1
|
Greenwald MK, Woodcock EA, Moses TE, Lundahl LH. Basal cortisol level modulates stress-induced opioid-seeking behavior. Neurobiol Stress 2024; 33:100684. [PMID: 39524933 PMCID: PMC11550728 DOI: 10.1016/j.ynstr.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
In preclinical studies and our human laboratory, the α2-noradrenergic autoreceptor antagonist yohimbine was found to promote drug-seeking behavior. This study evaluated effects of dose-combinations of yohimbine and the glucocorticoid receptor agonist hydrocortisone to model intensity-dependent effects of stimulating each neurochemical system, alone and together, on stress-reactivity and opioid-seeking. Twelve regular heroin-using participants diagnosed with opioid use disorder (OUD) were stabilized on sublingual buprenorphine (8-mg/day), then passed a hydromorphone 18-mg vs. placebo intramuscular reinforcement screen. Across 9 experimental conditions (3 × 3 within-subject, randomized crossover, placebo-controlled, double-blind design) during inpatient buprenorphine maintenance, combinations of oral pretreatment doses of yohimbine (0, 27, 54-mg; t = 0 min) then hydrocortisone (0, 20, 40-mg; t = 45 min) were administered. In each condition, subjective drug and mood effects, cardiovascular responses, and saliva cortisol and α-amylase levels were assessed to evaluate stress-reactivity, and participants completed a 12-trial choice progressive ratio task during which they could earn units of hydromorphone (1.5-mg intramuscular) and/or money ($2.00). Yohimbine dose-dependently increased blood pressure, α-amylase, and anxiety scores, and decreased opioid agonist symptoms; hydrocortisone dose-dependently increased cortisol levels. Yohimbine/hydrocortisone dose-combinations significantly shifted within-session responding from money to opioid-seeking among participants with lower basal cortisol levels. These findings replicate yohimbine effects on stress biomarkers and demonstrate that noradrenergic/glucocorticoid-potentiated opioid-seeking is modulated by basal cortisol level. In persons with OUD stabilized on buprenorphine, basal HPA-axis activity and acute stressors can enhance opioid relative reinforcing efficacy. These factors may limit OUD treatment efficacy and highlight the need for novel interventions that prevent stress-induced opioid-seeking.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Dept. of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
- Dept. of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Eric A. Woodcock
- Dept. of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
- Dept. of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Tabitha E.H. Moses
- Dept. of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Leslie H. Lundahl
- Dept. of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Yi W, Chen W, Lan B, Yan L, Hu X, Wu J. A U-shaped relationship between chronic academic stress and the dynamics of reward processing. Neuroimage 2024; 300:120849. [PMID: 39265955 DOI: 10.1016/j.neuroimage.2024.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the potential link between stress-induced reward dysfunctions and the development of mental problems, limited human research has investigated the specific impacts of chronic stress on the dynamics of reward processing. Here we aimed to investigate the relationship between chronic academic stress and the dynamics of reward processing (i.e., reward anticipation and reward consumption) using event-related potential (ERP) technology. Ninety healthy undergraduates who were preparing for the National Postgraduate Entrance Examination (NPEE) participated in the study and completed a two-door reward task, their chronic stress levels were assessed via the Perceived Stress Scale (PSS). The results showed that a lower magnitude of reward elicited more negative amplitudes of cue-N2 during the anticipatory phase, and reward omission elicited more negative amplitudes of FRN compared to reward delivery especially in high reward conditions during the consummatory phase. More importantly, the PSS score exhibited a U-shaped relationship with cue-N2 amplitudes regardless of reward magnitude during the anticipatory phase; and FRN amplitudes toward reward omission in high reward condition during the consummatory phase. These findings suggest that individuals exposed to either low or high levels of chronic stress, as opposed to moderate stress levels, exhibited a heightened reward anticipation, and an augmented violation of expectations or affective response when faced with relatively more negative outcomes.
