1
|
Ghaffarzadegan R, Akhondzadeh S, Nikasa Z, Hajizamani S, Mehrabanifar S, Cheraghi I, Vaseghi S. New Insights into Contradictory Changes in Brain-Derived Neurotrophic Factor (BDNF) in Rodent Models of Posttraumatic Stress Disorder (PTSD). Neurochem Res 2024; 49:3226-3243. [PMID: 39283581 DOI: 10.1007/s11064-024-04242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that may develop after experiencing traumatic events. Preclinical studies use various methods to induce PTSD-like models such as fear-conditioning, single-prolonged stress (SPS), restraint stress, and social defeat. Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophin in mood regulation. Evidence shows BDNF changes in different neuropsychiatric disorders particularly PTSD. This review examined BDNF alterations in preclinical rodent models of PTSD where we demonstrated a wide range of paradoxical changes in BDNF. We found that the fear-conditioning model produced the most inconsistent alterations in BDNF, and suggest that conclusions drawn from these changes be approached with caution. We suggest that BDNF maladaptive changes in social defeat and restraint stress models may be related to the duration of stress, while the SPS model appears to have more consistent results. Ultimately, we propose that evaluating BDNF alterations in the process of treating PTSD symptoms may not be a reliable factor.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nikasa
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Cheraghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
3
|
Ravaglia IC, Jasodanand V, Bhatnagar S, Grafe LA. Sex differences in body temperature and neural power spectra in response to repeated restraint stress. Stress 2024; 27:2320780. [PMID: 38414377 PMCID: PMC10989713 DOI: 10.1080/10253890.2024.2320780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Repeated stress is associated with an increased risk of developing psychiatric illnesses such as post-traumatic stress disorder (PTSD), which is more common in women, yet the neurobiology behind this sex difference is unknown. Habituation to repeated stress is impaired in PTSD, and recent preclinical studies have shown that female rats do not habituate as fully as male rats to repeated stress, which leads to impairments in cognition and sleep. Further research should examine sex differences after repeated stress in other relevant measures, such as body temperature and neural activity. In this study, we analyzed core body temperature and EEG power spectra in adult male and female rats during restraint, as well as during sleep transitions following stress. We found that core body temperature of male rats habituated to repeated restraint more fully than female rats. Additionally, we found that females had a higher average beta band power than males on both days of restraint, indicating higher levels of arousal. Lastly, we observed that females had lower delta band power than males during sleep transitions on Day 1 of restraint, however, females demonstrated higher delta band power than males by Day 5 of restraint. This suggests that it may take females longer to initiate sleep recovery compared with males. These findings indicate that there are differences in the physiological and neural processes of males and females after repeated stress. Understanding the way that the stress response is regulated in both sexes can provide insight into individualized treatment for stress-related disorders.
Collapse
Affiliation(s)
- IC Ravaglia
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - V Jasodanand
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| | - S Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LA Grafe
- Bryn Mawr College, Department of Psychology, Bryn Mawr, PA, USA
| |
Collapse
|
4
|
Bales KL, Hang S, Paulus JP, Jahanfard E, Manca C, Jost G, Boyer C, Bern R, Yerumyan D, Rogers S, Mederos SL. Individual differences in social homeostasis. Front Behav Neurosci 2023; 17:1068609. [PMID: 36969803 PMCID: PMC10036751 DOI: 10.3389/fnbeh.2023.1068609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The concept of “social homeostasis”, introduced by Matthews and Tye in 2019, has provided a framework with which to consider our changing individual needs for social interaction, and the neurobiology underlying this system. This model was conceived as including detector systems, a control center with a setpoint, and effectors which allow us to seek out or avoid additional social contact. In this article, we review and theorize about the many different factors that might contribute to the setpoint of a person or animal, including individual, social, cultural, and other environmental factors. We conclude with a consideration of the empirical challenges of this exciting new model.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, >Davis, CA, United States
- *Correspondence: Karen L. Bales
| | - Sally Hang
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - John P. Paulus
- Graduate Group in Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elaina Jahanfard
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Claudia Manca
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Geneva Jost
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Chase Boyer
- Graduate Group in Human Development, University of California, Davis, Davis, CA, United States
| | - Rose Bern
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Daniella Yerumyan
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sophia Rogers
