1
|
Pham V, Tricoli L, Hong X, Wongkittichote P, Castruccio Castracani C, Guerra A, Schlotawa L, Adang LA, Kuhs A, Cassidy MM, Kane O, Tsai E, Presa M, Lutz C, Rivella SB, Ahrens-Nicklas RC. Hematopoietic stem cell gene therapy improves outcomes in a clinically relevant mouse model of multiple sulfatase deficiency. Mol Ther 2024; 32:3829-3846. [PMID: 39169621 DOI: 10.1016/j.ymthe.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.
Collapse
Affiliation(s)
- Vi Pham
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucas Tricoli
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, 37075 Goettingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, 37075 Goettingen, Germany
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret M Cassidy
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Owen Kane
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Tsai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maximiliano Presa
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Stefano B Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S. Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 2024; 144:1633-1645. [PMID: 38949981 PMCID: PMC11487647 DOI: 10.1182/blood.2023023349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
ABSTRACT α-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation is the only available therapeutic option for patients with severe AT. Research into AT has remained limited because of a lack of adult mouse models, with severe AT typically resulting in in utero lethality. By using a lipid nanoparticle (LNP) targeting the receptor CD117 and delivering a Cre messenger RNA (mRNACreLNPCD117), we were able to delete floxed α-globin genes at high efficiency in hematopoietic stem cells (HSC) ex vivo. These cells were then engrafted in the absence or presence of a novel α-globin-expressing lentiviral vector (ALS20αI). Myeloablated mice infused with mRNACreLNPCD117-treated HSC showed a complete knock out (KO) of α-globin genes. They showed a phenotype characterized by the synthesis of hemoglobin H (HbH; also known as β-tetramers or β4), aberrant erythropoiesis, and abnormal organ morphology, culminating in lethality ∼8 weeks after engraftment. Mice infused with mRNACreLNPCD117-treated HSC with at least 1 copy of ALS20αI survived long term with normalization of erythropoiesis, decreased production of HbH, and amelioration of the abnormal organ morphology. Furthermore, we tested ALS20αI in erythroid progenitors derived from α-globin-KO CD34+ cells and cells isolated from patients with both deletional and nondeletional HbH disease, demonstrating improvement in α-globin/β-globin mRNA ratio and reduction in the formation of HbH by high-performance liquid chromatography. Our results demonstrate the broad applicability of LNP for disease modeling, characterization of a novel mouse model of severe AT, and the efficacy of ALS20αI for treating AT.
Collapse
Affiliation(s)
- Maxwell E. Chappell
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
| | - Laura Breda
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lucas Tricoli
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cellular Immunotherapeutics, Translational and Correlative Studies Laboratory, University of Pennsylvania, Philadelphia, PA
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naoto Tanaka
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nolan Hamilton
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael P. Triebwasser
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Valentina Ghiaccio
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan T. Fedorky
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kandace L. Gollomp
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Veronica Bochenek
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma J. Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nattiya Teawtrakul
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Stavros Glentis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Musculoskeletal Disorders, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Bauler M, Ferrara F, Lowe B, Beard JA, Wincek C, Wielgosz MM, Park JJ, Shang N, Nandy S, Li C, Langfitt DM, Zhou S, Throm RE. Genetic alteration of SJ293TS cells and modification of serum-free media enhances lentiviral vector production. Mol Ther Methods Clin Dev 2024; 32:101270. [PMID: 38883976 PMCID: PMC11176759 DOI: 10.1016/j.omtm.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Successful cell and gene therapy clinical trials have resulted in the US Food and Drug Administration and European Medicines Agency approving their use for treatment of patients with certain types of cancers and monogenetic diseases. These novel therapies, which rely heavily on lentiviral vectors to deliver therapeutic transgenes to patient cells, have driven additional investigations, increasing demand for both pre-clinical and current Good Manufacturing Practices-grade viral vectors. To better support novel studies by improving current production methods, we report the development of a genetically modified HEK293T-based cell line that is null for expression of both Protein Kinase R and Beta-2 microglobulin and grows in suspension using serum-free media, SJ293TS-DPB. Absence of Protein Kinase R increased anti-sense lentiviral vector titers by more than 7-fold, while absence of Beta-2 microglobulin, a key component of major histocompatibility complex class I molecules, has been reported to reduce the immunogenicity of lentiviral particles. Furthermore, we describe an improved methodology for culturing SJ293TS-DPB that facilitates expansion, reduces handling, and increases titers by 2-fold compared with previous methods. SJ293TS-DPB stably produced lentiviral vectors for over 4 months and generated lentiviral vectors that efficiently transduce healthy human donor T cells and CD34+ hematopoietic stem cells.
