1
|
Fultz EK, Nei AYT, Chi JC, Lichter JN, Szumlinski KK. Effects of systemic pretreatment with the NAALADase inhibitor 2-PMPA on oral methamphetamine reinforcement in C57BL/6J mice. Front Psychiatry 2024; 15:1297275. [PMID: 38638417 PMCID: PMC11024460 DOI: 10.3389/fpsyt.2024.1297275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repeated exposure to methamphetamine (MA) in laboratory rodents induces a sensitization of glutamate release within the corticoaccumbens pathway that drives both the rewarding and reinforcing properties of this highly addictive drug. Such findings argue the potential for pharmaceutical agents inhibiting glutamate release or its postsynaptic actions at glutamate receptors as treatment strategies for MA use disorder. One compound that may accomplish both of these pharmacological actions is the N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA). 2-PMPA elevates brain levels of the endogenous agonist of glutamate mGluR3 autoreceptors, N-acetyl-aspartatylglutamate (NAAG), while potentially acting as an NMDA glutamate receptor antagonist. Of relevance to treating psychomotor stimulant use disorders, 2-PMPA is reported to reduce indices of both cocaine and synthetic cathinone reward, as well as cocaine reinforcement in preclinical rodent studies. Method Herein, we conducted three experiments to pilot the effects of systemic pretreatment with 2-PMPA (0-100 mg/kg, IP) on oral MA self-administration in C57BL/6J mice. The first experiment employed female mice with a prolonged history of MA exposure, while the mice in the second (females) and third (males and females) experiment were MA-naïve prior to study. In all experiments, mice were trained daily to nose-poke for delivery of unadulterated MA solutions until responding stabilized. Then, mice were pretreated with 2-PMPA prior to operant-conditioning sessions in which nose-poking behavior was reinforced by delivery of 120 mg/L or 200 mg/L MA (respectively, in Experiments 1 and 2/3). Results Contrary to our expectations, 30 mg/kg 2-PMPA pretreatment altered neither appetitive nor consummatory measures related to MA self-administration. In Experiment 3, 100 mg/kg 2-PMPA reduced responding in the MA-reinforced hole, as well as the number of reinforcers earned, but did not significantly lower drug intake. Discussion These results provide mixed evidenced related to the efficacy of this NAALADase inhibitor for reducing oral MA reinforcement in female mice.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Andrea Y. T. Nei
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Joyce C. Chi
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline N. Lichter
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
2
|
Kamens HM, Flarend G, Wickenheisser A, Horton WJ, Cavigelli SA. The effect of stress on opioid addiction-related behaviors: A review of preclinical literature. Exp Clin Psychopharmacol 2023; 31:523-540. [PMID: 35834183 PMCID: PMC10117442 DOI: 10.1037/pha0000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioid misuse is a critical public health crisis in the United States that results in over 50,000 deaths per year and a substantial economic burden to society. Human epidemiological data suggest that exposure to stress is one of many risk factors for opioid misuse; however, opioid abusers tend to have multiple risk factors and use other drugs in addition to opioids. To identify causal mechanisms by which stress may increase risk, preclinical animal experiments provide a means to conduct experimental manipulations and maintain precise controls over environmental and drug exposures. The current review examines how stressful experiences alter opioid addiction-related behaviors in animal models, with a focus on how age of stress exposure affects drug outcomes. The findings summarized here suggest that neonatal or adult stress increase behaviors indicative of opioid intake and reward in rodent models, but that adolescent social stress may protect against later opioid addiction-related behaviors, which contradicts human epidemiological literature. We highlight three important areas to consider across this body of literature: the species and/or strain used, stressor type, and inclusion of both sexes. Finally, we suggest areas where additional research is warranted. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Anna Wickenheisser
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - William J. Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Sonia A. Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
3
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
4
|
Giacometti LL, Buck LA, Barker JM. Estrous cycle and hormone regulation of stress-induced reinstatement of reward seeking in female mice. ADDICTION NEUROSCIENCE 2022; 4:100035. [PMID: 36540408 PMCID: PMC9762733 DOI: 10.1016/j.addicn.2022.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Women are more vulnerable to stress-induced craving, which may be associated with increased vulnerability to relapse. Susceptibility to stress-induced craving also appears to be modulated by the menstrual cycle and is negatively correlated with circulating progesterone levels in women. However, the factors that contribute to relapse vulnerability are poorly characterized in female animals. In this study, we assessed whether chronic ethanol exposure, estrous cycle, or exogenous progesterone administration modulated vulnerability to stress-induced reinstatement. To model ethanol dependence, adult female C57Bl/6J mice underwent chronic intermittent ethanol (CIE) exposure via vapor inhalation. Seventy-two hours after the final ethanol exposure, food-restricted mice began training in a conditioned place preference paradigm (CPP) for a food reward, followed by extinction training. Mice were then subjected to forced swim stress and assessed for reinstatement of their preference for the reward-paired chamber. CIE did not affect stress-induced reinstatement. However, stress-induced reinstatement was attenuated during the diestrus phase, when endogenous levels of progesterone peak in female mice. Further, administration of exogenous progesterone mimicked the attenuated reinstatement observed in diestrus. These findings indicate that circulating hormone levels modulate susceptibility to relapse-like behaviors and implicate progesterone as a potential target for treating stress-induced relapse in women.