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sabrina L. Mederos
- Graduate Group in Animal Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Antila H, Kwak I, Choi A, Pisciotti A, Covarrubias I, Baik J, Eisch A, Beier K, Thomas S, Weber F, Chung S. A noradrenergic-hypothalamic neural substrate for stress-induced sleep disturbances. Proc Natl Acad Sci U S A 2022; 119:e2123528119. [PMID: 36331996 PMCID: PMC9659376 DOI: 10.1073/pnas.2123528119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In our daily life, we are exposed to uncontrollable and stressful events that disrupt our sleep. However, the underlying neural mechanisms deteriorating the quality of non-rapid eye movement sleep (NREMs) and REM sleep are largely unknown. Here, we show in mice that acute psychosocial stress disrupts sleep by increasing brief arousals (microarousals [MAs]), reducing sleep spindles, and impairing infraslow oscillations in the spindle band of the electroencephalogram during NREMs, while reducing REMs. This poor sleep quality was reflected in an increased number of calcium transients in the activity of noradrenergic (NE) neurons in the locus coeruleus (LC) during NREMs. Opto- and chemogenetic LC-NE activation in naïve mice is sufficient to change the sleep microarchitecture similar to stress. Conversely, chemogenetically inhibiting LC-NE neurons reduced MAs during NREMs and normalized their number after stress. Specifically inhibiting LC-NE neurons projecting to the preoptic area of the hypothalamus (POA) decreased MAs and enhanced spindles and REMs after stress. Optrode recordings revealed that stimulating LC-NE fibers in the POA indeed suppressed the spiking activity of POA neurons that are activated during sleep spindles and REMs and inactivated during MAs. Our findings reveal that changes in the dynamics of the stress-regulatory LC-NE neurons during sleep negatively affect sleep quality, partially through their interaction with the POA.
Collapse
Affiliation(s)
- Hanna Antila
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iris Kwak
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley Choi
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Pisciotti
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ivan Covarrubias
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Justin Baik
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amelia Eisch
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92617
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Franz Weber
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Pitzer C, Kurpiers B, Eltokhi A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 2022; 16:838122. [PMID: 35368297 PMCID: PMC8969904 DOI: 10.3389/fnbeh.2022.838122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- *Correspondence: Claudia Pitzer,
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Ahmed Eltokhi,
| |
Collapse
|
7
|
Wang W, Liu WZ, Wang ZL, Duan DX, Wang XY, Liu SJ, Wang ZJ, Xing GG, Xing Y. Spinal microglial activation promotes perioperative social defeat stress-induced prolonged postoperative pain in a sex-dependent manner. Brain Behav Immun 2022; 100:88-104. [PMID: 34808295 DOI: 10.1016/j.bbi.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zi-Liang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Xiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue-Yun Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shi-Jin Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhi-Ju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100191, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
8
|
Furman O, Tsoory M, Chen A. Differential chronic social stress models in male and female mice. Eur J Neurosci 2021; 55:2777-2793. [PMID: 34587653 DOI: 10.1111/ejn.15481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Chronic stress creates an allostatic overload that may lead to mood disorders such as anxiety and depression. Modern causes of chronic stress in humans are mostly social in nature, relating to work and relationship stress. Research into neural and molecular mechanisms of vulnerability and resilience following chronic social stress (CSS) is ongoing and uses animal models to discover efficient prevention strategies and treatments. To date, most CSS studies have neglected the female sex and used male-focused aggression-based animal models such as chronic social defeat stress (CSDS). Accumulating evidence on sex differences suggests differences in the stress response, the prevalence of stress-related illness and in response to treatment, indicating that researchers should expand CSS investigation to include female-focused protocols alongside the popular CSDS protocols. Here, we describe a novel female mouse model of CSS and a parallel modified male mouse model of CSDS in C57BL/6 mice. These new models enable the investigation of vulnerability, coping and downstream effectors mediating short-term and long-term consequences of CSS in both sexes. Our data demonstrate differential effects on male and female mice during, soon after, and many weeks after CSS. Female mice are more prone to body weight loss during CSS and hyperactive anxious behaviour following CSS. Both sexes show reduced social interaction, but only stressed male mice show long-term changes in emotional memory and neuroendocrine function. We further discuss future avenues of research using these models to investigate mechanisms pertaining to sensitivity to CSS and treatment response profiles, in a sex-appropriate manner.
