1
|
Zhang B, Wang C, Guo M, Zhu F, Yu Z, Zhang W, Li W, Zhang Y, Tian W. Circadian Rhythm-Dependent Therapy by Composite Targeted Polyphenol Nanoparticles for Myocardial Ischemia-Reperfusion Injury. ACS NANO 2024; 18:28154-28169. [PMID: 39373010 DOI: 10.1021/acsnano.4c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a severe rhythmic disease with a high prevalence in the early morning. IR injury has a significant circadian rhythm in reactive oxygen species (ROS) and inflammation levels. The development of rhythmic drugs has become a priority in myocardial IR injury. In this study, resveratrol (RES) and proanthocyanidins (OPC) were utilized to design nanoparticles (NPs), with hyaluronic acid (HA) as the core, grafted with MMP-targeting peptides to improve delivery to injured myocardial regions (HA-RES-OPC-MMP NPs). NPs significantly scavenged ROS, attenuated inflammation, and activated the rhythm gene. Notably, the difference in therapeutic effects on myocardial IR injury in mice at Zeitgeber time (ZT)1 and ZT13 confirms that NPs are rhythm-dependent drugs. At ZT13, echocardiographic and MRI confirm that IR injury in mice was not as severe as at ZT1, yet NPs were also less effective in treatment. Further, Per1/2 knockout mice confirmed the rhythm-dependent treatment of myocardial IR injury by NPs. Molecular studies have shown that rhythmic characteristics of inflammation and Sirt1 transcript levels are the main reasons for the different rhythmic therapeutic effects of NPs. Circadian rhythm-dependent treatment of HA-RES-OPC-MMP NPs has excellent potential for more precise treatment of myocardial IR injury in the future.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mingyue Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fuxing Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenxiang Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenyu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
2
|
Valle-Sánchez SL, Rodríguez-Ramírez R, Ávila-Villa LA, Villa-Lerma AG, Wall-Medrano A, de la Rosa LA, Muñoz-Bernal ÓA, González-Córdova AF, Arellano-Gil M. Phenolic compounds profile in extracts of Smilax spp., antioxidant activity, and inhibition of advanced glycation end products. Food Chem 2024; 463:141389. [PMID: 39332373 DOI: 10.1016/j.foodchem.2024.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Smilax genus possesses bioactive properties attributed to phenolic compounds, which may exhibit antioxidant effects and inhibit the advanced glycation end products (AGEs). However, identifying these phenolic compounds and AGEs has become increasingly relevant to understanding such activities. This study aimed to identify phenolic compounds in extracts of Smilax spp. and evaluate their antioxidant and AGEs inhibitory activities. To achieve this, the Smilax genus was identified via PCR, and phenolic compounds including chlorogenic acid, naringenin-6-C-glucoside, quercetin, quercetin-3-O-glucoside, and myricetin were identified using HPLC-MS/MS. Antioxidant activity was assessed by ferric reducing antioxidant power (FRAP), and radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis-[3-ethyl-benzothiazoline]-6-sulfonic acid (ABTS), while AGEs inhibition was evaluated using a model system formed by bovine serum albumin-glucose. The highest antioxidant activity was 3612.18 mM TE/g, and the inhibition of AGEs was 52.44 %. These results demonstrate that Smilax spp. can inhibit AGEs, neutralize free radicals, and reduce compounds associated with antioxidant capacity.
Collapse
Affiliation(s)
- Sergio Luis Valle-Sánchez
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Instituto Tecnológico de Sonora, 5 de febrero, 818 sur, C.P. 85000 Ciudad Obregón, Sonora, Mexico
| | - Roberto Rodríguez-Ramírez
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Instituto Tecnológico de Sonora, 5 de febrero, 818 sur, C.P. 85000 Ciudad Obregón, Sonora, Mexico.
| | - Luz Angélica Ávila-Villa
- Departamento de Ciencias de la Salud, Universidad de Sonora, C.P. 85010 Ciudad Obregón, Sonora, Mexico
| | - Alma Guadalupe Villa-Lerma
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Instituto Tecnológico de Sonora, 5 de febrero, 818 sur, C.P. 85000 Ciudad Obregón, Sonora, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Av. Benjamín Franklin 4650, Zona Pronaf Condominio La Plata, C.P. 32310, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Laura Alejandra de la Rosa
- Instituto de Ciencias Biomédicas, Av. Benjamín Franklin 4650, Zona Pronaf Condominio La Plata, C.P. 32310, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Óscar Adrián Muñoz-Bernal
- Instituto de Ciencias Biomédicas, Av. Benjamín Franklin 4650, Zona Pronaf Condominio La Plata, C.P. 32310, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Aarón Fernando González-Córdova
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A. C., C.P. 83000 Hermosillo, Sonora, Mexico
| | - Maritza Arellano-Gil
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Instituto Tecnológico de Sonora, 5 de febrero, 818 sur, C.P. 85000 Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
3
|
Valero L, Gainche M, Esparcieux C, Delor-Jestin F, Askanian H. Vegetal Polyphenol Extracts as Antioxidants for the Stabilization of PLA: Toward Fully Biobased Polymer Formulation. ACS OMEGA 2024; 9:7725-7736. [PMID: 38405455 PMCID: PMC10882618 DOI: 10.1021/acsomega.3c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
The use of natural antioxidants as substitutes for traditional synthetic stabilizers has been investigated for the stabilization of biobased and biodegradable polymers, with the aim of designing fully biobased plastic formulations. This study focused on the thermo- and photostabilization of poly(lactic acid) (PLA) using vegetal polyphenol extracts as biosourced antioxidants. The polyphenols were extracted by microwave-assisted extraction from the valorization of vegetal waste, and their potential as antioxidant additives was evaluated (e.g., polyphenol content, composition, and antioxidant activity). PLA was then formulated with 2 wt % of the extracts exhibiting the highest antioxidant activities: green tea residues, pomegranate peels, grape marc, bramble leaves, and yellow onion peel extracts. The efficiency of the natural additives as thermal stabilizers was evaluated and compared with a synthetic antioxidant using rheological and thermal analyses. The results demonstrated the capacity of grape marc extract and pomegranate peel extract to significantly improve PLA thermal stability during processing and thermo-oxidation. Finally, photorheology was conducted to evaluate the influence of the bioadditives on the biopolyester photodegradation. The different polyphenol extracts seemed to significantly hinder the photo-oxidation of PLA and constitute very promising natural UV stabilizers, combining UV absorbers and antioxidant functions.
