1
|
Edmiston JS, Rostami AA, Liang Q, Miller S, Sarkar MA. Computational modeling method to estimate secondhand exposure potential from exhalations during e-vapor product use under various real-world scenarios. Intern Emerg Med 2022; 17:2005-2016. [PMID: 36050572 PMCID: PMC9522680 DOI: 10.1007/s11739-022-03061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Potential secondhand exposure of exhaled constituents from e-vapor product (EVP) use is a public health concern. We present a computational modeling method to predict air levels of exhaled constituents from EVP use. We measured select constituent levels in exhaled breath from adult e-vapor product users, then used a validated computational model to predict constituent levels under three scenarios (car, office, and restaurant) to estimate likely secondhand exposure to non-users. The model was based on physical/thermodynamic interactions between air, vapor, and particulate phase of the aerosol. Input variables included space setting, ventilation rate, total aerosol amount exhaled, and aerosol composition. Exhaled breath samples were analyzed after the use of four different e-liquids in a cartridge-based EVP. Nicotine, propylene glycol, glycerin, menthol, formaldehyde, acetaldehyde, and acrolein levels were measured and reported based on a linear mixed model for analysis of covariance. The ranges of nicotine, propylene glycol, glycerin, and formaldehyde in exhaled breath were 89.44-195.70 µg, 1199.7-3354.5 µg, 5366.8-6484.7 µg, and 0.25-0.34 µg, respectively. Acetaldehyde and acrolein were below detectable limits; thus, no estimated exposure to non-EVP users is reported. The model predicted that nicotine and formaldehyde exposure to non-users was substantially lower during EVPs use compared to cigarettes. The model also predicted that exposure to propylene glycol, glycerin, nicotine and formaldehyde among non-users was below permissible exposure limits.
Collapse
Affiliation(s)
- Jeffery S Edmiston
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Ali A Rostami
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Qiwei Liang
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Sandra Miller
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Mohamadi A Sarkar
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA.
| |
Collapse
|
2
|
Oldham MJ, Bailey PC, Castro N, Lang Q, Salehi A, Rostami AA. Prediction of potential passive exposure from commercial electronic nicotine delivery systems using exhaled breath analysis and computational fluid dynamic techniques. J Breath Res 2021; 15. [PMID: 34544050 DOI: 10.1088/1752-7163/ac2884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/20/2021] [Indexed: 11/12/2022]
Abstract
Use of computational fluid dynamic (CFD) modeling to predict temporal and spatial constituent exposure for non-electronic nicotine delivery systems (ENDS) users (passive exposure) provides a more efficient methodology compared to conducting actual exposure studies. We conducted a clinical study measuring exhaled breath concentrations of glycerin, propylene glycol, nicotine, benzoic acid, formaldehyde, acetaldehyde, acrolein, menthol and carbon monoxide from use of eight different commercial ENDS devices and a non-menthol and menthol cigarette. Because baseline adjusted levels of other constituents were not consistently above the limit of detection, the mean minimum and maximum per puff exhaled breath concentrations (N= 20/product) of glycerin (158.7-260.9µg), propylene glycol (0.941-3.58µg), nicotine (0.10-1.06µg), and menthol (0.432-0.605µg) from use of the ENDS products were used as input parameters to predict temporal and spatial concentrations in an environmental chamber, office, restaurant, and car using different ENDS use scenarios. Among these indoor locations and ENDS use scenarios, the car with closed windows resulted in the greatest concentrations while opening the car windows produced the lowest concentrations. The CFD predicted average maximum glycerin and propylene glycol concentration ranged from 0.25 to 1068µg m-3and 1.5 pg m-3to 13.56µg m-3,respectively. For nicotine and menthol the CFD predicted maximum concentration ranged from 0.16 pg m-3to 4.02µg m-3and 0.068 pg m-3to 2.43µg m-3, respectively. There was better agreement for CFD-predicted nicotine concentrations than glycerin and propylene glycol with published reports highlighting important experimental and computational variables. Maximum measured nicotine levels from environmental tobacco smoke in offices, restaurants, and cars exceeded our maximum average CFD predictions by 7-97 times. For all the measured exhaled breath constituents and CFD predicted constituents, except for propylene glycol and glycerin, concentrations were less from use of ENDS products compared to combustible cigarettes. NCT number: NCT04143256.
