myeloma, highlighted what has been achieved over the past decade, including the latest updates from ASH 2020 and discussed some of the challenges faced. Considering the current hits and misses of CAR T therapies, we provide a comprehensive analysis on the current manufacturing technologies, and deliberate on the future of CAR T-cell domain in MM.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
43
|
Castellanos-Rueda R, Di Roberto RB, Schlatter FS, Reddy ST. Leveraging Single-Cell Sequencing for Chimeric Antigen Receptor T Cell Therapies. Trends Biotechnol 2021; 39:1308-1320. [PMID: 33832782 DOI: 10.1016/j.tibtech.2021.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies against cancer continue to make inroads in the clinic. However, progress is still hindered by subpar efficacy against many tumors. Gaining a better understanding of CAR-induced T cell activation would help identify and remediate the causes of treatment failure. Increasingly, technologies to analyze the transcriptome are used to molecularly profile the behavior of CAR-T cells, both before and after treatment. Here, we describe recent work on how gene expression signatures, especially those obtained from single-cell RNA sequencing (scRNA-seq), can be used to characterize CAR design, production conditions, therapy combinations, and finally disease outcome. In the future, scRNA-seq could become a standard tool for the development and clinical monitoring of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Raphaël B Di Roberto
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Fabrice S Schlatter
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Sai T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| |
Collapse
|
44
|
Affiliation(s)
- Tim M Townes
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, AL, USA.
| |
Collapse
|
45
|
Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13020271. [PMID: 33450845 PMCID: PMC7828372 DOI: 10.3390/cancers13020271] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality of hepatocellular carcinoma (HCC) is quickly increasing worldwide. In unresectable HCC, the cornerstone of systemic treatments is switching from tyrosine kinase inhibitors to immune checkpoints inhibitors (ICI). Next to ICI, adoptive cell transfer represents another promising field of immunotherapy. Targeting tumor associated antigens such as alpha-fetoprotein (AFP), glypican-3 (GPC3), or New York esophageal squamous cell carcinoma-1 (NY-ESO-1), T cell receptor (TCR) engineered T cells and chimeric antigen receptors (CAR) engineered T cells are emerging as potentially effective therapies, with objective responses reported in early phase trials. In this review, we address the biological rationale of TCR/CAR engineered T cells in advanced HCC, their mechanisms of action, and results from recent clinical trials.
Collapse
|