Collapse
Affiliation(s)
- Orit Furman
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Neurobiology, The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Chronic antidepressant treatment rescues abnormally reduced REM sleep theta power in socially defeated rats. Sci Rep 2021; 11:16713. [PMID: 34408180 PMCID: PMC8373914 DOI: 10.1038/s41598-021-96094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
The effects of chronic antidepressant (AD) treatment on sleep disturbances in rodent chronic stress models have not been thoroughly investigated. Here, we show that chronic social defeat stress (SDS) in rats induces prolonged social avoidance, alterations in sleep architecture (increased total rapid eye movement [REM] sleep duration, bout, and shortened REM latency), and contextual but not cued fear memory deficits, even 1 month after the last SDS. These abnormalities were associated with changes in electroencephalography (EEG) spectral powers, including reduced REM sleep theta power during the light phase. Chronic treatment with two different classes of antidepressants (ADs), imipramine and fluoxetine, significantly ameliorated these behavioral, sleep, and EEG abnormalities. Interestingly, REM theta power was normalized by chronic (1 month) but not 1 week AD administration and solely correlated with the ratio (an objective indicator) of social interaction 1 month after the last SDS. These data suggest that reductions in REM sleep theta power, an EEG parameter that has never been directly investigated in humans, is a core sleep symptom in socially defeated rats, and, potentially, also in patients with stress-related psychiatric disorders, including major depressive and posttraumatic stress disorders.
Collapse
|
10
|
Acero-Castillo MC, Ardila-Figueroa MC, Botelho de Oliveira S. Anhedonic Type Behavior and Anxiety Profile of Wistar-UIS Rats Subjected to Chronic Social Isolation. Front Behav Neurosci 2021; 15:663761. [PMID: 34122025 PMCID: PMC8192826 DOI: 10.3389/fnbeh.2021.663761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic Social Isolation (CSI) is a model of prolonged stress employed in a variety of studies to induce depression and anxious behavior in rats. The present study aims to evaluate the effect of CSI on male Wistar rats in terms of "anhedonic-type" behavior in the Sucrose Preference Test (SPT) and anxiogenic profile in the elevated-plus-maze (EPM) test, as well as evaluating the effect of resocialization upon sucrose consumption. A total of 24 adolescent male Wistar rats were evaluated. The animals were housed either together (communally) or socially isolated for 21 days, and then exposed for four consecutive days to the SPT test [water vs. a 32% sucrose solution (SS)]. Four days later, they were again subjected to the SPT test (32% vs. 0.7% SS), and then tested on the EPM apparatus 3 days later. Following the completion of the anxiogenic profile of the model, the animals were resocialized for 72 h and then re-tested once again using the SPT (32% vs. 0.7% SS). Twenty-four hours after this final consumption, the animals were euthanized to record the weight of their adrenal glands (AG). It was found that exposure to CSI produces anhedonic-type behavior and an anxiogenic profile in adolescent male rats, as evidenced in both the SPT and EPM tests, as well as in the animals' physiological stress response. It was also demonstrated that resocialization does not reverse the anhedonic-type behavior, nor the physiological response to stress.
Collapse
Affiliation(s)
- María Camila Acero-Castillo
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Health Sciences, Universidade de Brasilia, Brasilia, Brazil
| | - María Camila Ardila-Figueroa
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| | - Silvia Botelho de Oliveira
- Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Psychology, Universidade Estadual Paulista, São Paulo, Brazil.,Psychobiology, Universidade de São Paulo, São Paulo, Brazil.,Faculty of Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Laboratory of Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| |
Collapse
|
11
|
Hou W, Ma H, Xun Y, Zhang X, Cai W, Huang S, He Z, Tai F, Jia R. Sex-Dependent Effects of Chronic Social Defeat on Emotional and Social Behaviors, and Parameters of Oxytocin and Vasopressin Systems in Mandarin Voles ( Microtus mandarinus). Front Neurosci 2021; 15:625116. [PMID: 34045941 PMCID: PMC8144301 DOI: 10.3389/fnins.2021.625116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In the regulation of emotional and social behaviors, both oxytocin (OT) and vasopressin (AVP) are sex specific. Although significant sex differences have been reported in the context of behavioral and hormonal responses to social stress, such differences in response to chronic social defeat stress (CSDS) and the underlying neural mechanisms remain largely unknown. By investigating monogamous mandarin voles (Microtus mandarinus), CSDS was found to decrease the percentages of time spent in the central area of the open field, in the open arms of the elevated plus maze, as well as in the light area of the light and dark boxes in both male and female voles. CSDS also increased the observed level of social withdrawal in both sex groups. However, CSDS exposure increased the percentages of immobile time in both the tail suspension test and the forced swim test and reduced the locomotor activity in the open field (in females only). Along with these behavioral changes, the oxytocin receptor (OTR) levels in the nucleus accumbens (NAc) were significantly lower in CSDS-exposed voles of both sexes; however, in males, the levels of OTR in the paraventricular nucleus (PVN) were reduced. CSDS-exposed males showed lower levels of V1aR in the NAc than CSDS-exposed females. Furthermore, induced by a single social defeat event, CSDS reduced c-Fos and OT double labeling in the PVN of females but increased c-Fos and AVP double-labeled neurons in the PVN of males exposed to a single social defeat event. Collectively, the present study indicates that OT and AVP systems may play important regulatory roles in the sex differences of behavioral performances in response to CSDS. These findings suggest mandarin voles as a useful animal model for studying sex-specific behavioral performance and the underlying neurobiological mechanisms of stress-related mental disorders in preclinical studies.