Collapse
Affiliation(s)
- Michael J Oldham
- Product Stewardship, JUUL Labs, Washington, DC, United States of America
| | - Patrick C Bailey
- Scientific Affairs, JUUL Labs, Washington, DC, United States of America
| | - Nicolas Castro
- Modelling and Simulation, Altria Client Services, LLC, Richmond, VA, United States of America
| | - Qiwei Lang
- Regulatory Sciences, JUUL Labs, Washington, DC, United States of America
| | - Armin Salehi
- Modelling and Simulation, Altria Client Services, LLC, Richmond, VA, United States of America
| | - Ali A Rostami
- Modelling and Simulation, Altria Client Services, LLC, Richmond, VA, United States of America
| |
Collapse
|
3
|
Room air constituent concentrations from use of electronic nicotine delivery systems and cigarettes using different ventilation conditions. Sci Rep 2021; 11:1736. [PMID: 33462299 PMCID: PMC7814121 DOI: 10.1038/s41598-021-80963-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
To assess potential exposure of non-users to exhaled constituents from pod and cartridge electronic nicotine delivery systems (ENDS) products, an environmental clinical study was conducted with (n = 43) healthy adult smokers. Room air concentrations of 34 selected constituents (nicotine, propylene glycol, glycerin, 15 carbonyls, 12 volatile organic compounds, and 4 trace metals) and particle number concentration (0.3 to 25 µm) were compared from use of two ENDS products and conventional cigarettes using room ventilations representative of a residential, an office or a hospitality setting over a 4-h. exposure period. Products used were JUUL ENDS, Virginia Tobacco flavor (Group I), VUSE Solo, Original flavor (Group II) (5.0 and 4.8% nicotine by weight, respectively) and subjects' own conventional cigarettes (Group III). Cumulative 4-h room air sampling and particle counting were performed during prescribed (Groups I and II) and ad libitum product use (all Groups). Conventional cigarette use resulted in significantly more constituents detected and higher 4-h cumulative constituent concentrations compared to use of the ENDS products tested, except for the predominant ENDS ingredients, propylene glycol and glycerin. Use of conventional cigarettes also resulted in greater total particle number concentration than either prescribed or ad libitum use of either of the ENDS used in this study.
Collapse
|
4
|
Zhao D, Aravindakshan A, Hilpert M, Olmedo P, Rule AM, Navas-Acien A, Aherrera A. Metal/Metalloid Levels in Electronic Cigarette Liquids, Aerosols, and Human Biosamples: A Systematic Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:36001. [PMID: 32186411 PMCID: PMC7137911 DOI: 10.1289/ehp5686] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Electronic cigarettes (e-cigarettes) have become popular, in part because they are perceived as a safer alternative to tobacco cigarettes. An increasing number of studies, however, have found toxic metals/metalloids in e-cigarette emissions. OBJECTIVE We summarized the evidence on metal/metalloid levels in e-cigarette liquid (e-liquid), aerosols, and biosamples of e-cigarette users across e-cigarette device systems to evaluate metal/metalloid exposure levels for e-cigarette users and the potential implications on health outcomes. METHODS We searched PubMed/TOXLINE, Embase®, and Web of Science for studies on metals/metalloids in e-liquid, e-cigarette aerosols, and biosamples of e-cigarette users. For metal/metalloid levels in e-liquid and aerosol samples, we collected the mean and standard deviation (SD) if these values were reported, derived mean and SD by using automated software to infer them if data were reported in a figure, or calculated the overall mean (mean ± SD) if data were reported only for separate groups. Metal/metalloid levels in e-liquids and aerosols were converted and reported in micrograms per kilogram and nanograms per puff, respectively, for easy comparison. RESULTS We identified 24 studies on metals/metalloids in e-liquid, e-cigarette aerosols, and human biosamples of e-cigarette users. Metal/metalloid levels, including aluminum, antimony, arsenic, cadmium, cobalt, chromium, copper, iron, lead, manganese, nickel, selenium, tin, and zinc, were present in e-cigarette samples in the studies reviewed. Twelve studies reported metal/metalloid levels in e-liquids (bottles, cartridges, open wick, and tank), 12 studies reported metal/metalloid levels in e-cigarette aerosols (from cig-a-like and tank devices), and 4 studies reported metal/metalloid levels in human biosamples (urine, saliva, serum, and blood) of e-cigarette users. Metal/metalloid levels showed substantial heterogeneity depending on sample type, source of e-liquid, and device type. Metal/metalloid levels in e-liquid from cartridges or tank/open wicks were higher than those from bottles, possibly due to coil contact. Most metal/metalloid levels found in biosamples of e-cigarette users were similar or higher than levels found in biosamples of conventional cigarette users, and even higher than those found in biosamples of cigar users. CONCLUSION E-cigarettes are a potential source of exposure to metals/metalloids. Differences in collection methods and puffing regimes likely contribute to the variability in metal/metalloid levels across studies, making comparison across studies difficult. Standardized protocols for the quantification of metal/metalloid levels from e-cigarette samples are needed. https://doi.org/10.1289/EHP5686.