Collapse
|
5
|
Joseph JE, Bustos N, Crum K, Flanagan J, Baker NL, Hartwell K, Santa-Maria MM, Brady K, McRae-Clark A. Oxytocin moderates corticolimbic social stress reactivity in cocaine use disorder and healthy controls. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100150. [PMID: 35967924 PMCID: PMC9363641 DOI: 10.1016/j.cpnec.2022.100150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Social stress can contribute to the development of substance use disorders (SUDs) and increase the likelihood of relapse. Oxytocin (OT) is a potential pharmacotherapy that may buffer the effects of social stress on arousal and reward neurocircuitry. However, more research is needed to understand how OT moderates the brain’s response to social stress in SUDs. The present study examined the effect of intransasal OT (24 IU) versus placebo (PBO) on corticolimbic functional connectivity associated with acute social stress in individuals with cocaine use disorder (CUD; n = 67) and healthy controls (HC; n = 52). Psychophysiological interaction modeling used the left and right amygdala as seed regions with the left and right orbitofrontal and anterior cingulate cortex as a priori regions of interest. Moderators of the OT response included childhood trauma history and biological sex, which were examined in independent analyses. The main finding was that OT normalized corticolimbic connectivity (left amygdala-orbitofrontal and left amygdala-anterior cingulate) as a function of childhood trauma such that connectivity was different between trauma-present and trauma-absent groups on PBO, but not between trauma groups on OT. Effects of OT on corticolimbic connectivity were not different as a function of diagnosis (CUD vs HC) or sex. However, OT reduced subjective anxiety during social stress for CUD participants who reported childhood trauma compared to PBO and normalized craving response as a function of sex in CUD. The present findings add to some prior findings of normalizing effects of OT on corticolimbic circuitry in individuals with trauma histories and provide some initial support that OT can normalize subjective anxiety and craving in CUD. Social stress-related corticolimbic connectivity was affected by childhood trauma under placebo. Under oxytocin, corticolimbic connectivity differences due to childhood trauma were absent. Oxytocin reduced subjective anxiety in cocaine users with childhood trauma. Oxytocin reduced subjective craving in male cocaine users.
Collapse
Affiliation(s)
- Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
- Corresponding author.
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
| | - Kathleen Crum
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
- Department of Psychiatry Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julianne Flanagan
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Karen Hartwell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Megan Moran Santa-Maria
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Boehringer Ingelheim, Athens, GA, USA
| | - Kathleen Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Aimee McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
6
|
Barbee BR, Gourley SL. Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review. ADDICTION NEUROSCIENCE 2022; 2:100012. [PMID: 37485439 PMCID: PMC10361393 DOI: 10.1016/j.addicn.2022.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy and abstinence duration interact to generate anxiety-like behavior.
Collapse
Affiliation(s)
- Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| | - Shannon L. Gourley
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| |
Collapse
|
7
|
Sex Differences in Psychostimulant Abuse: Implications for Estrogen Receptors and Histone Deacetylases. Genes (Basel) 2022; 13:genes13050892. [PMID: 35627277 PMCID: PMC9140379 DOI: 10.3390/genes13050892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Substance abuse is a chronic pathological disorder that negatively affects many health and neurological processes. A growing body of literature has revealed gender differences in substance use. Compared to men, women display distinct drug-use phenotypes accompanied by recovery and rehabilitation disparities. These observations have led to the notion that sex-dependent susceptibilities exist along the progression to addiction. Within this scope, neuroadaptations following psychostimulant exposure are thought to be distinct for each sex. This review summarizes clinical findings and animal research reporting sex differences in the subjective and behavioral responses to cocaine, methamphetamine, and nicotine. This discussion is followed by an examination of epigenetic and molecular alterations implicated in the addiction process. Special consideration is given to histone deacetylases and estrogen receptor-mediated gene expression.
Collapse
|
8
|
Vien TN, Ackley MA, Doherty JJ, Moss SJ, Davies PA. Preventing Phosphorylation of the GABAAR β3 Subunit Compromises the Behavioral Effects of Neuroactive Steroids. Front Mol Neurosci 2022; 15:817996. [PMID: 35431797 PMCID: PMC9009507 DOI: 10.3389/fnmol.2022.817996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroactive steroids (NASs) have potent anxiolytic, anticonvulsant, sedative, and hypnotic actions, that reflect in part their efficacy as GABAAR positive allosteric modulators (PAM). In addition to this, NAS exert metabotropic effects on GABAergic inhibition via the activation of membrane progesterone receptors (mPRs), which are G-protein coupled receptors. mPR activation enhances the phosphorylation of residues serine 408 and 409 (S408/9) in the β3 subunit of GABAARs, increasing their accumulation in the plasma membrane leading to a sustained increase in tonic inhibition. To explore the significance of NAS-induced phosphorylation of GABAARs, we used mice in which S408/9 in the β3 subunit have been mutated to alanines, mutations that prevent the metabotropic actions of NASs on GABAAR function while preserving NAS allosteric potentiation of GABAergic current. While the sedative actions of NAS were comparable to WT, their anxiolytic actions were reduced in S408/9A mice. Although the induction of hypnosis by NAS were maintained in the mutant mice the duration of the loss of righting reflex was significantly shortened. Finally, ability of NAS to terminate diazepam pharmacoresistant seizures was abolished in S408/9A mice. In conclusion, our results suggest that S408/9 in the GABAAR β3 subunit contribute to the anxiolytic and anticonvulsant efficacy of NAS, in addition to their ability to regulate the loss of righting reflex.
Collapse
Affiliation(s)
- Thuy N. Vien
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Michael A. Ackley
- Research and Non-clinical Development, Sage Therapeutics, Inc., Cambridge, MA, United States
| | - James J. Doherty
- Research and Non-clinical Development, Sage Therapeutics, Inc., Cambridge, MA, United States
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Stephen J. Moss,
| | - Paul A. Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Paul A. Davies,
| |
Collapse
|