Collapse
Affiliation(s)
- Wenjuan Hou
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Yufeng Xun
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Xin Zhang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Shuying Huang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Horman T, Ayoub S, Leri F. Evidence of hypoglycemic anhedonia and modulation by bupropion in rats. Pharmacol Biochem Behav 2021; 203:173120. [PMID: 33497714 DOI: 10.1016/j.pbb.2021.173120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Disorders characterized by dysfunction of glucose metabolism are often comorbid with depression. The current study investigated whether a hypoglycemic state caused by 2-deoxy-d-glucose (2-DG) can result in anhedonic behaviors responsive to stimulation of monoamine activity. METHODS In experiment 1, male Sprague-Dawley rats were tested for maintenance of intra-oral self-administration (IOSA) of a sweet solution after pre-treatment with 300 or 500 mg/kg 2-DG, a blocker of glucose metabolism. Experiment 2 determined whether exposure to an environment previously paired with the effects of 2-DG (0, 200 or 300 mg/kg) can influence IOSA, and whether 2-DG can modify taste reactivity to same sweet solution. Finally, experiment 3 examined whether 0 or 30 mg/kg bupropion, a monoamine-reuptake blocker, would attenuate the effect of 300 mg/kg 2-DG on IOSA and taste reactivity. RESULTS It was found that 2-DG produced a sustained decrease in IOSA when animals were tested drug-free. This decrease in IOSA did not appear linked to place conditioning or to alterations in taste reactivity, and it was partially normalized by pre-treatment with bupropion. CONCLUSIONS Taken together, these results in rats suggest that rapid hypoglycemia can induce an anhedonic state characterized by impaired consummatory responses to nutritional incentive stimuli and that can be alleviated by the antidepressant bupropion.
Collapse
Affiliation(s)
- Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, ON, Canada
| | - Samantha Ayoub
- Department of Psychology and Neuroscience, University of Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, ON, Canada.
| |
Collapse
|
13
|
Regular exposure to a Citrus-based sensory functional food ingredient alleviates the BOLD brain responses to acute pharmacological stress in a pig model of psychosocial chronic stress. PLoS One 2020; 15:e0243893. [PMID: 33370353 PMCID: PMC7769264 DOI: 10.1371/journal.pone.0243893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
Psychosocial chronic stress is a critical risk factor for the development of mood disorders. However, little is known about the consequences of acute stress in the context of chronic stress, and about the related brain responses. In the present study we examined the physio-behavioural effects of a supplementation with a sensory functional food ingredient (FI) containing Citrus sinensis extract (D11399, Phodé, France) in a pig psychosocial chronic stress model. Female pigs underwent a 5- to 6-week stress protocol while receiving daily the FI (FI, n = 10) or a placebo (Sham, n = 10). We performed pharmacological magnetic resonance imaging (phMRI) to study the brain responses to an acute stress (injection of Synacthen®, a synthetic ACTH-related agonist) and to the FI odour with or without previous chronic supplementation. The olfactory stimulation with the ingredient elicited higher brain responses in FI animals, demonstrating memory retrieval and habituation to the odour. Pharmacological stress with Synacthen injection resulted in an increased activity in several brain regions associated with arousal, associative learning (hippocampus) and cognition (cingulate cortex) in chronically stressed animals. This highlighted the specific impact of acute stress on the brain. These responses were alleviated in animals previously supplemented by the FI during the entire chronic stress exposure. As chronic stress establishes upon the accumulation of acute stress events, any attenuation of the brain responses to acute stress can be interpreted as a beneficial effect, suggesting that FI could be a viable treatment to help individuals coping with repeated stressful events and eventually to reduce chronic stress. This study provides additional evidence on the potential benefits of this FI, of which the long-term consequences in terms of behaviour and physiology need to be further investigated.