Collapse
Affiliation(s)
- Di Zhao
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Atul Aravindakshan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Pablo Olmedo
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Granada, Spain
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Angela Aherrera
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Geer Wallace MA, Pleil JD, Madden MC. Identifying organic compounds in exhaled breath aerosol: Non-invasive sampling from respirator surfaces and disposable hospital masks. JOURNAL OF AEROSOL SCIENCE 2019; 137:10.1016/j.jaerosci.2019.105444. [PMID: 34121762 PMCID: PMC8193830 DOI: 10.1016/j.jaerosci.2019.105444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exhaled breath aerosol (EBA) is an important non-invasive biological medium for detecting exogenous environmental contaminants and endogenous metabolites present in the pulmonary tract. Currently, EBA is typically captured as a constituent of the mainstream clinical tool referred to as exhaled breath condensate (EBC). This article describes a simpler, completely non-invasive method for collecting EBA directly from different forms of hard-surface plastic respirator masks and disposable hospital paper breathing masks without first collecting EBC. The new EBA methodology bypasses the complex EBC procedures that require specialized collection gear, dry ice or other coolant, in-field sample processing, and refrigerated transport to the laboratory. Herein, mask samples collected from different types of plastic respirators and paper hospital masks worn by volunteers in the laboratory were analyzed using high resolution-liquid chromatography-mass spectrometry (HR-LC-MS) and immunochemistry. The results of immunochemistry analysis revealed that cytokines were collected above background on both plastic respirator surfaces and paper hospital masks, confirming the presence of human biological constituents. Non-targeted HR-LC-MS analyses demonstrated that larger exogenous molecules such as plasticizers, pesticides, and consumer product chemicals as well as endogenous biochemicals, including cytokines and fatty acids were also detected on mask surfaces. These results suggest that mask sampling is a viable technique for EBA collection to assess potential inhalation exposures and endogenous indicators of health state.
Collapse
Affiliation(s)
- M. Ariel Geer Wallace
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joachim D. Pleil
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael C. Madden
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Larcombe AN, Janka MA, Mullins BJ, Berry LJ, Bredin A, Franklin PJ. Reply to “Letter to the Editor: The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice”. Am J Physiol Lung Cell Mol Physiol 2017; 313:L970-L971. [DOI: 10.1152/ajplung.00448.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alexander N. Larcombe
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
- Health, Safety and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Maxine A. Janka
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
| | - Benjamin J. Mullins
- Fluid Dynamics Research Group, Curtin University, Perth, Western Australia, Australia
- Health, Safety and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Luke J. Berry
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
| | - Arne Bredin
- Fluid Dynamics Research Group, Curtin University, Perth, Western Australia, Australia
| | - Peter J. Franklin
- School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia; and
- Environmental Health Directorate, Department of Health, Shenton Park, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Farsalinos K, Kistler KA, Gillman G. Letter to the Editor: The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L968-L969. [DOI: 10.1152/ajplung.00423.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Konstantinos Farsalinos
- Department of Cardiology, Onassis Cardiac Surgery Center, Kallithea, Greece
- Department of Pharmacy, University of Patras, Rio, Greece
- National School of Public Health, Athens, Greece
| | - Kurt A Kistler
- Department of Chemistry, The Pennsylvania State University Brandywine, Media, Pennsylvania; and
| | - Gene Gillman
- Enthalpy Analytical, Incorporated, Durham, North Carolina
| |
Collapse
|
8
|
Liu J, Liang Q, Oldham MJ, Rostami AA, Wagner KA, Gillman IG, Patel P, Savioz R, Sarkar M. Determination of Selected Chemical Levels in Room Air and on Surfaces after the Use of Cartridge- and Tank-Based E-Vapor Products or Conventional Cigarettes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090969. [PMID: 28846634 PMCID: PMC5615506 DOI: 10.3390/ijerph14090969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
There is an ongoing debate regarding the potential of secondhand exposure of non-users to various chemicals from use of e-vapor products (EVPs). Room air levels of 34 chemicals (nicotine, propylene glycol (PG), glycerol, 15 carbonyl chemicals, 12 volatile organic chemicals (VOCs), and four selected trace elements) were measured where EVPs and cigarettes were used by n = 37 healthy adult tobacco users in an exposure chamber. The products used were MarkTen® 2.5% Classic (Group I), a Prototype GreenSmoke® 2.4% (Group II), Ego-T® Tank with subjects' own e-liquids (Group III) and subjects' own conventional cigarettes (Group IV). Products were used under controlled conditions and 4-h ad libitum use. Background (without subjects) and baseline levels (with subjects) were measured. Cumulative 4-h. levels of nicotine, PG and glycerol measured were several-fold below the time-weighted average limits used in workplace exposure evaluation. Most the other chemicals (>75%) were at or below the limit of quantification during EVP use. Significant levels of chemicals (17 out of 34) were observed in Group IV. Overall, our results indicate that under the study conditions with the products tested, cumulative room air levels of the selected chemicals measured over 4-h were relatively small and were several-fold below the current occupational regulatory and consensus limits.