Collapse
Affiliation(s)
- Matthew Bauler
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Francesca Ferrara
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Lowe
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordan A Beard
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chris Wincek
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew M Wielgosz
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeoungeun J Park
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Na Shang
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Saikat Nandy
- Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cai Li
- Biostatistics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Deanna M Langfitt
- Bone Marrow Transplant and Cell Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Throm
- Vector Development and Production Laboratory, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Tricoli L, Sase S, Hacker J, Pham V, Smith S, Chappell M, Breda L, Hurwitz S, Tanaka N, Castracani CC, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Kurre P, Ahrens-Nicklas R, Adang L, Vanderver A, Rivella S. Effective Gene Therapy for Metachromatic Leukodystrophy Achieved with Minimal Lentiviral Genomic Integrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584404. [PMID: 38559013 PMCID: PMC10979988 DOI: 10.1101/2024.03.14.584404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.
Collapse
|
5
|
Koniali L, Flouri C, Kostopoulou MI, Papaioannou NY, Papasavva PL, Naiisseh B, Stephanou C, Demetriadou A, Sitarou M, Christou S, Antoniou MN, Kleanthous M, Patsali P, Lederer CW. Evaluation of Mono- and Bi-Functional GLOBE-Based Vectors for Therapy of β-Thalassemia by HBBAS3 Gene Addition and Mutation-Specific RNA Interference. Cells 2023; 12:2848. [PMID: 38132168 PMCID: PMC10741507 DOI: 10.3390/cells12242848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Therapy via the gene addition of the anti-sickling βAS3-globin transgene is potentially curative for all β-hemoglobinopathies and therefore of particular clinical and commercial interest. This study investigates GLOBE-based lentiviral vectors (LVs) for βAS3-globin addition and evaluates strategies for an increased β-like globin expression without vector dose escalation. First, we report the development of a GLOBE-derived LV, GLV2-βAS3, which, compared to its parental vector, adds anti-sickling action and a transcription-enhancing 848-bp transcription terminator element, retains high vector titers and allows for superior β-like globin expression in primary patient-derived hematopoietic stem and progenitor cells (HSPCs). Second, prompted by our previous correction of HBBIVSI-110(G>A) thalassemia based on RNApol(III)-driven shRNAs in mono- and combination therapy, we analyzed a series of novel LVs for the RNApol(II)-driven constitutive or late-erythroid expression of HBBIVSI-110(G>A)-specific miRNA30-embedded shRNAs (shRNAmiR). This included bifunctional LVs, allowing for concurrent βAS3-globin expression. LVs were initially compared for their ability to achieve high β-like globin expression in HBBIVSI-110(G>A)-transgenic cells, before the evaluation of shortlisted candidate LVs in HBBIVSI-110(G>A)-homozygous HSPCs. The latter revealed that β-globin promoter-driven designs for monotherapy with HBBIVSI-110(G>A)-specific shRNAmiRs only marginally increased β-globin levels compared to untransduced cells, whereas bifunctional LVs combining miR30-shRNA with βAS3-globin expression showed disease correction similar to that achieved by the parental GLV2-βAS3 vector. Our results establish the feasibility of high titers for LVs containing the full HBB transcription terminator, emphasize the importance of the HBB terminator for the high-level expression of HBB-like transgenes, qualify the therapeutic utility of late-erythroid HBBIVSI-110(G>A)-specific miR30-shRNA expression and highlight the exceptional potential of GLV2-βAS3 for the treatment of severe β-hemoglobinopathies.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Christina Flouri
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (C.F.); (M.N.A.)
| | - Markela I. Kostopoulou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Panayiota L. Papasavva
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Basma Naiisseh
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Coralea Stephanou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Anthi Demetriadou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, 6301 Larnaca, Cyprus;
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, 1474 Nicosia, Cyprus;
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (C.F.); (M.N.A.)