Collapse
Affiliation(s)
- Luna Valero
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Mael Gainche
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Cécile Esparcieux
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Florence Delor-Jestin
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Haroutioun Askanian
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024; 29:728. [PMID: 38338469 PMCID: PMC10856721 DOI: 10.3390/molecules29030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
5
|
Zhang Y, Shang C, Sun C, Wang L. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123325. [PMID: 37678043 DOI: 10.1016/j.saa.2023.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
With the continued depletion of the ozone layer, the sun protection consciousness of humans has gradually enhanced. Long-term ultraviolet (UV) rays exposure will lead to skin tanning, even skin cancer in severe cases, and generate free radicals to cause skin aging. To better protect human skin against UV rays, this work explores the absorption capacities and antioxidant activities of four stilbene derivatives (EHDB, EDMB, EAPD, and HPTP) through the computational chemistry method and DPPH radical scavenging experiment. The research results indicate that their absorption spectra cover the entire UV region, and can effectively protect against UVB radiation. Moreover, three prevailing antioxidant mechanisms: hydrogen atom transfer, sequential proton loss electron transfer, and single electron transfer followed by proton transfer mechanisms, were used to evaluate their antioxidant activities in the ground state. It can be concluded that the O1H1 sites of EHDB and HPTP are the most active, and the SPLET mechanism is the most preferred for the four compounds in ethanol solvent. Furthermore, the DPPH radical scavenging experiment compensates for the theoretical calculation deficiency in the excited state, revealing that the EHDB and HPTP are the most suitable for sunscreen due to their excellent performance on antioxidant capacities, whether before or after sunlight. This work will facilitate EHDB and HPTP to be applied in sunscreen and provide a novel idea in sunscreen research.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Meng J, Liu J, Lu J, Jiang P, Bai Y, Liu X, Li S. Isolation, identification, and preparation of tyrosinase inhibitory peptides from Pinctada martensii meat. Biotechnol Lett 2023; 45:1495-1511. [PMID: 37874433 DOI: 10.1007/s10529-023-03437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recently, natural tyrosinase inhibitors have gained attention in clinical cosmetology research. In this study, the enzymatic hydrolysis of Pinctada martensii meat by protease from Bacillus licheniformis, 401 peptides with tyrosinase inhibitory were identified after isolated by ultrafiltration and Sephadex G-15 from the fraction F4. The peptide effects on the tyrosinase activity and structure were evaluated using molecular docking. Three synthetic peptides classified as W1 (WDRPKDDGGSPIK), W2 (DRGYPPVMF), and W3 (SGGGGGGGLGSGGSIRSSY), which had the lowest binding energies were selected for in vitro synthesis and biological activity investigation. The W3 peptide (5 mg/mL) had the highest tyrosinase activity, SPF, DPPH, and ABTS clearance values, and total antioxidant capacity. W3 did not affect the survival rate of mouse melanoma B16-F10 cells (1.0-5.0 mg/mL) but decreased the melanin content. Hence, W3 could be suitable for multifunctional tyrosinase inhibition and provides a novel method to use marine organisms as natural tyrosinase inhibitor sources.
Collapse
Affiliation(s)
- Jinhao Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jiaojiao Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jing Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Akbari H, Taeb S, Adibzadeh A, Akbari H. Nonionizing Electromagnetic Irradiations; Biological Interactions, Human Safety. J Biomed Phys Eng 2023; 13:299-308. [PMID: 37609512 PMCID: PMC10440414 DOI: 10.31661/jbpe.v0i0.2010-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 08/24/2023]
Abstract
Human is usually exposed to environmental radiation from natural and man-made sources. Therefore, it is important to investigate the effects of exposure to environmental radiation, partly related to understanding and protecting against the risk of exposure to environmental radiation with beneficial and adverse impacts on human life. The rapid development of technologies causes a dramatic enhancement of radiation in the human environment. In this study, we address the biological effects caused by different fractions of non-ionizing electromagnetic irradiation to humans and describe possible approaches for minimizing adverse health effects initiated by radiation. The main focus was on biological mechanisms initiated by irradiation and represented protection, and safety approaches to prevent health disorders.
Collapse
Affiliation(s)
- Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fan J, Buma WJ. Resonance-Enhanced Multiphoton Ionization Studies of the Lower Electronically Excited States of Flavone. J Phys Chem A 2023; 127:1649-1655. [PMID: 36776109 PMCID: PMC9969512 DOI: 10.1021/acs.jpca.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The spectroscopic and dynamics properties of flavone─the core chromophore of a wide variety of naturally occurring ultraviolet protecting filters─have been studied under supersonic beam conditions using (1 + 1') resonance-enhanced two-photon ionization spectroscopic techniques. Excitation spectra recorded under such conditions are found to differ significantly from previously reported spectra. Pump-probe studies find that intersystem crossing is the dominant decay pathway of the excited singlet manifold, in agreement with previous solution phase studies and quantum chemical predictions for the isolated molecule. Microsolvation studies on flavone-water clusters reveal that the addition of one and two water molecules leads to considerable shifts in excitation energies but that further complexation does not result in further noticeable shifts. The relaxation pathways of the electronically excited states, on the other hand, do not appear to be influenced by interactions with the solvent molecules. Finally, photoionization spectra have enabled the accurate determination of the adiabatic ionization energy to the ground state of the molecular ion─key to the antioxidant properties of flavone─as 65,415 cm-1 (8.110 eV).
Collapse
Affiliation(s)
- Jiayun Fan
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wybren Jan Buma
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands,Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands,
| |
Collapse
|
9
|
Novalia Rahmawati Sianipar R, Suryanegara L, Fatriasari W, Tangke Arung E, Wijaya Kusuma I, Setiati Achmadi S, Izyan Wan Azelee N, Ain Abdul Hamid Z. The Role of Selected Flavonoids from Bajakah Tampala (Spatholobus littoralis Hassk.) Stem on Cosmetic Properties: A Review. Saudi Pharm J 2023; 31:382-400. [PMID: 37026052 PMCID: PMC10071331 DOI: 10.1016/j.jsps.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cosmetics made from natural ingredients are increasingly popular because they contain bioactive compounds which can provide many health benefits, more environmentally friendly and sustainable. The health benefits obtained from natural-based ingredients include anti-aging, photoprotective, antioxidant, and anti-inflammatory. This article reviewed the potential of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) as the native plant in Indonesia. We present in silico, in vitro, in vivo, and clinical research data on the use of selected flavonoids that have been reported in other extracts.
Collapse
|
10
|
Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 2022. [DOI: 10.1007/s12038-022-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zymone K, Raudone L, Žvikas V, Jakštas V, Janulis V. Phytoprofiling of Sorbus L. Inflorescences: A Valuable and Promising Resource for Phenolics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243421. [PMID: 36559532 PMCID: PMC9780963 DOI: 10.3390/plants11243421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The leaves and fruits of various Sorbus L. genotypes have long ethnopharmacological and food-usage histories, but inflorescences are still underutilized and neglected materials with scarce phytochemical scientific evidence. The aim of this study was to determine the phenolic profiles of inflorescence extracts of 26 Sorbus species, genotypes, and cultivars. HPLC and UPLS with MS detection were applied, and coupled data revealed unique phytochemical phenolic profiles. Neochlorogenic and chlorogenic acids were the key compounds, reaching up to 5.8 mg/g of dw. Rutin, isoquercitrin, quercetin 3-O-malonylglucoside, isorhamnetin 3-O-rutinoside, sexangularetin derivative, and kaempferol acetyl hexoside were detected in all Sorbus inflorescence samples. Overall, high quantitative heterogeneity across the various Sorbus genotypes was found by profiling. Phenolic fingerprint profiles and sexangularetin derivatives could serve as markers in authenticity studies and quality control schemes. The species S. amurensis, S. arranensis, S. commixta, and S. discolor and the cultivars 'Chamsis Louing', 'Coral Beauty', and 'Edulis' could be used as target genotypes for production of smart and innovative inflorescence matrix-based ingredients.
Collapse
Affiliation(s)
- Kristina Zymone
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Vaidotas Žvikas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakštas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
12
|
Veronica rosea biomolecule profiling, antioxidant potential, dermoprotective effect, anti-inflammatory and hemostatic activities and enzyme inhibitory action. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
14
|
Fuentes JL, Pedraza Barrera CA, Villamizar Mantilla DA, Flórez González SJ, Sierra LJ, Ocazionez RE, Stashenko EE. Flower Extracts from Ornamental Plants as Sources of Sunscreen Ingredients: Determination by In Vitro Methods of Photoprotective Efficacy, Antigenotoxicity and Safety. Molecules 2022; 27:5525. [PMID: 36080288 PMCID: PMC9458080 DOI: 10.3390/molecules27175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.