Collapse
Affiliation(s)
- Jianmin Liu
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| | - Qiwei Liang
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| | - Michael J Oldham
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| | - Ali A Rostami
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| | - Karl A Wagner
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| | - I Gene Gillman
- Enthalpy Analytical Inc., 800 Capitola Drive, Durham, NC 27713, USA.
| | - Piyush Patel
- Inflamax Research Inc., 1310 Fewster Drive, Mississauga, ON L4W 1A4, Canada.
| | - Rebecca Savioz
- Clinopsis SA, Chemin des Jardins 6, 1426 Concise, Switzerland.
| | - Mohamadi Sarkar
- Center for Research and Technology, Altria Client Services LLC, 601 E. Jackson Street, Richmond, VA 23219, USA.
| |
Collapse
|
9
|
Stephens WE. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob Control 2017; 27:tobaccocontrol-2017-053808. [PMID: 28778971 DOI: 10.1136/tobaccocontrol-2017-053808] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Quantifying relative harm caused by inhaling the aerosol emissions of vapourised nicotine products compared with smoking combustible tobacco is an important issue for public health. METHODS The cancer potencies of various nicotine-delivering aerosols are modelled using published chemical analyses of emissions and their associated inhalation unit risks. Potencies are compared using a conversion procedure for expressing smoke and e-cigarette vapours in common units. Lifetime cancer risks are calculated from potencies using daily consumption estimates. RESULTS The aerosols form a spectrum of cancer potencies spanning five orders of magnitude from uncontaminated air to tobacco smoke. E-cigarette emissions span most of this range with the preponderance of products having potencies<1% of tobacco smoke and falling within two orders of magnitude of a medicinal nicotine inhaler; however, a small minority have much higher potencies. These high-risk results tend to be associated with high levels of carbonyls generated when excessive power is delivered to the atomiser coil. Samples of a prototype heat-not-burn device have lower cancer potencies than tobacco smoke by at least one order of magnitude, but higher potencies than most e-cigarettes. Mean lifetime risks decline in the sequence: combustible cigarettes >> heat-not-burn >> e-cigarettes (normal power)≥nicotine inhaler. CONCLUSIONS Optimal combinations of device settings, liquid formulation and vaping behaviour normally result in e-cigarette emissions with much less carcinogenic potency than tobacco smoke, notwithstanding there are circumstances in which the cancer risks of e-cigarette emissions can escalate, sometimes substantially. These circumstances are usually avoidable when the causes are known.
Collapse
|
10
|
Rostami AA, Pithawalla YB, Liu J, Oldham MJ, Wagner KA, Frost-Pineda K, Sarkar MA. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E828. [PMID: 27537903 PMCID: PMC4997514 DOI: 10.3390/ijerph13080828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022]
Abstract
Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.
Collapse
Affiliation(s)
- Ali A Rostami
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Yezdi B Pithawalla
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Jianmin Liu
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Michael J Oldham
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Karl A Wagner
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Kimberly Frost-Pineda
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| | - Mohamadi A Sarkar
- Research, Development and Regulatory Affairs, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA 23219, USA.
| |
Collapse
|