Collapse
Affiliation(s)
- Wei Yi
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Wangxiao Chen
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Biqi Lan
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Linlin Yan
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Room 6.62, Jocky Club Tower, Pokfulam, Hong Kong, China
| | - Jianhui Wu
- School of Psychology, Shenzhen University, 3688#, Nanhai Avenue, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
3
|
Brevers D, Billieux J, de Timary P, Desmedt O, Maurage P, Perales JC, Suárez-Suárez S, Bechara A. Physical Exercise to Redynamize Interoception in Substance use Disorders. Curr Neuropharmacol 2024; 22:1047-1063. [PMID: 36918784 PMCID: PMC10964100 DOI: 10.2174/1570159x21666230314143803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 03/16/2023] Open
Abstract
Physical exercise is considered a promising medication-free and cost-effective adjunct treatment for substance use disorders (SUD). Nevertheless, evidence regarding the effectiveness of these interventions is currently limited, thereby signaling the need to better understand the mechanisms underlying their impact on SUD, in order to reframe and optimize them. Here we advance that physical exercise could be re-conceptualized as an "interoception booster", namely as a way to help people with SUD to better decode and interpret bodily-related signals associated with transient states of homeostatic imbalances that usually trigger consumption. We first discuss how mismatches between current and desired bodily states influence the formation of reward-seeking states in SUD, in light of the insular cortex brain networks. Next, we detail effort perception during physical exercise and discuss how it can be used as a relevant framework for re-dynamizing interoception in SUD. We conclude by providing perspectives and methodological considerations for applying the proposed approach to mixed-design neurocognitive research on SUD.
Collapse
Affiliation(s)
- Damien Brevers
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joël Billieux
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Centre for Excessive Gambling, Addiction Medicine, Lausanne University Hospitals (CHUV), Lausanne, Switzerland
| | - Philippe de Timary
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium
- Department of Adult Psychiatry, Cliniques universitaires Saint-Luc and Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Olivier Desmedt
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium
| | - José Cesar Perales
- Mind, Brain, and Behavior Research Center (CIMCYC), Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Samuel Suárez-Suárez
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-La-Neuve, Belgium
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antoine Bechara
- Department of Psychology, University of Southern California, Los Angeles, California, CA, USA
| |
Collapse
|
4
|
Irving H, Turek I, Kettle C, Yaakob N. Tapping into 5-HT 3 Receptors to Modify Metabolic and Immune Responses. Int J Mol Sci 2021; 22:ijms222111910. [PMID: 34769340 PMCID: PMC8584345 DOI: 10.3390/ijms222111910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These advances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subunits and increasing understanding of their implications in patient's predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
- Correspondence:
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Nor Yaakob
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
5
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
6
|
At the intersection of sleep deficiency and opioid use: mechanisms and therapeutic opportunities. Transl Res 2021; 234:58-73. [PMID: 33711513 PMCID: PMC8217216 DOI: 10.1016/j.trsl.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022]
Abstract
Due to the ongoing opioid epidemic, innovative scientific perspectives and approaches are urgently needed to reduce the unprecedented personal and societal burdens of nonmedical and recreational opioid use. One promising opportunity is to focus on the relationship between sleep deficiency and opioid use. In this review, we examine empirical evidence: (1) at the interface of sleep deficiency and opioid use, including hypothesized bidirectional associations between sleep efficiency and opioid abstinence; (2) as to whether normalization of sleep deficiency might directly or indirectly improve opioid abstinence (and vice versa); and (3) regarding mechanisms that could link improvements in sleep to opioid abstinence. Based on available data, we identify candidate sleep-restorative therapeutic approaches that should be examined in rigorous clinical trials.