Collapse
Affiliation(s)
- Jorge Luis Fuentes
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Carlos Adolfo Pedraza Barrera
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | | | - Silvia Juliana Flórez González
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lady Johanna Sierra
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| | - Elena E. Stashenko
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| |
Collapse
|
15
|
Mansinhos I, Gonçalves S, Rodríguez-Solana R, Duarte H, Ordóñez-Díaz JL, Moreno-Rojas JM, Romano A. Response of Thymus lotocephalus In Vitro Cultures to Drought Stress and Role of Green Extracts in Cosmetics. Antioxidants (Basel) 2022; 11:antiox11081475. [PMID: 36009194 PMCID: PMC9404771 DOI: 10.3390/antiox11081475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of drought stress induced by polyethylene glycol (PEG) on morphological, physiological, (bio)chemical, and biological characteristics of Thymus lotocephalus López and Morales shoot cultures have been investigated, as well as the potential of iron oxide nanoparticles, salicylic acid, and methyl jasmonate (MeJA) as alleviating drought stress agents. Results showed that PEG caused oxidative stress in a dose-dependent manner, raising H2O2 levels and reducing shoots’ growth, photosynthetic pigment contents, and phenolic compounds production, especially phenolic acids, including the major compound rosmarinic acid. Moreover, Fourier Transform Infrared Spectra analysis revealed that PEG treatment caused changes in shoots’ composition, enhancing terpenoids biosynthesis. PEG also decreased the biological activities (antioxidant, anti-tyrosinase, and photoprotective) of the eco-friendly extracts obtained with a Natural Deep Eutectic Solvent. MeJA was the most efficient agent in protecting cells from oxidative damage caused by drought, by improving the biosynthesis of phenolics, like methyl 6-O-galloyl-β-D-glucopyranoside and salvianolic acids, as well as improving the extracts’ antioxidant activity. Altogether, the obtained results demonstrated a negative impact of PEG on T. lotocephalus shoots and an effective role of MeJA as a mitigating agent of drought stress. Additionally, extracts showed a good potential to be used in the cosmetics industry as skincare products.
Collapse
Affiliation(s)
- Inês Mansinhos
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.); (H.D.)
| | - Sandra Gonçalves
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.); (H.D.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800900 (S.G.); +351-289800910 (A.R.)
| | - Raquel Rodríguez-Solana
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.); (H.D.)
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - Hugo Duarte
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.); (H.D.)
| | - José Luis Ordóñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development & CHANGE–Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.); (H.D.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800900 (S.G.); +351-289800910 (A.R.)
| |
Collapse
|
16
|
Coutinho TE, Souto EB, Silva AM. Selected Flavonoids to Target Melanoma: A Perspective in Nanoengineering Delivery Systems. Bioengineering (Basel) 2022; 9:bioengineering9070290. [PMID: 35877341 PMCID: PMC9311564 DOI: 10.3390/bioengineering9070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a complex type of cancer that depends on several metabolic factors, while the currently used therapies are not always effective and have unwanted side effects. In this review, the main factors involved in the etiology of cutaneous carcinoma are highlighted, together with the main genes and proteins that regulate cancer invasion and metastization. The role of five selected flavonoids, namely, apigenin, epigallocatechin-3-gallate, kaempferol, naringenin, and silybin, in the modulating receptor tyrosine kinase (RTK) and Wnt pathways is reported with their relevance in the future design of drugs to mitigate and/or treat melanoma. However, as phenolic compounds have some difficulties in reaching the target site, the encapsulation of these compounds in nanoparticles is a promising strategy to promote improved physicochemical stabilization of the bioactives and achieve greater bioavailability. Scientific evidence is given about the beneficial effects of loading these flavonoids into selected nanoparticles for further exploitation in the treatment of melanoma.
Collapse
Affiliation(s)
- Tiago E. Coutinho
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
17
|
LEFAHAL M, MAKHLOUFI EH, AYAD R, BOUSSETLA A, ELHATTAB M, KESKİN M, AKKAL S. Highlighting the Cosmeceutical Potential of the Edible Bunium alpinum Waldst& Kit (Apiaceae) Growing in Algeria: in vitro Antioxidant and Photoprotective Effects. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.1052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Prospecting In Vitro Antioxidant and Photoprotective Properties of Rosmarinic Acid in a Sunscreen System Developed by QbD Containing Octyl p-Methoxycinnamate and Bemotrizinol. COSMETICS 2022. [DOI: 10.3390/cosmetics9020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Progressively growing diagnoses of skin cancer trigger public health concerns about excessive sun exposure, awareness of the deleterious effects of ultraviolet (UV) radiation on the skin, and the proper use of sunscreens. Studies show that bioactive molecules, such as rosmarinic acid (RA), may potentiate the photoprotective and antioxidant activity of topical formulations. This research presents the application of the concepts of quality by design (QbD) to evaluate the critical parameters of quality and the development of an optimized cosmetic formulation with RA by means of an understanding of product design space. Samples were developed using design of experiments (DoE) and they were evaluated for in vitro antioxidant activity and photoprotective efficacy, as well as for photostability through artificial irradiation. We were able to achieve the RA performance regarding antioxidant and SPF properties through in vitro experiments. We obtained the equations for predicting the in vitro antioxidant activity and SPF. Considering our sunscreen system, developed with octyl p-methoxycinnamate and bemotrizinol, the presence of RA increased its antioxidant capacity; however, the in vitro SPF was reduced when both UV filters were used. The development of multifunctional sunscreens is of utmost importance; moreover, there is a need for the rational development of formulations that ensure representative statistical tests of the effects and interactions among the components of a formulation on the desired critical quality attributes, including efficacy.
Collapse
|
19
|
Batista CM, de Queiroz LA, Alves ÂV, Reis EC, Santos FA, Castro TN, Lima BS, Araújo AN, Godoy CA, Severino P, Cano A, Santini A, Capasso R, de Albuquerque Júnior RL, Cardoso JC, Souto EB. Photoprotection and skin irritation effect of hydrogels containing hydroalcoholic extract of red propolis: A natural pathway against skin cancer. Heliyon 2022; 8:e08893. [PMID: 35198766 PMCID: PMC8842011 DOI: 10.1016/j.heliyon.2022.e08893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
The use of natural products in sunscreen formulations as a prophylactic measure against skin cancer is receiving special attention attributed to the photoprotective and antioxidant properties of their chemical components. In this work, we describe the development of topical hydrogel formulations containing hydroalcoholic extract of red propolis (HERP), and the evaluation of the dermal sensitizing effect of the developed products. Sunscreen formulations composed of HERP in different concentrations (1.5, 2.5 or 3.5% w/w) alone or in combination with a chemical (octyl methoxycinnamate) and/or physical (titanium dioxide) filters were developed using poloxamer 407 as gel basis. The preliminary and accelerated stability tests, texture analysis and spreadability tests were performed. All formulations revealed to be stable in preliminary stability assessment. The formulations containing HERP 1.5 and 2.5% alone or associated with the filters showed intense modifications during accelerated stability test, which were confirmed by rheological analyses. The incorporation of HERP and filters in the poloxamer hydrogel decreased the toughness of product (p < 0.05) and the formulation containing HERP alone presented the lowest adhesivity (p < 0.001). The incorporation of HERP in the hydrogel decreased the poloxamer transition temperature, showing different rheological behavior with the increase of HERP concentration. The developed formulations were stable, exhibited non-Newtonian and pseudoplastic behavior, showing in vivo skin compatibility and no skin irritancy.
Collapse
Affiliation(s)
- Cinthia M. Batista
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Luma A. de Queiroz
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Ângela V.F. Alves
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Elisiane C.A. Reis
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Fagne A. Santos
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Tailaine N. Castro
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Bruno S. Lima
- Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Adriano N.S. Araújo
- Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Charles A.P. Godoy
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Patricia Severino
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131, Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| | - Ricardo L.C. de Albuquerque Júnior
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Juliana C. Cardoso
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Corresponding author.