Collapse
|
14
|
Zoladz PR. Animal models for the discovery of novel drugs for post-traumatic stress disorder. Expert Opin Drug Discov 2020; 16:135-146. [PMID: 32921163 DOI: 10.1080/17460441.2020.1820982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Existing pharmacological treatments for PTSD are limited and have been used primarily because of their effectiveness in other psychiatric conditions. To generate novel, PTSD specific pharmacotherapy, researchers must utilize animal models to assess the efficacy of experimental drugs. AREAS COVERED This review includes a discussion of factors that should be considered when developing an animal model of PTSD, as well as descriptions of the most commonly used models. Researchers have utilized physical stressors, psychological stressors, or a combination of the two to induce PTSD-like physiological and behavioral sequelae in animals. Such models have provided researchers with a valuable tool to examine the neurobiological mechanisms underlying the condition. EXPERT OPINION PTSD is a heterogeneous disorder that manifests as different symptom clusters in different individuals. Thus, there cannot be a one-size-fits-all approach to modeling the disorder in animals. Preclinical investigators must adopt a concentrated effort aimed at modeling specific PTSD subtypes and the distinct symptom profiles that result from specific types of human trauma. Moreover, researchers have focused so much on modeling a single PTSD syndrome in animals that studies examining only specific facets of the disorder are largely ignored. Future research employing animal models of PTSD requires greater focus on the nuances of PTSD.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Psychology Program, the School of Health and Behavioral Sciences, Ohio Northern University , Ada, OH, USA
| |
Collapse
|
15
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
16
|
al'Absi M. The influence of stress and early life adversity on addiction: Psychobiological mechanisms of risk and resilience. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:71-100. [DOI: 10.1016/bs.irn.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
18
|
Fang X, Zhan G, Zhang J, Xu H, Zhu B, Hu Y, Yang C, Luo A. Abnormalities in Inflammatory Cytokines Confer Susceptible to Chronic Neuropathic Pain-related Anhedonia in a Rat Model of Spared Nerve Injury. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:189-199. [PMID: 30905119 PMCID: PMC6478091 DOI: 10.9758/cpn.2019.17.2.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
Objective Patients with chronic neuropathic pain (CNP) have a higher incidence to develop depression. However, its pathogenesis has not yet been fully elucidated. Here we aimed to investigate the role of inflammatory cytokines in CNP-related anhedonia, which is a core symptom of depression, and to explore the effects of ketamine and parecoxib on pain and anhedonia. Methods A rat model of spared nerve injury (SNI) was constructed to mimic CNP. Hierarchical cluster analysis of sucrose preference test (SPT) was applied to classify the SNI rats into anhedonia susceptible and unsusceptible. Inflammatory cytokines in medial prefrontal cortex (mPFC) of brain, serum and L2–5 spinal cord were measured. Moreover, effects of ketamine or parecoxib on mechanical withdrawal test (MWT) and SPT in anhedonia susceptible rats were detected. Results Tumor necrosis factor (TNF)-α was increased in mPFC, serum and and spinal cord of anhedonia susceptible rats. Furthermore, anhedonia susceptible and unsusceptible rats both increased the interleukin (IL)-1β level in mPFC, serum and spinal cord. IL-6 was altered in serum and spinal cord, but not in mPFC. IL-10 was significantly altered in mPFC and serum, but not in spinal cord. Additionally, ketamine treatment significantly attenuated the decreased results of MWT and SPT in anhedonia susceptible rats, and that parecoxib significantly improved the MWT score, but failed to alter the result of SPT. Conclusion These findings suggest that abnormalities in inflammatory cytokines confer susceptible to anhedonia in a rat model of SNI. Ketamine, a fast-acting antidepressant, has pharmacological benefits to alleviate pain and anhedonia symptoms.