Collapse
|
7
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
8
|
CRF-5-HT interactions in the dorsal raphe nucleus and motivation for stress-induced opioid reinstatement. Psychopharmacology (Berl) 2021; 238:29-40. [PMID: 33231727 PMCID: PMC7796902 DOI: 10.1007/s00213-020-05652-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023]
Abstract
RATIONALE The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous data show that stressors can inhibit 5-HT neuronal activity and release by stimulating the release of the stress neurohormone corticotropin-releasing factor (CRF) within the serotonergic dorsal raphe nucleus (DRN). The inhibitory effects of CRF on 5-HT DRN neurons are indirect, mediated by CRF-R1 receptors located on GABAergic afferents. OBJECTIVES We tested the hypothesis that DRN CRF-R1 receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). We also examined the role of this circuitry in stress-induced negative affective state with 22-kHz distress ultrasonic vocalizations (USVs), which are naturally emitted by rats in response to environmental challenges such as pain, stress, and drug withdrawal. METHODS First, we tested if activation of CRF-R1 receptors in the DRN with the CRF-R1-preferring agonist ovine CRF (oCRF) would reinstate morphine CPP and then if blockade of CRF-R1 receptors in the DRN with the CRF-R1 antagonist NBI 35965 would attenuate swim stress-induced reinstatement of morphine CPP. Second, we tested if intra-DRN pretreatment with NBI 35965 would attenuate foot shock stress-induced 22-kHz USVs. RESULTS Intra-DRN injection of oCRF reinstated morphine CPP, while intra-DRN injection of NBI 35965 attenuated swim stress-induced reinstatement. Moreover, intra-DRN pretreatment with NBI 35965 significantly reduced 22-kHz distress calls induced by foot shock. CONCLUSIONS These data provide evidence that stress-induced negative affective state is mediated by DRN CRF-R1 receptors and may contribute to reinstatement of morphine CPP.
Collapse
|
9
|
Li Y, Ramoz N, Derrington E, Dreher JC. Hormonal responses in gambling versus alcohol abuse: A review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109880. [PMID: 32004637 DOI: 10.1016/j.pnpbp.2020.109880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/01/2020] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
The endocrine system plays an essential role in communication between various organs of the body to maintain homeostasis. Both substance use disorders (SUDs) and non-substance abuse disrupt this system and lead to hormonal dysregulations. Here, we focus on the comparison between the function of the endocrine system in gambling disorders and alcohol addiction to understand the commonalities and differences in their neurobiological and psychological underpinnings. We review human research to compare findings on gambling addiction and alcohol dependence pertaining to the dynamic interplay between testosterone and cortisol. Understanding and classifying similarities in hormonal responses between behavioural addiction and SUDs may facilitate development of treatments and therapeutic interventions across different types of addictive disorders, while describing differences may shed light on therapeutic interventions for specific disorders. Although research on gambling addiction is in its infancy, such evaluation may still have a positive effect for addiction research, thereby stimulating discovery of "crossover" pharmacotherapies with benefits for both SUDs and nonsubstance addictions.
Collapse
Affiliation(s)
- Yansong Li
- Competition, Addiction and Social Neuroscience Lab, Department of Psychology, School of Social and Behavioral Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Nicolas Ramoz
- Vulnerability of Psychiatric and Addictive Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM UMRS1266, Paris, France.
| | - Edmund Derrington
- Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
| | - Jean-Claude Dreher
- Neuroeconomics Laboratory, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France.
| |
Collapse
|
10
|
Fronk GE, Sant'Ana SJ, Kaye JT, Curtin JJ. Stress Allostasis in Substance Use Disorders: Promise, Progress, and Emerging Priorities in Clinical Research. Annu Rev Clin Psychol 2020; 16:401-430. [PMID: 32040338 PMCID: PMC7259491 DOI: 10.1146/annurev-clinpsy-102419-125016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinicians and researchers alike have long believed that stressors play a pivotal etiologic role in risk, maintenance, and/or relapse of alcohol and other substance use disorders (SUDs). Numerous seminal and contemporary theories on SUD etiology posit that stressors may motivate drug use and that individuals who use drugs chronically may display altered responses to stressors. We use foundational basic stress biology research as a lens through which to evaluate critically the available evidence to support these key stress-SUD theses in humans. Additionally, we examine the field's success to date in targeting stressors and stress allostasis in treatments for SUDs. We conclude with our recommendations for how best to advance our understanding of the relationship between stressors and drug use, and we discuss clinical implications for treatment development.