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| |
Collapse
|
20
|
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. PLANTS (BASEL, SWITZERLAND) 2022; 11:220. [PMID: 35050108 PMCID: PMC8779981 DOI: 10.3390/plants11020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Antoni Garcia-Baeza
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Heriberto Rafael Vidal-Limon
- Centro de Biotecnología FEMSA, Instituto Tecnológico de Monterrey, Avenida Junco de la Vega, Col. Tecnológico, Montrerrey 65849, Mexico;
| | - Isaias Balderas-Renteria
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Mónica A. Ramírez-Cabrera
- Laboratorio de Farmacología Molecular y Modelos Biológicos, División de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Guerrero s/n, Col. Treviño, Monterrey 64570, Mexico;
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| |
Collapse
|
21
|
Ghazi S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
23
|
Martino R, Barreiro Arcos ML, Peralta I, Marrassini C, Saint Martin EM, Cogoi L, Cremaschi G, Alonso MR, Anesini C. Antiproliferative activity of aqueous and polyphenol-rich extracts of Larrea divaricata Cav. on a melanoma cell line. Nat Prod Res 2021; 36:4431-4434. [PMID: 34569365 DOI: 10.1080/14786419.2021.1980789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Most of the deaths from skin cancer are caused by melanoma, a malignancy in which STAT3 plays a crucial role. The inhibition of STAT3 is considered a potential target to induce cell death, tumor regression and metastasis inhibition. The objective of this work was to evaluate the activity of the aqueous extract of Larrea divaricata (Aq), a fraction rich in polyphenols (EA),and the isolated compound quercetin-3-methyl ether (Q3ME) on B16F10 melanoma cells. The effects of Aq, EA and Q3ME were assessed on B16F10 cells by determining the proliferation, viability, apoptosis induction and the expression and phosphorylation of STAT3. The phytochemical composition of the extracts was determined by High Performance Liquid Chromatography. Aq, EA and Q3ME presented antiproliferative activity on B6F10 cells through p-STAT3 inhibition and early and late apoptosis induction (EC50 EA= ≤0.1 µg/ml; Aq= 316 ± 30 µg/ml; Q3ME= <0.1 µg/ml). L. divaricata could be considered for the development of adjuvant phytotherapies in melanoma treatment.
Collapse
Affiliation(s)
- Renzo Martino
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Laura Barreiro Arcos
- Instituto de Investigación Biomédica (BIOMED), Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Ignacio Peralta
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Marrassini
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elina Malén Saint Martin
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Cogoi
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Graciela Cremaschi
- Instituto de Investigación Biomédica (BIOMED), Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - María Rosario Alonso
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Anesini
- Facultad de Farmacia y Bioquímica, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Pop TD, Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int J Mol Sci 2021; 22:9707. [PMID: 34575899 PMCID: PMC8471058 DOI: 10.3390/ijms22189707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Skin cancer represents any tumor development from the cutaneous structures within the epidermis, dermis or subcutaneous tissue, and is considered to be the most prevalent type of cancer. Compared to other types of cancer, skin cancer is proven to have a positive growth rate of prevalence and mortality. There are available various treatments, including chemotherapy, immunotherapy, radiotherapy and targeted therapy, but because of the multidrug resistance development, a low success has been registered. By this, the importance of studying naturally occurring compounds that are both safe and effective in the chemoprevention of skin cancer is emphasized. This review focuses on melanoma because it is the deadliest form of skin cancer, with a significantly increasing incidence in the last decades. As chemopreventive agents, we present polyphenols and their antioxidant activity, anti-inflammatory effect, their ability to balance the cell cycle and to induce apoptosis and their various other effects on skin melanoma. Besides chemoprevention, studies suggest that polyphenols can have treating abilities in some conditions. The limitations of using polyphenols are also pointed out, which are related to their poor bioavailability and stability, but as the technology is well developed, it is possible to augment the efficacy of polyphenols in the case of melanoma.
Collapse
Affiliation(s)
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Farjadmand F, Karimpour-Razkenari E, Nabavi SM, Ardekani MRS, Saeedi M. Plant Polyphenols: Natural and Potent UV-Protective Agents for the Prevention and Treatment of Skin Disorders. Mini Rev Med Chem 2021; 21:576-585. [PMID: 33167833 DOI: 10.2174/1389557520666201109121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, destructive and immunosuppressive effects from long-term exposure to UV radiation have been fully investigated and documented in the literature. UV radiation is known as the main cause of skin aging and carcinogenesis. Hence, skin protection against anti-oxidative and immunosuppressive processes is highly in demand. Now, plant polyphenols have been found as a versatile and natural tool for the prevention and treatment of various skin diseases. The presence of a large number of hydroxyl groups in the cyclic structure of polyphenols has induced valuable biological activities. Among them, their UV protective activity has attracted lots of attention due to promising efficacy and simple instruction to use.
Collapse
Affiliation(s)
- Fatemeh Farjadmand
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Karimpour-Razkenari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112246. [PMID: 34243023 DOI: 10.1016/j.jphotobiol.2021.112246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023]
Abstract
Photo-oxidative skin damage is mainly caused by the UV-A radiation of the sun. Synthetic sunscreens used to counter this acts mostly on the superficial skin layer and possess serious side effects. P-coumaric acid (PCA) is a UV-A protective plant phenolic having quick diffusion and distribution in superficial skin layers limiting its application as herbal sunscreen. The present study was designed to formulate an optimized phospholipid complex of PCA (PCAPC) through response surface methodology to enhance its skin permeation to deeper skin layers providing protection against photo-oxidative stress. PCAPC was characterized by FT-IR, DTA, PXRD, TEM, zeta potential etc. PCAPC was then incorporated into a gel formulation (PCAPC-GE) to facilitate its transdermal delivery. Physicochemical properties of the gel were assessed by pH, homogeneity, rheology, spreadability etc. In-vitro SPF and UVA-PF of the gel was evaluated and compared with conventional gel (PCA-GE). Ex-vivo skin permeation flux, permeability coefficient, skin deposition and dermatokinetic analysis were carried out to measure the rate and level of skin permeation. This was accompanied by in-vivo evaluation of PCAPC-GE and PCA-GE in the experimental rat model by measuring the various oxidative stress markers such as superoxide dismutase, catalase etc. PCAPC-GE provided high SPF and UVA-PF value compared to PCA-GE. The physicochemical parameters were suitable for transdermal application. PCAPC-GE enhanced the permeation rate of PCA by almost 6 fold compared to PCA-GE. Besides, a significant reduction of UV-A induced oxidative stress biomarkers were observed for PCAPC-GE. Thus, the PCAPC-GE may be an effective alternative of synthetic sunscreens due to its enhanced permeation and protection against UVA-induced oxidative stress.
Collapse
|
27
|
Nguyen TLA, Doan THN, Truong DH, Ai Nhung NT, Quang DT, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. Antioxidant and UV-radiation absorption activity of aaptamine derivatives - potential application for natural organic sunscreens. RSC Adv 2021; 11:21433-21446. [PMID: 35478841 PMCID: PMC9034140 DOI: 10.1039/d1ra04146k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antioxidant and UV absorption activities of three aaptamine derivatives including piperidine[3,2-b]demethyl(oxy)aaptamine (C1), 9-amino-2-ethoxy-8-methoxy-3H-benzo[de][1,6]naphthyridine-3-one (C2), and 2-(sec-butyl)-7,8-dimethoxybenzo[de]imidazo[4,5,1-ij][1,6]-naphthyridin-10(9H)-one (C3) were theoretically studied by density functional theory (DFT). Direct antioxidant activities of C1-C3 were firstly evaluated via their intrinsic thermochemical properties and the radical scavenging activity of the potential antioxidants with the HOO˙/HO˙ radicals via four mechanisms, including: hydrogen atom transfer (HAT), single electron transfer (SET), proton loss (PL) and radical adduct formation (RAF). Kinetic calculation reveals that HOO˙ scavenging in water occurs via HAT mechanism with C1 (k app, 7.13 × 106 M-1 s-1) while RAF is more dominant with C2 (k app, 1.40 × 105 M-1 s-1) and C3 (k app, 2.90 × 105 M-1 s-1). Antioxidant activity of aaptamine derivatives can be classified as C1 > C3 > C2. Indirect antioxidant properties based on Cu(i) and Cu(ii) ions chelating activity were also investigated in aqueous phase. All three studied compounds show spontaneous and favorable Cu(i) ion chelating activity with ΔG 0 being -15.4, -13.7, and -15.7 kcal mol-1, whereas ΔG 0 for Cu(ii) chelation are -10.4, -10.8, and -2.2 kcal mol-1 for C1, C2 and C3, respectively. In addition, all compounds show UVA and UVB absorption; in which the excitations are determined mostly as π-π* transition. Overall, the results suggest the potential applications of the aaptamines in pharmaceutics and cosmetics, i.e. as a sunscreen and antioxidant ingredient.
