1
|
Ghorab MA, Lieu D, Craig EA. Use of the threshold of toxicological concern (TTC) approach as an alternative tool for regulatory purposes: A case study with an inert ingredient used in pesticide products. CHEMOSPHERE 2024; 364:143122. [PMID: 39154770 DOI: 10.1016/j.chemosphere.2024.143122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
This study investigates the potential of the Threshold of Toxicological Concern (TTC) as an alternative to traditional animal testing in pesticide regulatory risk assessments. The TTC is a principle that establishes exposure threshold values for chemicals with certain structural features, below which there is no appreciable risk to human health. A case study was conducted with α-terpineol, an inert ingredient proposed to be used at low concentrations in pesticide products, to compare a conventional risk assessment using animal data with one using the TTC method. For the conventional risk assessment, animal data showed that there was no toxicity endpoint of concern, which resulted in a qualitative assessment and no risks of concern identified. For the risk assessment using the TTC method, a 5th percentile no-observed-effect level (NOEL) selected based on α-terpineol's Cramer classification was used as a point of departure (POD) for a quantitative risk assessment that resulted in no risks of concern identified. Therefore, the same conclusion was reached with both approaches and α-terpineol is considered safe for use in pesticide products at low concentrations. A comparative analysis was also performed to determine the applicability of the TTC method in calculating potential dietary risk from common pesticide use patterns for chemicals that fall within different Cramer classes. Results showed that use of the TTC method may be feasible for inert ingredient risk assessments when chemicals are used in a pesticide product at concentrations below 1%. This research underscores the TTC as a valuable and robust tool for assessing the potential hazards from inert ingredient use in pesticide formulations, considering factors such as chemical properties and the concentrations at which a chemical may be used in pesticide products. These findings contribute to the ongoing efforts by the United States Environmental Protection Agency (US EPA) to reduce animal testing in chemical safety assessments. The TTC method presents a viable alternative for risk evaluations of chemicals used at low concentrations, with anticipated low exposure, and with a predicted low toxicity potential.
Collapse
Affiliation(s)
- Mohamed A Ghorab
- United States Environmental Protection Agency, Office of Pesticide Programs, 1200 Pennsylvania Ave NW, Washington D.C., 20460, USA.
| | - David Lieu
- United States Environmental Protection Agency, Office of Pesticide Programs, 1200 Pennsylvania Ave NW, Washington D.C., 20460, USA.
| | - Evisabel A Craig
- United States Environmental Protection Agency, Office of Pesticide Programs, 1200 Pennsylvania Ave NW, Washington D.C., 20460, USA.
| |
Collapse
|
2
|
Lee I, Scrochi C, Chon O, Cancellieri MA, Ghosh A, O'Brien J, Ring B, McNamara C, Api AM. Detailed aggregate exposure analysis shows that exposure to fragrance ingredients in consumer products is low: Many orders of magnitude below thresholds of concern. Regul Toxicol Pharmacol 2024; 148:105569. [PMID: 38286303 DOI: 10.1016/j.yrtph.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The Research Institute for Fragrance Materials (RIFM) and Creme Global Cremeglobal.com partnered to develop an aggregate exposure model for fragrance ingredients. The model provides a realistic estimate of the total exposure of fragrance ingredients to individuals across a population. The Threshold of Toxicological Concern (TTC) and Dermal Sensitization Threshold (DST) were used to demonstrate the magnitude of low exposure to fragrance materials. The total chronic systemic, inhalation, and dermal 95th percentile exposures on approximately 3000 fragrance ingredients in RIFM's inventory were compared to their respective TTC or DST. Additionally, representative fragrance ingredients were randomly selected and analyzed for exposure distribution by product type (i.e., cosmetic/personal care, household care, oral care, and air care) and route of exposure. It was found that 76 % of fragrance ingredients fall below their respective TTC limits when compared to 95th percentile systemic exposure, while 99 % are below inhalation TTC limits. The lowest 95th percentile aggregate exposure by product type was from household care products, then air care, and oral care products. The highest exposure was from personal care/cosmetic products. The volume of use for most fragrance ingredients (63 %) was <1 metric ton, estimating that environmental exposure to fragrance ingredients is likely low.