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| |
Collapse
|
6
|
Kwiatkowski JL. Gene addition for beta thalassemia. Ann N Y Acad Sci 2023; 1530:105-109. [PMID: 37828865 DOI: 10.1111/nyas.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Individuals with transfusion-dependent beta thalassemia require a high burden of care and experience significant morbidity from the underlying disease and its treatment, which negatively impact the quality of life. Allogeneic hematopoietic stem cell transplantation offers the chance for a cure, but donor availability and transplant-related risks, especially in older patients, limit its use. Gene addition utilizing autologous CD34+ cells is an alternative, potentially curative, treatment option. Several clinical trials have investigated the use of lentiviral vectors containing a functional beta globin gene, including Lentiglobin BB305, GLOBE, and TNS9.3.55. The efficacy and safety data from these ongoing trials are discussed in this review.
Collapse
Affiliation(s)
- Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, Tanaka N, Abdulmalik O, Pavani G, Wang Y, Grupp SA, Chou ST, Ni H, Mui BL, Tam YK, Weissman D, Rivella S, Parhiz H. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023; 381:436-443. [PMID: 37499029 PMCID: PMC10567133 DOI: 10.1126/science.ade6967] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyler E Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Triebwasser
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Amir Yadegari
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan T Fedorky
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naoto Tanaka
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Osheiza Abdulmalik
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yongping Wang
- Department of Pathology and Laboratory Medicine, Transfusion Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Transfusion Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Houping Ni
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Rivella
- Department of Pediatrics, Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology affinity group, University of Pennsylvania, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Penn Center for Musculoskeletal Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Zhu J, Li H, Aerbajinai W, Kumkhaek C, Pirooznia M, Saxena A, Dagur P, Chin K, Rodgers GP. Kruppel-like factor 1-GATA1 fusion protein improves the sickle cell disease phenotype in mice both in vitro and in vivo. Blood 2022; 140:2276-2289. [PMID: 36399071 PMCID: PMC9837447 DOI: 10.1182/blood.2021014877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Sickle cell disease (SCD) and β-thalassemia are among the most common genetic disorders worldwide, affecting global health and mortality. Hemoglobin A2 (HbA2, α2δ2) is expressed at a low level in adult blood due to the lack of the Kruppel-like factor 1 (KLF1) binding motif in the δ-globin promoter region. However, HbA2 is fully functional as an oxygen transporter, and could be a valid antisickling agent in SCD, as well as a substitute for hemoglobin A in β-thalassemia. We have previously demonstrated that KLF1-GATA1 fusion protein could interact with the δ-globin promoter and increase δ-globin expression in human primary CD34+ cells. We report the effects of 2 KLF1-GATA1 fusion proteins on hemoglobin expression, as well as SCD phenotypic correction in vitro and in vivo. Forced expression of KLF1-GATA1 fusion protein enhanced δ-globin gene and HbA2 expression, as well as reduced hypoxia-related sickling, in erythroid cells cultured from both human sickle CD34+ cells and SCD mouse hematopoietic stem cells (HSCs). The fusion proteins had no impact on erythroid cell differentiation, proliferation, and enucleation. Transplantation of highly purified SCD mouse HSCs expressing KLF1-GATA1 fusion protein into SCD mice lessened the severity of the anemia, reduced the sickling of red blood cells, improved SCD-related pathological alterations in spleen, kidney, and liver, and restored urine-concentrating ability in recipient mice. Taken together, these results indicate that the use of KLF1-GATA1 fusion constructs may represent a new gene therapy approach for hemoglobinopathies.