Collapse
Affiliation(s)
- Gaylen E Fronk
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Sarah J Sant'Ana
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Jesse T Kaye
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA;
- Center for Tobacco Research and Intervention, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53711, USA
| | - John J Curtin
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
11
|
Hood LE, Leyrer-Jackson JM, Olive MF. Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opin Pharmacother 2020; 21:823-839. [PMID: 32103695 PMCID: PMC7239727 DOI: 10.1080/14656566.2020.1732349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment. They also review the mechanisms of action of opioids and alcohol within the brain reward circuitry and discuss potential combined mechanisms of action and resulting neuroadaptations. Pharmacotherapies that aim to treat AUD or OUD that may be beneficial in the treatment of co-use are also highlighted. Preclinical models assessing alcohol and opioid co-use remain sparse. Lasting neuroadaptations in brain reward circuits caused by co-use of alcohol and opioids remains largely understudied. In order to fully understand the neurobiological underpinnings of alcohol and opioid co-use and develop efficacious pharmacotherapies, the preclinical field must expand its current experimental paradigms of 'single drug' use to encompass polysubstance use. Such studies will provide insights on the neural alterations induced by opioid and alcohol co-use, and may help develop novel pharmacotherapies for individuals with co-occurring alcohol and opioid use disorders.
Collapse
Affiliation(s)
- Lauren E. Hood
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | | | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Krupitsky EM, Rybakova KV, Skurat EP, Semenova NV, Neznanov NG. [A double blind placebo controlled randomized clinical trial of the efficacy and safety of pregabalin in induction of remission in patients with alcohol dependence]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:33-43. [PMID: 32105267 DOI: 10.17116/jnevro202012001133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To study the efficacy of pregabalin for relapse prevention and reduction of drinking in patients with alcohol dependence. MATERIAL AND METHODS One hundred recently detoxified out-patients with alcohol dependence were randomly assigned to one of two treatment groups. Patients of the first group (n=50; 38 men, 12 women, age 43.0±1.27) received pregabalin (150 mg once a day at night time) for 3 months, while patients of the second group (n=50; 45 men, 5 women, age 45.92±1.4) received identically looking placebo. All patients received standardized manualized weekly counseling (medical management). Drinking was measured on the weekly basis with Time Line Follow Back technique and GGT enzyme activity. Also, craving for alcohol, depression, and anxiety were measured weekly with the number of scales. RESULTS Kaplan-Meier survival analysis demonstrated significantly higher retention in treatment and in remission in the pregabalin group (lower drop out and relapse rate) mediana (CL)-12 (10.4-13.6) weeks in the pregabalin group vs. 6 (4.5-7.5) in the placebo group, Log Rank Mantel-Cox test = 0.005). Proportion of patients, who completed treatment in the pregabalin group, was significantly higher compared to the placebo group: 50% vs. 24%. Mean duration of participation in the treatment program was also higher in the pregabalin group: 9.1±0.5 weeks vs. 7.1±0.5 in the placebo group. General linear model demonstrated the significant treatment group effect on: (1) total alcohol consumption (TAC) (mean grams of alcohol per day) with lower TAC in the pregabalin group and (2) on the number of heavy drinking days (NHDD) with lower NHDD in the pregabalin group. Mean NHDD per patient for the period of participation in the study was lower in the pregabalin group (3.6±0.7 vs. 6.4±0.8; p=0.009), while the mean number of abstinent (sober) days was higher (55.9±3.6 vs. 40.0±3.3; p=0.001). No significant differences between the two groups were found in the scores on craving for alcohol, depression and anxiety scales. GGT activity was also similar in both groups throughout the study with no significant between group differences. The rate of adverse events (sleepiness, dizziness, and headache) was insignificantly higher in the pregabalin group compared with the placebo group. All adverse events were mild, gradually disappeared, and did not require any medication. CONCLUSION Results of this study provide evidence that pregabalin in a low dose of 150 mg per day is an effective and safe medication for relapse prevention and reduction of drinking in patients with alcohol dependence.
