1
|
Sánchez-Marín L, Jiménez-Castilla V, Flores-López M, Navarro JA, Gavito A, Blanco-Calvo E, Santín LJ, Pavón-Morón FJ, Rodríguez de Fonseca F, Serrano A. Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA 1 receptor-deficient mice. Neuropharmacology 2025; 268:110325. [PMID: 39864586 DOI: 10.1016/j.neuropharm.2025.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA1 receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA1 receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA1-null mice of both sexes. We hypothesized LPA1 receptor loss disrupts the interplay between LPA and the endocannabinoid 2-arachidonoylglycerol (2-AG) signaling, resulting in distinct behavioral and molecular alterations. maLPA1-null mice exhibited increased anxiety-like behaviors and altered stress-coping responses compared to wild-type counterparts, with more pronounced effects observed in females. Female mice also displayed higher corticosterone levels, though no genotype-related differences were observed. Plasma analyses revealed elevated LPA levels in maLPA1-null mice, suggesting a compensatory mechanism, and reduced 2-AG levels, indicating impaired ECS signaling. Gene expression profiling in the amygdala and medial prefrontal cortex showed significant alterations in the gene expression of key components of LPA and 2-AG signaling pathways, as well as neuropeptide systems such as corticotropin-releasing hormone (CRH) and neuropeptide Y (NPY). Glutamatergic signaling components also exhibited sex-specific variations. These findings suggest that LPA1 receptor deficiency impacts behavioral response and disrupts sex-specific neurotransmitter signaling, emphasizing the importance of LPA-ECS crosstalk in emotional regulation. This study provides insights into the molecular mechanisms underlying stress-related disorders such as depression and anxiety, which may inform the development of sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Violeta Jiménez-Castilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Juan A Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Ana Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Eduardo Blanco-Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010, Málaga, Spain
| | - Francisco J Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Área del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain; Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001, Malaga, Spain.
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain.
| |
Collapse
|
2
|
Muroi Y, Ishii T. Neuronal stress-coping mechanisms in postpartum females. Neurosci Res 2025:S0168-0102(25)00032-X. [PMID: 39978735 DOI: 10.1016/j.neures.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Animals exhibit a wide range of stress responses aimed at restoring homeostasis and promoting adaptation. In response to stress, they employ coping mechanisms to maintain physiological balance. Dysregulated stress-coping strategies have been associated with mental disorders, including depression, anxiety, and post-traumatic stress disorder. Understanding the neuronal mechanisms that regulate stress-coping is critical for elucidating normal physiological responses and addressing the pathological processes underlying these disorders. Stress responses are influenced by sex and life stage, with notable variability in the prevalence and severity of mental disorders based on these factors. Stress-coping mechanisms are pivotal in determining the vulnerability or resilience of an individual to stress. Thus, identifying differences in stress-coping strategies between sexes and across life stages is essential for advancing prevention and treatment strategies for stress-related mental disorders. This review explores the neuronal mechanisms underlying stress responses, emphasizing the distinct stress-coping strategies utilized by postpartum females. Highlighting these differences underscores the need for targeted prevention and treatment approaches that consider sex- and life stage-specific variations in stress-coping mechanisms.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan
| |
Collapse
|
3
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
5
|
Ornelas LC, Besheer J. Predator odor stress reactivity, alcohol drinking and the endocannabinoid system. Neurobiol Stress 2024; 30:100634. [PMID: 38623398 PMCID: PMC11016807 DOI: 10.1016/j.ynstr.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Xue T, Ma RH, Xu C, Sun B, Yan DF, Liu XM, Gao D, Li ZH, Gao Y, Wang CZ. The endocannabinoid system is involved in the anxiety-like behavior induced by dual-frequency 2.65/0.8 GHz electromagnetic radiation in mice. Front Mol Neurosci 2024; 17:1366855. [PMID: 38685914 PMCID: PMC11057378 DOI: 10.3389/fnmol.2024.1366855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
As wireless communication devices gain popularity, concerns about the potential risks of environmental exposure to complex frequency electromagnetic radiation (EMR) on mental health have become a public health issue. Historically, EMR research has predominantly focused on single- frequency electromagnetic waves, neglecting the study of multi-frequency electromagnetic waves, which more accurately represent everyday life. To address these concerns, our study compared the emotional effects of single-frequency and dual-frequency EMR while exploring potential molecular mechanisms and intervention targets. Our results revealed that single-frequency EMR at 2.65 or 0.8 GHz did not induce anxiety-like behavior in mice. However, exposure to dual-frequency EMR at 2.65/0.8 GHz significantly led to anxiety-like behavior in mice. Further analysis of mouse sera revealed substantial increases in corticosterone and corticotrophin releasing hormone levels following exposure to 2.65/0.8 GHz EMR. Transcriptome sequencing indicated a significant decrease in the expression of Cnr1, encoding cannabinoid receptor 1 Type (CB1R), in the cerebral. This finding was consistently verified through western blot analysis, revealing a substantial reduction in CB1R content. Additionally, a significant decrease in the endocannabinoid 2-arachidonoylglycerol was observed in the cerebral cortex. Remarkably, administering the cannabinoid receptor agonist Win55-212-2 significantly alleviated the anxiety-like behavior, and the cannabinoid receptor antagonist AM251 effectively counteracted the anti-anxiety effects of Win55-212-2. In summary, our research confirmed that dual-frequency EMR is more likely to induce anxiety-like behavior in mice than single-frequency EMR, with implications for the hypothalamic-pituitary-adrenal axis and the endocannabinoid system. Furthermore, our findings suggest that Win55-212-2 may represent a novel avenue for researching and developing anti-EMR drugs.
