1
|
Zhang K, He L, Li Z, Ding R, Han X, Chen B, Cao G, Ye JH, Li T, Fu R. Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. Int J Mol Sci 2024; 25:8835. [PMID: 39201521 PMCID: PMC11354679 DOI: 10.3390/ijms25168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Postpartum depression (PPD) affects 174 million women worldwide and is characterized by profound sadness, anxiety, irritability, and debilitating fatigue, which disrupt maternal caregiving and the mother-infant relationship. Limited pharmacological interventions are currently available. Our understanding of the neurobiological pathophysiology of PPD remains incomplete, potentially hindering the development of novel treatment strategies. Recent hypotheses suggest that PPD is driven by a complex interplay of hormonal changes, neurotransmitter imbalances, inflammation, genetic factors, psychosocial stressors, and hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This narrative review examines recent clinical studies on PPD within the past 15 years, emphasizing advancements in neuroimaging findings and blood biomarker detection. Additionally, we summarize recent laboratory work using animal models to mimic PPD, focusing on hormone withdrawal, HPA axis dysfunction, and perinatal stress theories. We also revisit neurobiological results from several brain regions associated with negative emotions, such as the amygdala, prefrontal cortex, hippocampus, and striatum. These insights aim to improve our understanding of PPD's neurobiological mechanisms, guiding future research for better early detection, prevention, and personalized treatment strategies for women affected by PPD and their families.
Collapse
Affiliation(s)
- Keyi Zhang
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Lingxuan He
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Zhuoen Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Xiaojiao Han
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA;
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| |
Collapse
|
2
|
Pate BS, Smiley CE, Harrington EN, Bielicki BH, Davis JM, Reagan LP, Grillo CA, Wood SK. Voluntary wheel running as a promising strategy to promote autonomic resilience to social stress in females: Vagal tone lies at the heart of the matter. Auton Neurosci 2024; 253:103175. [PMID: 38677130 PMCID: PMC11173375 DOI: 10.1016/j.autneu.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Social stress is a major risk factor for comorbid conditions including cardiovascular disease and depression. While women exhibit 2-3× the risk for these stress-related disorders compared to men, the mechanisms underlying heightened stress susceptibility among females remain largely unknown. Due to a lack in understanding of the pathophysiology underlying stress-induced comorbidities among women, there has been a significant challenge in developing effective therapeutics. Recently, a causal role for inflammation has been established in the onset and progression of comorbid cardiovascular disease/depression, with women exhibiting increased sensitivity to stress-induced immune signaling. Importantly, reduced vagal tone is also implicated in stress susceptibility, through a reduction in the vagus nerve's well-recognized anti-inflammatory properties. Thus, examining therapeutic strategies that stabilize vagal tone during stress may shed light on novel targets for promoting stress resilience among women. Recently, accumulating evidence has demonstrated that physical activity exerts cardio- and neuro-protective effects by enhancing vagal tone. Based on this evidence, this mini review provides an overview of comorbid cardiovascular and behavioral dysfunction in females, the role of inflammation in these disorders, how stress may impart its negative effects on the vagus nerve, and how exercise may act as a preventative. Further, we highlight a critical gap in the literature with regard to the study of females in this field. This review also presents novel data that are the first to demonstrate a protective role for voluntary wheel running over vagal tone and biomarkers of cardiac dysfunction in the face of social stress exposure in female rats.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - B Hunter Bielicki
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - J Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Claudia A Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America; USC Institute for Cardiovascular Disease Research, Columbia, SC, United States of America.
| |
Collapse
|
3
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|