Collapse
Affiliation(s)
- E M Krupitsky
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia; First St. Petersburg Pavlov State Medical University, St. Petersburg, Russia
| | - K V Rybakova
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - E P Skurat
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N V Semenova
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N G Neznanov
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia; First St. Petersburg Pavlov State Medical University, St. Petersburg, Russia
| |
Collapse
|
13
|
Regier PS, Kampman KM, Childress AR. Clinical Trials for Stimulant Use Disorders: Addressing Heterogeneities That May Undermine Treatment Outcomes. Handb Exp Pharmacol 2020; 258:299-322. [PMID: 32193666 DOI: 10.1007/164_2019_303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, use of cocaine and amphetamines and deaths associated with stimulants have been on the rise, and there are still no FDA-approved medications for stimulant use disorders. One contributing factor may involve heterogeneity. At the neurobiological level, dual dopamine dysfunction may be undermining medication efficacy, suggesting a need for combination pharmacotherapies. At the population level, individual variability is expressed in a number of ways and, if left unaddressed, may interfere with medication efficacy. This chapter reviews studies investigating medications to address dopamine dysfunction, and it also identifies several prominent heterogeneities associated with stimulant (and other substance) use disorders. The chapter has implications for improving interventions to treat stimulant use disorders, and the theme of individual heterogeneity may have broader application across substance use disorders.
Collapse
Affiliation(s)
- Paul S Regier
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Rose Childress
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Castilla-Ortega E, Santín LJ. Adult hippocampal neurogenesis as a target for cocaine addiction: a review of recent developments. Curr Opin Pharmacol 2019; 50:109-116. [PMID: 31708413 DOI: 10.1016/j.coph.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Basic research in rodents has shown that adult hippocampal neurogenesis (AHN) plays a key role in neuropsychiatric disorders that compromise hippocampal functioning. The discovery that dependence-inducing drugs regulate AHN has led to escalating interest in the potential involvement of AHN in drug addiction over the last decade, with cocaine being one of the most frequently investigated drugs. This review argues that, unlike other drugs of abuse, preclinical studies do not, overall, support that cocaine induces a marked or persistent impairment in AHN. Nevertheless, experimental reduction of AHN consistently exacerbates vulnerability to cocaine. Interestingly, preliminary evidence suggests that, on the contrary, increasing AHN might help both to prevent and treat addiction.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain.
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
15
|
Intra-accumbal orexin-1 receptor inhibition prevents the anxiolytic-like effect of ethanol and leads to increases in orexin-A content and receptor expression. Pharmacol Biochem Behav 2019; 185:172761. [DOI: 10.1016/j.pbb.2019.172761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
|
16
|
Endocannabinoids and Fear-Related Behavior in Mice Selectively Bred for High or Low Alcohol Preference. Brain Sci 2019; 9:brainsci9100254. [PMID: 31561480 PMCID: PMC6827354 DOI: 10.3390/brainsci9100254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023] Open
Abstract
Alcohol use disorders (AUDs) have a high incidence of co-morbidity with stress-related psychopathologies, such as post-traumatic stress disorder (PTSD). Genetic and pharmacological studies support a prominent role for the endocannabinoid system (ECS) in modulating stress-related behaviors relevant to AUDs and PTSD. Mouse lines selectively bred for high (HAP) and low (LAP) alcohol preference show reproducible differences in fear-potentiated startle (FPS), a model for PTSD-related behavior. The first experiment in this study assessed levels of the endocannabinoids, anandamide (AEA) and sn-2 arachidonylglycerol (2-AG), in the prefrontal cortex (PFC), amygdala (AMG), and hippocampus (HIP) of male and female HAP1 and LAP1 mice following the expression of FPS to determine whether ECS responses to conditioned-fear stress (FPS) were correlated with genetic propensity toward high or low alcohol preference. The second experiment examined effects of a cannabinoid receptor type 1 agonist (CP55940) and antagonist (rimonabant) on the expression of FPS in HAP1 and LAP1 male and female mice. The estrous cycle of females was monitored throughout the experiments to determine if the expression of FPS differed by stage of the cycle. FPS was greater in male and female HAP1 than LAP1 mice, as previously reported. In both experiments, LAP1 females in diestrus displayed greater FPS than LAP1 females in metestrus and estrus. In the AMG and HIP, AEA levels were greater in male fear-conditioned HAP1 mice than LAP1 mice. There were no line or sex differences in effects of CP55940 or rimonabant on the expression of FPS. However, surprisingly, evidence for anxiogenic effects of prior treatment with CP55940 were seen in all mice during the third drug-free FPS test. These findings suggest that genetic differences in ECS function in response to fear-conditioning stress may underlie differences in FPS expression in HAP1 and LAP1 selected lines.