Collapse
Affiliation(s)
- Teng Xue
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Rui-Han Ma
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Chou Xu
- Department of Critical Care Medicine, The 983rd Hospital of the Joint Logistics Support Force of PLA, Tianjin, China
- Chinese PLA General Hospital, Beijing, China
| | - Bin Sun
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Dong-Fei Yan
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Xiao-Man Liu
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Dawen Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Hui Li
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chang-Zhen Wang
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, Beijing, China
| |
Collapse
|
7
|
Zhang J, Zhang J, Yuan R, Han W, Chang Y, Kong L, Wei C, Zheng Q, Zhu X, Liu Z, Ren W, Han J. Inhibition of cannabinoid degradation enhances hippocampal contextual fear memory and exhibits anxiolytic effects. iScience 2024; 27:108919. [PMID: 38318362 PMCID: PMC10839683 DOI: 10.1016/j.isci.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Recent studies have demonstrated the pivotal involvement of endocannabinoids in regulating learning and memory, but the conclusions obtained from different paradigms or contexts are somewhat controversial, and the underlying mechanisms remain largely elusive. Here, we show that JZL195, a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase, can enhance the performance of mice in a contextual fear conditioning task and increase the time spent in open arms in the elevated zero maze (EZM). Although the effect of JZL195 on fear memory could not be inhibited by antagonists of cannabinoid receptors, the effect on the EZM seems to be mediated by CB1R. Simultaneously, hippocampal neurons are hyperactive, and theta oscillation power is significantly increased during the critical period of memory consolidation upon treatment with JZL195. These results suggest the feasibility of targeting the endocannabinoid system for the treatment of various mental disorders.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Junmin Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Ruiqi Yuan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wenxin Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Yuan Chang
- Department of Histology and Embryology, School of Basic Medical Science, Xi’an Medical University, Xi’an 710000, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Chunling Wei
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Qiaohua Zheng
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Xingchao Zhu
- Heze Hospital of Traditional Chinese Medicine, Heze 274000, China
| | - Zhiqiang Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
- Faculty of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| |
Collapse
|
8
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Silveira KM, Wegener G, Joca SRL. Targeting 2-arachidonoylglycerol signalling in the neurobiology and treatment of depression. Basic Clin Pharmacol Toxicol 2021; 129:3-14. [PMID: 33905617 DOI: 10.1111/bcpt.13595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is an atypical neurotransmitter synthesized on demand in response to a wide range of stimuli, including exposure to stress. Through the activation of cannabinoid receptors, 2-AG can interfere with excitatory and inhibitory neurotransmission in different brain regions and modulate behavioural, endocrine and emotional components of the stress response. Exposure to chronic or intense unpredictable stress predisposes to maladaptive behaviour and is one of the main risk factors involved in developing mood disorders, such as major depressive disorder (MDD). In this review, we describe the molecular mechanisms involved in 2-AG signalling in the brain of healthy and stressed animals and discuss how such mechanisms could modulate stress adaptation and susceptibility to depression. Furthermore, we review preclinical evidence indicating that the pharmacological modulation of 2-AG signalling stands as a potential new therapeutic target in treating MDD. Particular emphasis is given to the pharmacological augmentation of 2-AG levels by monoacylglycerol lipase (MAGL) inhibitors and the modulation of CB2 receptors.
Collapse
Affiliation(s)
- Kennia M Silveira
- School of Pharmaceutical Sciences of Ribeirao Preto (FCFRP), University of Sao Paulo (USP), Ribeirao Preto, Brazil.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sâmia R L Joca
- School of Pharmaceutical Sciences of Ribeirao Preto (FCFRP), University of Sao Paulo (USP), Ribeirao Preto, Brazil.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|