Collapse
Affiliation(s)
- Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Hoai Nam Doan
- Department of Chemistry, Danang University of Science and Technology, The University of Danang Da Nang 550000 Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Dorra Khiri
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Abderrahman El Bakali
- Université de Lille, CNRS, UMR 8522, PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère 59000 Lille France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
28
|
Santamarine Shows Anti-Photoaging Properties via Inhibition of MAPK/AP-1 and Stimulation of TGF-β/Smad Signaling in UVA-Irradiated HDFs. Molecules 2021; 26:molecules26123585. [PMID: 34208202 PMCID: PMC8230857 DOI: 10.3390/molecules26123585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic UVA exposure results in elevated reactive oxygen species in skin which leads to photoaging characterized as upregulated matrix metalloproteinase (MMP)-1 and loss of collagen. Therefore, natural antioxidants are hailed as promising agents to be utilized against photoaging. In the current study, reynosin and santamarine, two known sesquiterpene lactones isolated from Artemisia scoparia, were analyzed for their anti-photoaging properties in UVA-irradiated human dermal fibroblasts (HDFs). Results showed that UVA irradiation (8 J/cm2) upregulated the MMP-1 secretion and expression, and suppressed collagen production, which were significantly reverted by santamarine treatment (10 µM). Although both reynosin and santamarine exhibited ROS scavenging abilities, reynosin failed to significantly diminish UVA-stimulated MMP-1 release. UVA-irradiated HDFs showed increased collagen production when treated with santamarine. As a mechanism to suppress MMP-1, santamarine significantly suppressed the UVA-induced phosphorylation of p38 and JNK and nuclear translocation of p-c-Fos and p-c-Jun. Santamarine promoted collagen I production via relieving the UVA-induced suppression on TGF-β and its downstream activator Smad2/3 complex. Antioxidant properties of santamarine were also shown to arise from stimulating Nrf2-dependent expression of antioxidant enzymes SOD-1 and HO-1 in UVA-irradiated HDFs. In conclusion, santamarine was found to be a promising natural antioxidant with anti-photoaging properties against UVA-induced damages in HDFs.
Collapse
|
29
|
Bendjedid S, Lekmine S, Tadjine A, Djelloul R, Bensouici C. Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Lecci RM, D’Antuono I, Cardinali A, Garbetta A, Linsalata V, Logrieco AF, Leone A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes. Molecules 2021; 26:molecules26082153. [PMID: 33917980 PMCID: PMC8068360 DOI: 10.3390/molecules26082153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.
Collapse
Affiliation(s)
- Raffaella Marina Lecci
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Isabella D’Antuono
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Angela Cardinali
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| | - Antonella Garbetta
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Vito Linsalata
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonio F. Logrieco
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonella Leone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| |
Collapse
|
31
|
Multifunctional Tyrosinase Inhibitor Peptides with Copper Chelating, UV-Absorption and Antioxidant Activities: Kinetic and Docking Studies. Foods 2021; 10:foods10030675. [PMID: 33810046 PMCID: PMC8004729 DOI: 10.3390/foods10030675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Nature-derived tyrosinase inhibitors are of great industrial interest. Three monophenolase inhibitor peptides (MIPs) and three diphenolase inhibitor peptides (DIPs) from a previous study were investigated for their in vitro tyrosinase inhibitory effects, mode of inhibition, copper-chelating activity, sun protection factor (SPF) and antioxidant activities. DIP1 was found to be the most potent tyrosinase inhibitor (IC50 = 3.04 ± 0.39 mM), which could be due to the binding interactions between its aromatic amino acid residues (Y2 and D7) with tyrosinase hotspots (H85, V248, H258, H263, F264, R268, V283 and E322) and its ability to chelate copper ion within the substrate-binding pocket. The conjugated planar rings of tyrosine and tryptophan may interact with histidine within the active site to provide stability upon enzyme-peptide binding. This postulation was later confirmed as the Lineweaver-Burk analysis had identified DIP1 as a competitive inhibitor and DIP1 also showed 36.27 ± 1.17% of copper chelating activity. In addition, DIP1 provided the highest SPF value (11.9 ± 0.04) as well as ferric reducing antioxidant power (FRAP) (5.09 ± 0.13 mM FeSO4), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) (11.34 ± 0.90%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (29.14 ± 1.36%) free radical scavenging activities compared to other peptides. These results demonstrated that DIP1 could be a multifunctional anti-tyrosinase agent with pharmaceutical and cosmeceutical applications.
Collapse
|
32
|
Ultraviolet absorbance of Sphagnum magellanicum, S. fallax and S. fuscum extracts with seasonal and species-specific variation. Photochem Photobiol Sci 2021; 20:379-389. [PMID: 33721276 DOI: 10.1007/s43630-021-00026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Bryophytes, including Sphagnum, are common species in alpine and boreal regions especially on mires, where full sunlight exposes the plants to the damaging effects of UV radiation. Sphagnum species containing UV-protecting compounds might offer a biomass source for nature-based sunscreens to replace the synthetic ones. In this study, potential compounds and those linked in cell wall structures were obtained by using methanol and alkali extractions and the UV absorption of these extracts from three common Sphagnum moss species Sphagnum magellanicum, Sphagnum fuscum and Sphagnum fallax collected in spring and autumn from western Finland are described. Absorption spectrum screening (200-900 nm) and luminescent biosensor (Escherichia coli DPD2794) methodology were used to examine and compare the protection against UV radiation. Additionally, the antioxidant potential was evaluated using hydrogen peroxide scavenging (SCAV), oxygen radical absorbance capacity (ORAC) and ferric reducing absorbance capacity (FRAP). Total phenolic content was also determined using the Folin-Ciocalteu method. The results showed that methanol extractable compounds gave higher UV absorption with the used methods. Sphagnum fallax appeared to give the highest absorption in UV-B and UV-A wavelengths. In all assays except the SCAV test, the methanol extracts of Sphagnum samples collected in autumn indicated the highest antioxidant capacity and polyphenol content. Sphagnum fuscum implied the highest antioxidant capacity and phenolic content. There was low antioxidant and UV absorption provided by the alkali extracts of these three species.
Collapse
|
33
|
Mecheri A, Amrani A, Benabderrahmane W, Bensouici C, Boubekri N, Benaissa O, Zama D, Benayache F, Benayache S. In Vitro Pharmacological Screening of Antioxidant, Photoprotective, Cholinesterase, and α-Glucosidase Inhibitory Activities of Algerian Crataegus oxyacantha Fruits and Leaves Extracts. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02334-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Lassoued MA, Ben Fatma NEH, Haj Romdhane M, Faidi A, Majdoub H, Sfar S. Photoprotective potential of a Tunisian halophyte plant Carpobrotus edulis L. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2020; 134:111161. [PMID: 33360043 DOI: 10.1016/j.biopha.2020.111161] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
Artificial sunscreens are already gaining traction in order to protect the skin from sunburns, photoaging and photocarcinogenesis. However, the efficacy and safety of most artificial sunscreen constituents are hindered by their photostability, toxicity and damage to marine ecosystems. Natural selection and evolution have ensured that plants and animals have developed effective protective mechanisms against the deleterious side effects of oxidative stress and ultraviolet radiation (UV). Hence, natural antioxidants such as sun blockers are drawing considerable attention. The exact mechanism by which natural components act as sunscreen molecules has not been clearly established. However, conjugated π system is reported to play an important role in protecting the vital genetic material within the organism. Compared to artificial sunscreens, natural sunscreens with strong UV absorptive capacities are largely limited by low specific extinction value and by their inability to spread in large-scale sunscreen cosmetic applications. Previous studies have documented that natural components exert their photoprotective effects (such as improved skin elasticity and hydration, skin texture, and wrinkles) through their antioxidant effects, and through the regulation of UV-induced skin inflammation, barrier impairment and aging. This review focuses on natural antioxidant topical formulations with sun protection factor (SPF). Lignin, melanin, silymarin and other ingredients have been added to high sun protection nature sunscreens without any physical or chemical UV filters. This paper also provides a reference for adopting novel technical measures (extracting high content components, changing the type of solution, optimizing formulation, applying Nano technology, et al) to design and prepare nature sunscreen formulations equated with commercial sunscreen formulations. Another strategy is to add natural antioxidants from plants, animals, microorganisms and marine organisms as special enhancer or modifier ingredients to reinforce SPF values. Although the photoprotective effects of natural components have been established, their deleterious side effects have not been elucidated.