Collapse
|
17
|
Zhou Y, Liang Y, Low MJ, Kreek MJ. Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking. GENES BRAIN AND BEHAVIOR 2019; 18:e12600. [PMID: 31339663 DOI: 10.1111/gbb.12600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
Persistent alterations of proopiomelanocortin (Pomc) and mu-opioid receptor (Oprm1) activity and stress responses after alcohol are critically involved in vulnerability to alcohol dependency. Gene transcriptional regulation altered by alcohol may play important roles. Mice with genome-wide deletion of neuronal Pomc enhancer1 (nPE1-/- ), had hypothalamic-specific partial reductions of beta-endorphin and displayed lower alcohol consumption, compared to wildtype littermates (nPE1+/+ ). We used RNA-Seq to measure steady-state nuclear mRNA transcripts of opioid and stress genes in hypothalamus of nPE1+/+ and nPE1-/- mice after 1-day acute withdrawal from chronic excessive alcohol drinking or after water. nPE1-/- had lower basal Pomc and Pdyn (prodynorphin) levels compared to nPE1+/+ , coupled with increased basal Oprm1 and Oprk1 (kappa-opioid receptor) levels, and low alcohol drinking increased Pomc and Pdyn to the basal levels of nPE1+/+ in the water group, without significant effects on Oprm1 and Oprk1. In nPE1+/+ , excessive alcohol intake increased Pomc and Oprm1, with no effect on Pdyn or Oprk1. For stress genes, nPE1-/- had lowered basal Oxt (oxytocin) and Avp (arginine vasopressin) that were restored by low alcohol intake to basal levels of nPE1+/+ . In nPE1+/+ , excessive alcohol intake decreased Oxt and Avpi1 (AVP-induced protein1). Functionally examining the effect of pharmacological blockade of mu-opioid receptor, we found that naltrexone reduced excessive alcohol intake in nPE1+/+ , but not nPE1-/- . Our results provide evidence relevant to the transcriptional profiling of the critical genes in mouse hypothalamus: enhanced opioid and reduced stress gene transcripts after acute withdrawal from excessive alcohol may contribute to altered reward and stress responses.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Yupu Liang
- Research Bioinformatics, CCTS, The Rockefeller University, New York, New York
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mary J Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
18
|
Elman I, Borsook D. The failing cascade: Comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 2019; 103:374-383. [DOI: 10.1016/j.neubiorev.2019.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
|
19
|
Calpe-López C, García-Pardo MP, Aguilar MA. Cannabidiol Treatment Might Promote Resilience to Cocaine and Methamphetamine Use Disorders: A Review of Possible Mechanisms. Molecules 2019; 24:molecules24142583. [PMID: 31315244 PMCID: PMC6680550 DOI: 10.3390/molecules24142583] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, there are no approved pharmacotherapies for addiction to cocaine and other psychostimulant drugs. Several studies have proposed that cannabidiol (CBD) could be a promising treatment for substance use disorders. In the present work, the authors describe the scarce preclinical and human research about the actions of CBD on the effects of stimulant drugs, mainly cocaine and methamphetamine (METH). Additionally, the possible mechanisms underlying the therapeutic potential of CBD on stimulant use disorders are reviewed. CBD has reversed toxicity and seizures induced by cocaine, behavioural sensitization induced by amphetamines, motivation to self-administer cocaine and METH, context- and stress-induced reinstatement of cocaine and priming-induced reinstatement of METH seeking behaviours. CBD also potentiated the extinction of cocaine- and amphetamine-induced conditioned