Collapse
Affiliation(s)
- Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yimin Hu
- Department of Anestesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
REM sleep's unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc Natl Acad Sci U S A 2019; 116:2733-2742. [PMID: 30683720 PMCID: PMC6377491 DOI: 10.1073/pnas.1816456116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sleep disturbances are common in stress-related disorders but the nature of these sleep disturbances and how they relate to changes in the stress hormone corticosterone and changes in gene expression remained unknown. Here we demonstrate that in response to chronic mild stress, rapid–eye-movement sleep (REMS), a sleep state involved in emotion regulation and fear conditioning, changed first and more so than any other measured sleep characteristic. Transcriptomic profiles related to REMS continuity and theta oscillations overlapped with those for corticosterone, as well as with predictors for anhedonia, and were enriched for apoptotic pathways. These data highlight the central role of REMS in response to stress and warrant further investigation into REMS’s involvement in stress-related mental health disorders. One of sleep’s putative functions is mediation of adaptation to waking experiences. Chronic stress is a common waking experience; however, which specific aspect of sleep is most responsive, and how sleep changes relate to behavioral disturbances and molecular correlates remain unknown. We quantified sleep, physical, endocrine, and behavioral variables, as well as the brain and blood transcriptome in mice exposed to 9 weeks of unpredictable chronic mild stress (UCMS). Comparing 46 phenotypic variables revealed that rapid–eye-movement sleep (REMS), corticosterone regulation, and coat state were most responsive to UCMS. REMS theta oscillations were enhanced, whereas delta oscillations in non-REMS were unaffected. Transcripts affected by UCMS in the prefrontal cortex, hippocampus, hypothalamus, and blood were associated with inflammatory and immune responses. A machine-learning approach controlling for unspecific UCMS effects identified transcriptomic predictor sets for REMS parameters that were enriched in 193 pathways, including some involved in stem cells, immune response, and apoptosis and survival. Only three pathways were enriched in predictor sets for non-REMS. Transcriptomic predictor sets for variation in REMS continuity and theta activity shared many pathways with corticosterone regulation, in particular pathways implicated in apoptosis and survival, including mitochondrial apoptotic machinery. Predictor sets for REMS and anhedonia shared pathways involved in oxidative stress, cell proliferation, and apoptosis. These data identify REMS as a core and early element of the response to chronic stress, and identify apoptosis and survival pathways as a putative mechanism by which REMS may mediate the response to stressful waking experiences.
Collapse
|
20
|
Snyder B, Duong P, Tenkorang M, Wilson EN, Cunningham RL. Rat Strain and Housing Conditions Alter Oxidative Stress and Hormone Responses to Chronic Intermittent Hypoxia. Front Physiol 2018; 9:1554. [PMID: 30459637 PMCID: PMC6232418 DOI: 10.3389/fphys.2018.01554] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea has been associated with elevated risk for metabolic, cognitive, and cardiovascular disorders. Further, the role of hypothalamic–pituitary–adrenal (HPA) activation in sleep apnea has been controversial in human studies. Chronic intermittent hypoxia (CIH) is a rodent model, which mimics the hypoxemia experienced by patients with sleep apnea. Most studies of CIH in rats have been conducted in the Sprague Dawley rat strain. Previously published literature suggests different strains of rats exhibit various responses to disease models, and these effects can be further modulated by the housing conditions experienced by each strain. This variability in response is similar to what has been observed in clinical populations, especially with respect to the HPA system. To investigate if strain or housing (individual or pair-housed) can affect the results of CIH (AHI 8 or 10) treatment, we exposed individual and pair-housed Sprague Dawley and Long-Evans male rats to 7 days of CIH treatment. This was followed by biochemical analysis of circulating hormones, oxidative stress, and neurodegenerative markers. Both strain and housing conditions altered oxidative stress generation, hyperphosphorylated tau protein (tau tangles), circulating corticosterone and adrenocorticotropic hormone (ACTH), and weight metrics. Specifically, pair-housed Long-Evans rats were the most sensitive to CIH, which showed a significant association between oxidative stress generation and HPA activation under conditions of AHI of 8. These results suggest both strain and housing conditions can affect the outcomes of CIH.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Mavis Tenkorang
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - E Nicole Wilson
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
21
|