Collapse
|
36
|
Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs 2020; 18:md18120659. [PMID: 33371308 PMCID: PMC7767163 DOI: 10.3390/md18120659] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, research on natural products has gained considerable attention, particularly in the cosmetic industry, which is looking for new bio-active and biodegradable molecules. In this study, cosmetic properties of cyanobacteria and red macroalgae were analyzed. The extractions were conducted in different solvents (water, ethanol and two combinations of water:ethanol). The main molecules with antioxidant and photoprotective capacity were mycosporine-like amino acids (MAAs), scytonemin and phenolic compounds. The highest contents of scytonemin (only present in cyanobacteria) were observed in Scytonema sp. (BEA 1603B) and Lyngbya sp. (BEA 1328B). The highest concentrations of MAAs were found in the red macroalgae Porphyra umbilicalis, Gelidium corneum and Osmundea pinnatifida and in the cyanobacterium Lyngbya sp. Scytonema sp. was the unique species that presented an MAA with maximum absorption in the UV-B band, being identified as mycosporine-glutaminol for the first time in this species. The highest content of polyphenols was observed in Scytonema sp. and P. umbilicalis. Water was the best extraction solvent for MAAs and phenols, whereas scytonemin was better extracted in a less polar solvent such as ethanol:dH2O (4:1). Cyanobacterium extracts presented higher antioxidant activity than those of red macroalgae. Positive correlations of antioxidant activity with different molecules, especially polyphenols, biliproteins and MAAs, were observed. Hydroethanolic extracts of some species incorporated in creams showed an increase in the photoprotection capacity in comparison with the base cream. Extracts of these organisms could be used as natural photoprotectors improving the diversity of sunscreens. The combination of different extracts enriched in scytonemin and MAAs could be useful to design broad-band natural UV-screen cosmeceutical products.
Collapse
|
37
|
Hübner AA, Sarruf FD, Oliveira CA, Neto AV, Fischer DCH, Kato ETM, Lourenço FR, Baby AR, Bacchi EM. Safety and Photoprotective Efficacy of a Sunscreen System Based on Grape Pomace ( Vitis vinifera L.) Phenolics from Winemaking. Pharmaceutics 2020; 12:E1148. [PMID: 33260841 PMCID: PMC7761385 DOI: 10.3390/pharmaceutics12121148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023] Open
Abstract
In winemaking, a large amount of grape pomace is produced that is rich in polyphenolics and highly beneficial for human health, as phenols are useful for skin ultraviolet (UV) protection. In this investigation, we evaluated the safety and clinical efficacy of a sunscreen system containing a grape pomace extract from Vitis vinifera L. as a bioactive ingredient. The recovery of phenolics in the waste was performed by percolation. Nine emulsions were developed using a factorial design and two were evaluated clinically: Formulation E, containing only UV filters (butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl PABA), and F, with the extract at 10.0% w/w + UV filters. The antioxidant activity was determined by the DPPH assay and the in vitro efficacy was established by sun protection factor (SPF) measurements (Labsphere UV-2000S). Clinical tests were performed to determine safety (human repeated insult patch test) and to confirm efficacy (photoprotective effectiveness in participants). The results showed a synergistic effect between the sunscreen system and the extract on UVB protection and antioxidant activity. Both samples were considered safe. Formulation F was 20.59% more efficient in protecting skin against UVB radiation, taking approximately 21% more time to induce erythema compared to the extract-free sample.
Collapse
Affiliation(s)
- Alexandra A. Hübner
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Fernanda D. Sarruf
- IPclin—Institute of Integrated Clinical Research, Jundiai 13200-000, Brazil;
| | - Camila A. Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Alberto V. Neto
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Dominique C. H. Fischer
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Edna T. M. Kato
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Felipe R. Lourenço
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - André Rolim Baby
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| | - Elfriede M. Bacchi
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.A.H.); (C.A.O.); (A.V.N.); (D.C.H.F.); (E.T.M.K.); (F.R.L.); (E.M.B.)
| |
Collapse
|
38
|
Oliveira MB, Valentim IB, Rocha TS, Santos JC, Pires KS, Tanabe EL, Borbely KS, Borbely AU, Goulart MO. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. INDUSTRIAL CROPS AND PRODUCTS 2020; 152:112503. [PMID: 32346222 PMCID: PMC7186214 DOI: 10.1016/j.indcrop.2020.112503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 05/02/2023]
Abstract
Schinus terebinthifolius Raddi is a well-known medicinal plant native of South America. This species has demonstrated important biological activities such as antihypertensive and vasodilator, antimicrobial, anti-inflammatory and antioxidant. However, no studies have been, so far, reported with the fruits of S. terebinthifolius as a protector of the placenta against Zika virus infection and as sunscreen agents. The present study aimed to investigate new uses for the ethanolic fruit extracts of S. terebinthifolius, from fruits'peel (STPE) and from the whole fruits (STWFE). Zika virus (ZIKV) has been linked to several fetal malformations, such as microcephaly and other central nervous system abnormalities. Thus, the potential of these natural extracts against ZIKV infection was evaluated, using an in vitro method. The photoprotective potential, determined by spectrometry, along with phenolic content, antioxidant capacity, and chemical composition of both extracts were also evaluated. The chemical composition of the extracts was evaluated by HPLC-UV / vis. The cytotoxicity of peel and whole fruit extracts in vero E6 cell lines, in placental cell lines and placental explant cultures were evaluated by the MTT assay. The infectivity of placental cells and explants was evaluated by qRT-PCR and the effects of extracts on ZIKV infection were investigated using HTR-8/SVneo cells, pre-treated with 100 μg mL-1 of STWFE for 1 h, and infected with MR766 (AD) or PE243 (EH) ZIKV strains. STFE and STWFE were well-tolerated by both placental-derived trophoblast cell line HTR-8/SVneo as well as by term placental chorionic villi explants, which indicate absence of cytotoxicity in all analysed concentrations. Two strains of ZIKV were tested to access if pre-treatment of trophoblast cells with the STWFE would protect them against infection. Flow cytometry analysis revealed that STWFE extract greatly reduced ZIKV infection. The extracts were also photoprotective with SPF values equivalent to the standard, benzophenone-3. The formulations prepared in different concentrations of the extracts (5-10 %) had shown maximum SPF values of 32.21. STWFE represents a potential natural mixture to be used in pregnancy in order to restrain placental infection by ZIKV and might potentially protect fetus against ZIKV-related malformations. The extracts exhibited photoprotective activity and some of the phenolic compounds, mainly resveratrol, catechin and epicatechin, are active ingredients in all assayed activities. The development of biotechnological/medical products, giving extra value to products from family farming, is expected, with strong prospects for success.