place preference (CPP), impaired the reconsolidation of cocaine CPP and prevented priming-induced reinstatement of METH CPP. Observational studies suggest that CBD may reduce problems related with crack-cocaine addiction, such as withdrawal symptoms, craving, impulsivity and paranoia (Fischer et al., 2015). The potential mechanisms involved in the protective effects of CBD on addiction to psychostimulant drugs include the prevention of drug-induced neuroadaptations (neurotransmitter and intracellular signalling pathways changes), the erasure of aberrant drug-memories, the reversion of cognitive deficits induced by psychostimulant drugs and the alleviation of mental disorders comorbid with psychostimulant abuse. Further, preclinical studies and future clinical trials are necessary to fully evaluate the potential of CBD as an intervention for cocaine and methamphetamine addictive disorders.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Unit of Research "Neurobehavioural mechanisms and endophenotypes of addictive behavior", Department of Psychobiology, University of Valencia, Avda. Blasco Ibañez 21, 46010 Valencia, Spain
| | - M Pilar García-Pardo
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain
| | - Maria A Aguilar
- Unit of Research "Neurobehavioural mechanisms and endophenotypes of addictive behavior", Department of Psychobiology, University of Valencia, Avda. Blasco Ibañez 21, 46010 Valencia, Spain.
| |
Collapse
|
20
|
Woodcock EA, Greenwald MK, Khatib D, Diwadkar VA, Stanley JA. Pharmacological stress impairs working memory performance and attenuates dorsolateral prefrontal cortex glutamate modulation. Neuroimage 2019; 186:437-445. [PMID: 30458306 PMCID: PMC6491044 DOI: 10.1016/j.neuroimage.2018.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/04/2023] Open
Abstract
Working memory processes are associated with the dorsolateral prefrontal cortex (dlPFC). Prior research using proton functional magnetic resonance spectroscopy (1H fMRS) observed significant dlPFC glutamate modulation during letter 2-back performance, indicative of working memory-driven increase in excitatory neural activity. Acute stress has been shown to impair working memory performance. Herein, we quantified dlPFC glutamate modulation during working memory under placebo (oral lactose) and acute stress conditions (oral yohimbine 54 mg + hydrocortisone 10 mg). Using a double-blind, randomized crossover design, participants (N = 19) completed a letter 2-back task during left dlPFC 1H fMRS acquisition (Brodmann areas 45/46; 4.5 cm3). An automated fitting procedure integrated with LCModel was used to quantify glutamate levels. Working memory-induced glutamate modulation was calculated as percentage change in glutamate levels from passive visual fixation to 2-back levels. Results indicated acute stress significantly attenuated working memory-induced glutamate modulation and impaired 2-back response accuracy, relative to placebo levels. Follow-up analyses indicated 2-back performance significantly modulated glutamate levels relative to passive visual fixation during placebo but not acute stress. Biomarkers, including blood pressure and saliva cortisol, confirmed that yohimbine + hydrocortisone dosing elicited a significant physiological stress response. These findings support a priori hypotheses and demonstrate that acute stress impairs dlPFC function and excitatory activity. This study highlights a neurobiological mechanism through which acute stress may contribute to psychiatric dysfunction and derail treatment progress. Future research is needed to isolate noradrenaline vs. cortisol effects and evaluate anti-stress medications and/or behavioral interventions.