Collapse
Affiliation(s)
- Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mehdi Pirooznia
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Costa E, Cappellini MD, Rivella S, Chilin A, Alessi E, Riccaboni M, Leufkens HGM, Luzzatto L. Emergent treatments for β-thalassemia and orphan drug legislations. Drug Discov Today 2022; 27:103342. [PMID: 36058507 DOI: 10.1016/j.drudis.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
In many countries, β-thalassemia (β-THAL) is not uncommon; however, it qualifies as a rare disease in the US and in European Union (EU), where thalassemia drugs are eligible for Orphan Drug Designation (ODD). In this paper, we evaluate all 28 ODDs for β-THAL granted since 2001 in the US and the EU: of these, ten have since been discontinued, twelve are pending, and six have become licensed drugs available for clinical use. The prime mover for these advances has been the increasing depth of understanding of the pathophysiology of β-THAL; at the same time, and even though only one-fifth of β-THAL ODDs have become licensed drugs, the ODD legislation has clearly contributed substantially to the development of improved treatments for β-THAL.
Collapse
Affiliation(s)
- Enrico Costa
- WHO Collaborating Centre for Pharmaceutical Policy and Regulation at Utrecht University, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Science, Utrecht, the Netherlands.
| | | | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | | | | | - Hubert G M Leufkens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Science, Utrecht, the Netherlands.
| | - Lucio Luzzatto
- Department of Haematology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| |
Collapse
|
10
|
Ramadier S, Chalumeau A, Felix T, Othman N, Aknoun S, Casini A, Maule G, Masson C, De Cian A, Frati G, Brusson M, Concordet JP, Cavazzana M, Cereseto A, El Nemer W, Amendola M, Wattellier B, Meneghini V, Miccio A. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Mol Ther 2022; 30:145-163. [PMID: 34418541 PMCID: PMC8753569 DOI: 10.1016/j.ymthe.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Sickle cell disease (SCD) is caused by a mutation in the β-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling β-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle β-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous β-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.
Collapse
Affiliation(s)
- Sophie Ramadier
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Anne Chalumeau
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Nadia Othman
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Sherazade Aknoun
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | | | - Giulia Maule
- CIBIO, University of Trento, 38100 Trento, Italy
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, 75015 Paris, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France
| | - Giacomo Frati
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Megane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France
| | - Marina Cavazzana
- Université de Paris, 75015 Paris, France; Imagine Institute, 75015 Paris, France; Biotherapy Department and Clinical Investigation Center, Assistance Publique Hôpitaux de Paris, INSERM, 75015 Paris, France
| | | | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Marseille, France; Aix Marseille Université, EFS, CNRS, ADES, "Biologie des Groupes Sanguins," 13000 Marseille, France; Laboratoire d'Excellence GR-Ex, Paris, France
| | | | - Benoit Wattellier
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
| |
Collapse
|
11
|
Pires Lourenco S, Jarocha D, Ghiaccio V, Guerra A, Abdulmalik O, La P, Zezulin A, Smith-Whitley K, Kwiatkowski JL, Guzikowski V, Nakamura Y, Raabe T, Breda L, Rivella S. Inclusion of a shRNA targeting BCL11A into a β-globin expressing vector allows concurrent synthesis of curative adult and fetal hemoglobin. Haematologica 2021; 106:2740-2745. [PMID: 34047176 PMCID: PMC8485672 DOI: 10.3324/haematol.2020.276634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Silvia Pires Lourenco
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia; Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto
| | - Danuta Jarocha
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia.
| | - Valentina Ghiaccio
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Amaliris Guerra
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Osheiza Abdulmalik
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Ping La
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Alexandra Zezulin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kim Smith-Whitley
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Janet L Kwiatkowski
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Virginia Guzikowski
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba
| | - Tobias Raabe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Laura Breda
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| | - Stefano Rivella
- Department of Pediatrics, Hematology, The Children's Hospital of Philadelphia, Philadelphia
| |
Collapse
|
12
|
Old versus new gene therapy for globin disorders. Mol Ther 2021; 29:1933-1934. [PMID: 33961803 DOI: 10.1016/j.ymthe.2021.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|