Collapse
Affiliation(s)
- Isabelle Lee
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA.
| | - Cesar Scrochi
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Olive Chon
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA
| | | | - Ambarnil Ghosh
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - John O'Brien
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Brendan Ring
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Cronan McNamara
- Creme Global, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin, 2, Ireland
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc, Mahwah, NJ, USA
| |
Collapse
|
3
|
Williams FM. New approaches build upon historical studies in dermal toxicology. Toxicol Res (Camb) 2023; 12:1007-1013. [PMID: 38145096 PMCID: PMC10734571 DOI: 10.1093/toxres/tfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/26/2023] Open
Abstract
These are my personal reflections on the history of approaches to understanding dermal toxicology brought together for the Paton Prize Award. This is not a comprehensive account of all publications from in vivo studies in humans to development of in vitro and in silico approaches but highlghts important progress. I will consider what is needed now to influence approaches to understanding dermal exposure with the current development and use of NAMs (new approach methodologies).
Collapse
Affiliation(s)
- Faith M Williams
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle NE24HH, United Kingdom
| |
Collapse
|
4
|
Magurany KA, English JC, Cox KD. Application of the threshold of toxicological concern (TTC) in the evaluation of drinking water contact chemicals. Toxicol Mech Methods 2023:1-17. [PMID: 38031359 DOI: 10.1080/15376516.2023.2279041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is an approach for assessing the safety of chemicals with low levels of exposure for which limited toxicology data are available. The original TTC criteria were derived for oral exposures from a distributional analysis of a dataset of 613 chemicals that identified 5th percentile no observed effect level (NOEL) values grouped within three tiers of compounds having specific structural functional groups and/or toxic potencies known as Cramer I, II and III classifications. Subsequent assessments of the TTC approach have established current thresholds to be scientifically robust. While the TTC has gained acknowledgment and acceptance by many regulatory agencies and organizations, use of the TTC approach in evaluating drinking water chemicals has been limited. To apply the TTC concept to drinking water chemicals, an exposure-based approach that incorporates the current weight of evidence for the target chemical is presented. Such an approach provides a comparative point of departure to the 5th percentile TTC NOEL using existing data, while conserving the allocation of toxicological resources for quantitative risk assessment to chemicals with greater exposure or toxicity. This approach will be considered for incorporation into NSF/ANSI/CAN 600, a health effects standard used in the safety evaluation of chemicals present in drinking water from drinking water contact additives and materials certified to NSF/ANSI/CAN 60 and 61, respectively.
Collapse
Affiliation(s)
| | | | - Kevin D Cox
- Water Toxics Unit, Michigan Department of Environment, Great Lakes and Energy (EGLE), Lansing, MI, USA
| |
Collapse
|
5
|
Ding F, Wang G, Liu S, He ZL. Key factors influencing arsenic phytotoxicity thresholds in south China acidic soils. Heliyon 2023; 9:e19905. [PMID: 37809576 PMCID: PMC10559317 DOI: 10.1016/j.heliyon.2023.e19905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Arsenic (As) toxicity threshold values (TTVs) for plants are fundamental to both establishing regional As reference values in soil and performing risk assessment. However, TTVs vary with plant species and soil types. In this study, a hydroponic experiment with 16 plant species was conducted to screen the most As-sensitive plant species. The results showed that the EC20 (available As concentration at which shoot biomass or height is inhibited by 20%) values were 1.38-104.4 mg L-1 for shoot height and 0.24-42.87 mg L-1 for shoot fresh biomass. Rice was more sensitive to As toxicity than the other species. Therefore, it was chosen as the ecological receptor in the pot experiment on As phytotoxicity in nine types of soils collected from Fujian Province in South China. The EC10 and EC20 with respect to rice shoot height were 3.72-29.11 mg kg-1 and 7.12-45.60 mg kg-1, respectively. Stepwise regression analysis indicated that free iron oxide concentration is the major factor that affects As bioavailability in soil, and ECx (x = 10, 20, and 50) of soil available As for shoot height was positively related to free iron oxide concentration in soil. In addition, soil cation exchange capacity, clay (<0.002 mm) content, and exchangeable magnesium content are also important factors influencing As phytotoxicity in acidic soils. The regression models can be used to predict As phytotoxicity in acidic soils.