Collapse
Affiliation(s)
- Eric A. Woodcock
- Brain Imaging Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI,Substance Abuse Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI,Corresponding author at: 2 Church Street South,
Suite #314, New Haven, CT, USA;
(EAW)
| | - Mark K. Greenwald
- Substance Abuse Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI
| | - Dalal Khatib
- Brain Imaging Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI
| | - Vaibhav A. Diwadkar
- Brain Imaging Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI
| | - Jeffrey A. Stanley
- Brain Imaging Research Division, Department of Psychiatry
and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit,
MI
| |
Collapse
|
21
|
Wemm SE, Sinha R. Drug-induced stress responses and addiction risk and relapse. Neurobiol Stress 2019; 10:100148. [PMID: 30937354 PMCID: PMC6430516 DOI: 10.1016/j.ynstr.2019.100148] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
A number of studies have assessed the effects of psychoactive drugs on stress biology, the neuroadaptations resulting from chronic drug use on stress biology, and their effects on addiction risk and relapse. This review mainly covers human research on the acute effects of different drugs of abuse (i.e., nicotine, cannabis, psychostimulants, alcohol, and opioids) on the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS) responses. We review the literature on acute peripheral stress responses in naïve or light recreational users and binge/heavy or chronic drug users. We also discuss evidence of alterations in tonic levels, or tolerance, in the latter relative to the former and associated changes in the phasic stress responses. We discuss the impact of the stress system tolerance in heavy users on their response to drug- and stress-related cue responses and craving as compared to control subjects. A summary is provided of the effects of glucocorticoid responses and their adaptations on brain striatal and prefrontal cortices involved in the regulation of drug seeking and relapse risk. Finally, we summarize important considerations, including individual difference factors such as gender, co-occurring drug use, early trauma and adversity and drug use history and variation in methodologies, that may further influence the effects of these drugs on stress biology.
Collapse
Affiliation(s)
- Stephanie E. Wemm
- Yale Stress Center, Yale School of Medicine, 2 Church St South Suite 209, New Haven, CT, 06519, USA
| | | |
Collapse
|
22
|
Ruisoto P, Contador I. The role of stress in drug addiction. An integrative review. Physiol Behav 2019; 202:62-68. [PMID: 30711532 DOI: 10.1016/j.physbeh.2019.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The high prevalence and burden to society of drug abuse and addiction is undisputed. However, its conceptualisation as a brain disease is controversial, and available interventions insufficient. Research on the role of stress in drug addiction may bridge positions and develop more effective interventions. AIM The aim of this paper is to integrate the most influential literature to date on the role of stress in drug addiction. METHODS A literature search was conducted of the core collections of Web of Science and Semantic Scholar on the topic of stress and addiction from a neurobiological perspective in humans. The most frequently cited articles and related references published in the last decade were finally redrafted into a narrative review based on 130 full-text articles. RESULTS AND DISCUSSION First, a brief overview of the neurobiology of stress and drug addiction is provided. Then, the role of stress in drug addiction is described. Stress is conceptualised as a major source of allostatic load, which result in progressive long-term changes in the brain, leading to a drug-prone state characterized by craving and increased risk of relapse. The effects of stress on drug addiction are mainly mediated by the action of corticotropin-releasing factor and other stress hormones, which weaken the hippocampus and prefrontal cortex and strengthen the amygdala, leading to a negative emotional state, craving and lack of executive control, increasing the risk of relapse. Both, drugs and stress result in an allostatic overload responsible for neuroadaptations involved in most of the key features of addiction: reward anticipation/craving, negative affect, and impaired executive functions, involved in three stages of addiction and relapse. CONCLUSION This review elucidates the crucial role of stress in drug addiction and highlights the need to incorporate the social context where brain-behaviour relationships unfold into the current model of addition.
Collapse
Affiliation(s)
- Pablo Ruisoto
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain.
| | - Israel Contador
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain
| |
Collapse
|