Collapse
Affiliation(s)
- Monika B.S. Oliveira
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Iara B. Valentim
- Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (IFAL), Rua Mizael Domingues, 75, Centro, CEP 57020-600, Maceió, AL, Brazil
| | - Tauane S. Rocha
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Jaqueline C. Santos
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Keyla S.N. Pires
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Eloiza L.L. Tanabe
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Karen S.C. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Universidade Federal de Alagoas (UFAL), Faculdade de Nutrição, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Alexandre U. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Marília O.F. Goulart
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| |
Collapse
|
39
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|
40
|
Clapa D, Borsai O, Hârța M, Bonta V, Szabo K, Coman V, Bobiș O. Micropropagation, Genetic Fidelity and Phenolic Compound Production of Rheum rhabarbarum L. PLANTS 2020; 9:plants9050656. [PMID: 32456105 PMCID: PMC7284629 DOI: 10.3390/plants9050656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
An efficient micropropagation protocol for Rheum rhabarbarum L. was developed in this study. The in vitro rhubarb plants obtained in the multiplication stage (proliferation rate: 5.0 ± 0.5) were rooted in vitro (96% rooting percentage) and acclimatized ex vitro in floating perlite, with 90% acclimatization percentage. To assess the genetic fidelity between the mother plant and in vitro propagated plants, sequence-related amplified polymorphism (SRAP) markers were used. All banding profiles from the micropropagated plants were monomorphic and similar to those of the mother plant indicating 100% similarity. Regarding the polyphenolic profile, gallic, protocatechuic, p-hydroxybenzoic, vanillic, chlorogenic, caffeic, syringic, p-coumaric and ferulic acid were present in different amounts (2.3-2690.3 μg g-1 dry plant), according to the extracted matrix. Aglicons and glycosides of different classes of flavonoids were also identified. The rhizome extracts (both from in vitro and field grown plants) contained resveratrol, a stilbene compound with high antioxidant properties, ranging between 229.4 to 371.7 μg g-1 plant. Our results suggest that in vitro propagation of Rheum rhabarbarum L. represents a reliable alternative to obtain a large number of true-to-type planting material with high bioactive compound content of this valuable nutritional and medicinal species.
Collapse
Affiliation(s)
- Doina Clapa
- Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania;
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Orsolya Borsai
- AgroTransilvania Cluster, Dezmir, Crișeni FN, 407039 Cluj, Romania
- Correspondence: (O.B.); (O.B.); Tel.: +40264-596384 (O.B. & O.B.); Fax: +40264-593792 (O.B. & O.B.)
| | - Monica Hârța
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Victoriţa Bonta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Katalin Szabo
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Vasile Coman
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
| | - Otilia Bobiș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur st. 3-5, 400372 Cluj-Napoca, Romania; (M.H.); (V.B.); (K.S.); (V.C.)
- Correspondence: (O.B.); (O.B.); Tel.: +40264-596384 (O.B. & O.B.); Fax: +40264-593792 (O.B. & O.B.)
| |
Collapse
|
41
|
Chinh NT, Le Anh NT, Thao PT, Quang DD. Photoprotective properties of natural antioxidant flavonoids: A DFT and TD-DFT study on acridone derivatives. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.201900083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ngo Thi Chinh
- Institute of Research and Development, Duy Tan University; 03 Quang Trung Da Nang 50000 Viet Nam
| | - Nguyen Thi Le Anh
- Institute of Research and Development, Duy Tan University; 03 Quang Trung Da Nang 50000 Viet Nam
| | - Pham Thi Thao
- Department of Pharmacy, Duy Tan University; 03 Quang Trung Da Nang 50000 Viet Nam
| | - Dao Duy Quang
- Institute of Research and Development, Duy Tan University; 03 Quang Trung Da Nang 50000 Viet Nam
| |
Collapse
|
42
|
Terto MVC, Gomes JM, Araújo DIAF, Silva TS, Ferreira JM, Souza JJN, Silva MS, Tavares JF. Photoprotective Activity of Plectranthus amboinicus Extracts and HPLC Quantification of Rosmarinic Acid. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43450-020-00040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Dao DQ, Phan TTT, Nguyen TLA, Trinh PTH, Tran TTV, Lee JS, Shin HJ, Choi BK. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus. J Chem Inf Model 2020; 60:1329-1351. [DOI: 10.1021/acs.jcim.9b00964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Thu Trang Phan
- Faculty of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Phan Thi Hoai Trinh
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Thi Thanh Van Tran
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Jong Seok Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Hee Jae Shin
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Byeoung-Kyu Choi
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| |
Collapse
|
44
|
de Lima Cherubim DJ, Buzanello Martins CV, Oliveira Fariña L, da Silva de Lucca RA. Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 2019; 19:33-37. [PMID: 31389656 DOI: 10.1111/jocd.13093] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Currently, there is a great interest in cosmetics prepared on natural resources bases and this may restrict the use of synthetic substances. Plants play a relevant role as a source of biologically active natural products with cosmetic and dermatological importance. According to this context, polyphenolic extracts are highlighted because they have proven antioxidant, anti-inflammatory, anti-aging, antimicrobial, and supporting activity in solar photoprotection. AIMS The purpose this study were reviewed at reporting the antioxidant activity of phenolic compounds, mainly applied to dermatological therapy, and highlighting the action mechanisms and structure-activity relationship. METHODOLOGY In September 2017, we performed a literature search in PubMed and Scielo for scientific researches, antioxidant studies, and systemic reviews. The search terms we used were "PHYTOCOSMETICS" AND "ANTIOXIDANT ACTIVITY" OR "PHENOLIC COMPOUNDS" (from 2000). As inclusion criteria were used relevant original articles, scientific research in the area of interest, and crucial reference articles. Exclusion criteria were: duplicate publications, non-relevant articles and not published in English. RESULTS The potential cosmetic application of phenolic compounds as natural antioxidants has been attributed to the chemical structure of these compounds, which to interfere in different phases of the oxidation mechanism. CONCLUSION The use of phenolic extracts emerges as a viable alternative for cosmetic application, ensuring a commitment to sustainability. However, it is of crucial importance to evaluate the toxicity risks of raw materials and finished products.
Collapse
Affiliation(s)
| | | | - Luciana Oliveira Fariña
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil
| | - Rosemeire Aparecida da Silva de Lucca
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil.,Engineering and Exact Sciences Center, Western Paraná State University, Toledo, Brasil
| |
Collapse
|
45
|
García Forero A, Villamizar Mantilla DA, Núñez LA, Ocazionez RE, Stashenko EE, Fuentes JL. Photoprotective and Antigenotoxic Effects of the Flavonoids Apigenin, Naringenin and Pinocembrin. Photochem Photobiol 2019; 95:1010-1018. [PMID: 30636010 DOI: 10.1111/php.13085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of flavonoid compounds apigenin, naringenin and pinocembrin. The photoprotective efficacy of these compounds was estimated using in vitro photoprotection indices, and the antigenotoxicity against UVB radiation was evaluated using the SOS chromotest and an enzymatic (proteinase K/T4 endonuclease V enzyme) comet assay in UV-treated Escherichia coli and human (HEK-293) cells, respectively. Naringenin and pinocembrin showed maximum UV-absorption peak in UVC and UVB zones, while apigenin showed UV-absorption capability from UVC to UVA range. These compounds acted as UV filters reducing UV-induced genotoxicity, both in bacteria and in human cells. The enzymatic comet assay resulted highly sensitive for detection of UVB-induced DNA damage in HEK-293 cells. In this work, the photoprotective potential of these flavonoids was widely discussed.