Jha MK, Miller AH, Minhajuddin A, Trivedi MH. Association of T and non-T cell cytokines with anhedonia: Role of gender differences. Psychoneuroendocrinology 2018; 95:1-7. [PMID: 29783087 PMCID: PMC6312182 DOI: 10.1016/j.psyneuen.2018.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Among individual depressive symptoms, anhedonia has been reliably associated with activation of the innate immune response. However, it is unclear whether this association extends to T cell cytokines and if gender differentially affects this association. METHOD Concentrations of T (IL-17, T-helper (Th) 1- and Th2-) and non-T cell cytokines were measured in plasma using the Bioplex Pro™ human cytokine multiplex kit in Combining Medications to Enhance Depression Outcomes (CO-MED) trial participants who provided plasma at baseline (n = 166). Anhedonia was measured with three items of the clinician-rated Inventory of Depressive Symptomatology and depression severity (minus anhedonia item) was measured with Quick Inventory of Depression Severity Self-Report version (modified-QIDS-SR). Separate generalized linear models for anhedonia and modified-QIDS-SR as dependent variables were conducted with IL-17, Th1-, Th2-, and non-T cell- cytokines as primary independent variables and gender, body mass index (BMI), and age as covariates. Exploratory analyses included gender-by-biomarker interactions. RESULTS Higher levels of IL-17 (p = 0.032), Th1- (p = 0.002), Th2-(p = 0.001) and non-T-(p = 0.009) cell markers were associated with greater severity of anhedonia controlling for BMI, age, and gender. Gender also had a significant main effect on anhedonia, however, there was a significant gender by immune marker interaction only for IL-17 (p = 0.050). Anhedonia severity increased with higher IL-17 in males (r = 0.42, p = 0.003) but not in females (r = 0.09, p = 0.336). Only non-T cell markers were associated with the modified-QIDS-SR, and there were no significant gender-specific associations with this variable. CONCLUSIONS T and non-T cell-related inflammatory markers were associated with greater severity of anhedonia, while gender moderated the association of IL-17 with anhedonia in patients with major depressive disorder.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Abu Minhajuddin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
22
|
Deslauriers J, Toth M, Der-Avakian A, Risbrough VB. Current Status of Animal Models of Posttraumatic Stress Disorder: Behavioral and Biological Phenotypes, and Future Challenges in Improving Translation. Biol Psychiatry 2018; 83:895-907. [PMID: 29338843 PMCID: PMC6085893 DOI: 10.1016/j.biopsych.2017.11.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
Increasing predictability of animal models of posttraumatic stress disorder (PTSD) has required active collaboration between clinical and preclinical scientists. Modeling PTSD is challenging, as it is a heterogeneous disorder with ≥20 symptoms. Clinical research increasingly utilizes objective biological measures (e.g., imaging, peripheral biomarkers) or nonverbal behaviors and/or physiological responses to complement verbally reported symptoms. This shift toward more-objectively measurable phenotypes enables refinement of current animal models of PTSD, and it supports the incorporation of homologous measures across species. We reviewed >600 articles to examine the ability of current rodent models to probe biological phenotypes of PTSD (e.g., sleep disturbances, hippocampal and fear-circuit dysfunction, inflammation, glucocorticoid receptor hypersensitivity) in addition to behavioral phenotypes. Most models reliably produced enduring generalized anxiety-like or depression-like behaviors, as well as hyperactive fear circuits, glucocorticoid receptor hypersensitivity, and response to long-term selective serotonin reuptake inhibitors. Although a few paradigms probed fear conditioning/extinction or utilized peripheral immune, sleep, and noninvasive imaging measures, we argue that these should be incorporated more to enhance translation. Data on female subjects, on subjects at different ages across the life span, or on temporal trajectories of phenotypes after stress that can inform model validity and treatment study design are needed. Overall, preclinical (and clinical) PTSD researchers are increasingly incorporating homologous biological measures to assess markers of risk, response, and treatment outcome. This shift is exciting, as we and many others hope it not only will support translation of drug efficacy from animal models to clinical trials but also will potentially improve predictability of stage II for stage III clinical trials.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, California
| | - Mate Toth
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, California.
| |
Collapse
|
23
|
Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism. J Neurosci 2017; 37:7656-7668. [PMID: 28674176 DOI: 10.1523/jneurosci.0885-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness.SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics.
Collapse
|
24
|
Carnevali L, Montano N, Statello R, Sgoifo A. Rodent models of depression-cardiovascular comorbidity: Bridging the known to the new. Neurosci Biobehav Rev 2017; 76:144-153. [DOI: 10.1016/j.neubiorev.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
25
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|