Collapse
Affiliation(s)
- Adriana García Forero
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Diego Armando Villamizar Mantilla
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis A Núñez
- Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Investigación en Enfermedades Tropicales (CINTROP), Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas, Centro de Investigación de Excelencia, CENIVAM, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia.,Centro de Investigación en Biomoléculas, Centro de Investigación de Excelencia, CENIVAM, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
46
|
Puertas-Mejía MA, Gutierrez-Villegas MI, Mejía-Giraldo JC, Winkler R, Rojano B. In vitro UV absorption properties and radical scavenging capacity of Morella parvifolia (Benth.) Parra-Os. extracts. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000317498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Lefahal M, Zaabat N, Ayad R, Makhloufi EH, Djarri L, Benahmed M, Laouer H, Nieto G, Akkal S. In Vitro Assessment of Total Phenolic and Flavonoid Contents, Antioxidant and Photoprotective Activities of Crude Methanolic Extract of Aerial Parts of Capnophyllum peregrinum (L.) Lange (Apiaceae) Growing in Algeria. MEDICINES 2018; 5:medicines5020026. [PMID: 29565294 PMCID: PMC6023362 DOI: 10.3390/medicines5020026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022]
Abstract
Background:Capnophyllum peregrinum (L.) Lange (Apiaceae) is the unique taxon of capnophyllum genus in Algerian flora. It has never been investigated in regards to its total phenolic and flavonoid contents and antioxidant and photoprotective activities. Methods:C. peregrinum aerial parts extracted with absolute methanol. The total flavonoid and phenolic contents of the extract were evaluated to determine their correlation with the antioxidant and photoprotective activities of the extract. Results: The methanolic extract demonstrated a significant amount of phenolics and flavonoids (74.06 ± 1.23 mg GAE/g, 44.09 ± 2.13 mg QE/g, respectively) and exhibited good antioxidant activity in different systems, especially in 1,1-Diphenyl-2-picrylhydrazyl (DPPH), reducing power and total antioxidant capacity assays. Furthermore the extract showed high photoprotective activity with the sun protection factor (SPF) value = 35.21 ± 0.18. Conclusions: The results of the present study show, that the methanolic extract could be used as a natural sunscreen in pharmaceutics or cosmetic formulations and as a valuable source of natural antioxidants.
Collapse
Affiliation(s)
- Mostefa Lefahal
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| | - Nabila Zaabat
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| | - Radia Ayad
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| | - El Hani Makhloufi
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| | - Lakhdar Djarri
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| | - Merzoug Benahmed
- Department of Chemistry, Faculty of Science, University of Tebessa, Tebessa 12000, Algeria.
| | - Hocine Laouer
- Laboratory of Natural Biological Resources Valorization, Faculty of Sciences, University of Setif, Setif 19000, Algeria.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Faculty of veterinary Sciences, University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| | - Salah Akkal
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine, Constantine 25000, Algeria.
| |
Collapse
|
48
|
Park K, Choi HS, Hong YH, Jung EY, Suh HJ. Cactus cladodes (Opuntia humifusa) extract minimizes the effects of UV irradiation on keratinocytes and hairless mice. PHARMACEUTICAL BIOLOGY 2017; 55:1032-1040. [PMID: 28183235 PMCID: PMC6130649 DOI: 10.1080/13880209.2017.1286357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Cactus cladodes [Opuntia humifusa (Raf.) Raf. (Cactaceae)] is one of the cactus genera, which has long been used as a folk medicine for skin disorders. OBJECTIVE This study investigated the skincare potential of cactus cladodes extract (OHE), including its ability to regulate ultraviolet B (UVB)-induced hyaluronic acid (HA) production. MATERIALS AND METHODS Gene expression levels of hyaluronic acid synthases (HASs) and hyaluronidase (HYAL) were measured in UVB-irradiated HaCaT cells with OHE treatment (10, 25, 50, 100 μg/mL) by real-time polymerase chain reaction (PCR). The HA content was analyzed in hairless mice (SKH-1, male, 6 weeks old) treated with OHE for 10 weeks by using enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin (H&E) and immunohistological staining were performed to examine epidermal thickness and levels of CD44 and hyaluronic acid-binding protein (HABP). RESULTS HA synthases (HAS,1 HAS2, HAS3) mRNA levels were increased by 1.9-, 2.2- and 1.6-fold, respectively, with OHE treatment (100 μg/mL), while UVB-induced increase of hyaluronidase mRNA significantly decreased by 35%. HA content in animal was decreased from 42.9 to 27.1 ng/mL by OHE treatment. HAS mRNA levels were decreased by 39%, but HYAL mRNA was increased by 50% in OHE group. CD44 and HABP levels, which were greatly increased by UVB-irradiation, were reduced by 64 and 60%, respectively. Epidermal thickness, transepidermal water loss (TEWL), and erythema formation was also decreased by 45 (45.7 to 24.2 μm), 48 (48.8 to 25 g/h/m2) and 33%, respectively. CONCLUSION OHE protects skin from UVB-induced skin degeneration in HaCaT cells and hairless mice.
Collapse
Affiliation(s)
- Kyungmi Park
- Regulatory Affairs & Product Compliance Korea and Philippines, Herbalife Korea, Seoul, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea
| | - Yang Hee Hong
- Department of Beauty Art, Suwon Women’s University, Suwon, Republic of Korea
| | - Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonju, Republic of Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduated School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Silva SAME, Michniak-Kohn B, Leonardi GR. An overview about oxidation in clinical practice of skin aging. An Bras Dermatol 2017; 92:367-374. [PMID: 29186250 PMCID: PMC5514578 DOI: 10.1590/abd1806-4841.20175481] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
Free radicals are unstable chemical species, highly reactive, being formed by cellular entities of different tissues. Increased production of these species without proper effective action of endogenous and exogenous antioxidant systems, generates a condition of oxidative stress, potentially provider of skin disorders that extend from functional impairments (skin cancer, dermatitis, chronic and acute inflammatory processes) even aesthetic character, with the destruction of structural proteins and cellular changes with the appearance of stains, marks and lines of expressions and other signs inherent to the intrinsic and extrinsic skin aging process. The antioxidants are chemical substances commonly used in clinical practice for topical application and may contribute in the fight against the radical species responsible for many skin damage. This paper summarized the main evidence of the benefits brought by the topical application of antioxidants in the skin, considering the amplitude of the indicative performance of antioxidant activity by in vitro and ex-vivo tests as well as in vivo tests. It is recognized that a breadth of product performance tests should be explored to truly identify the effectiveness of antioxidant products for an anti-aging effect.
Collapse
Affiliation(s)
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Rutgers-The State University of New
Jersey, Ernest Mario School of Pharmacy - New Jersey, United States of
America
| | - Gislaine Ricci Leonardi
- Faculty of Pharmaceutical Sciences, Universidade Estadual de
Campinas (UNICAMP) - Campinas (SP), Brazil
| |
Collapse
|
50
|
Chhabra G, Ndiaye MA, Garcia-Peterson LM, Ahmad N. Melanoma Chemoprevention: Current Status and Future Prospects. Photochem Photobiol 2017; 93:975-989. [PMID: 28295364 DOI: 10.1111/php.12749] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
The incidence of skin cancers, both nonmelanoma and melanoma, is increasing in the United States. The ultraviolet radiation, mainly from sun, is considered the major cause for these neoplasms. While nonmelanoma skin cancers are far more numerous, melanoma remains the most challenging. This is because melanoma can become extremely aggressive and its incidence is increasing worldwide due to lack of effective early detection, as well as disease recurrence, following both surgery and chemotherapy. Therefore, in addition to better treatment options, newer means are required to prevent melanomas from developing. Chemoprevention is a reasonable cost-effective approach to prevent carcinogenesis by inhibiting the processes of tumor initiation, promotion and progression. Melanoma is a progressive disease, which makes it very suitable for chemopreventive interventions, by targeting the processes and molecular pathways involved in the progression of melanoma. This review discusses the roles of various chemopreventive agents such as NSAIDs, statins, vitamins and dietary agents in melanoma and highlights current advancements and our perspective on future of melanoma chemoprevention. Although considerable preclinical data suggest that melanoma may be prevented or delayed by a numerous chemopreventive agents, we realize there are insufficient clinical studies evaluating their efficacy and long-term safety for human use.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|