Collapse
Affiliation(s)
- Fenghua Ding
- Institute of Ecology, Lishui University, Lishui, Zhejiang 323000, China
- Department of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34951, USA
| | - Guo Wang
- Department of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuxin Liu
- Department of Environmental Engineering, Lishui Vocational & Technical College, Lishui, Zhejiang 323000, China
| | - Zhenli L. He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34951, USA
| |
Collapse
|
6
|
Bowden AM, Escher SE, Rose J, Sadekar N, Patlewicz G, O'Keeffe L, Bury D, Hewitt NJ, Giusti A, Rothe H. Workshop report: Challenges faced in developing inhalation thresholds of Toxicological Concern (TTC) - State of the science and next steps. Regul Toxicol Pharmacol 2023; 142:105434. [PMID: 37302561 PMCID: PMC10494708 DOI: 10.1016/j.yrtph.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
A challenging step in human risk assessment of chemicals is the derivation of safe thresholds. The Threshold of Toxicological Concern (TTC) concept is one option which can be used for the safety evaluation of substances with a limited toxicity dataset, but for which exposure is sufficiently low. The application of the TTC is generally accepted for orally or dermally exposed cosmetic ingredients; however, these values cannot directly be applied to the inhalation route because of differences in exposure route versus oral and dermal. Various approaches of an inhalation TTC concept have been developed over recent years to address this. A virtual workshop organized by Cosmetics Europe, held in November 2020, shared the current state of the science regarding the applicability of existing inhalation TTC approaches to cosmetic ingredients. Key discussion points included the need for an inhalation TTC for local respiratory tract effects in addition to a systemic inhalation TTC, dose metrics, database building and quality of studies, definition of the chemical space and applicability domain, and classification of chemicals with different potencies. The progress made to date in deriving inhalation TTCs was highlighted, as well as the next steps envisaged to develop them further for regulatory acceptance and use.
Collapse
Affiliation(s)
- Anthony M Bowden
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, UK.
| | | | | | - Nikaeta Sadekar
- Research Institute for Fragrance Materials, Inc., Mahwah, NJ, USA
| | - Grace Patlewicz
- Center for Computational and Exposure, US Environmental Protection Agency, RTP, NC, 27711, USA
| | | | - Dagmar Bury
- L'Oréal Research & Innovation, Clichy, France
| | | | | | - Helga Rothe
- SciConT (formerly at Coty), Darmstadt, Germany
| |
Collapse
|
7
|
Jeon S, Lee EY, Hillman PF, Nam SJ, Lim KM. Safety assessment of Cnidium officinale rhizome extract in cosmetics using the Threshold of Toxicological Concern (TTC) approach. Regul Toxicol Pharmacol 2023:105433. [PMID: 37302562 DOI: 10.1016/j.yrtph.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cosmetics often contain botanical extracts, which present a challenge for safety assessors due to their complex composition. The threshold of toxicological concern (TTC) approach is considered as a solution for the safety assessment of botanical extracts in cosmetics as part of next-generation risk assessment. In this study, we applied the TTC approach to evaluate the safety of Cnidium officinale rhizome extract (CORE), a widely used botanical extract in skin conditioning products. We identified 32 components of CORE through the USDA database and literature and determined the content of each component through literature or actual analysis where an authentic standard was available. Macro- and micronutrients were also analyzed to exclude them as safe components. The Toxtree® software was used to identify the Cramer class of remaining components. We estimated the systemic exposure of each component from leave-on type cosmetic products containing CORE at a 1% concentration and compared the results to TTC thresholds. All components of CORE had a systemic exposure below the TTC threshold. While batch variations and presence of unknown chemicals in individual CORE materials should be considered, this study demonstrated that the TTC approach can be a useful tool for the safety assessment of botanical extracts in cosmetics.
Collapse
Affiliation(s)
- Soha Jeon
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Prima F Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Patlewicz G, Nelms M, Rua D. Evaluating the utility of the Threshold of Toxicological Concern (TTC) and its exclusions in the biocompatibility assessment of extractable chemical substances from medical devices. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 24:1-11. [PMID: 36405647 PMCID: PMC9671081 DOI: 10.1016/j.comtox.2022.100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is a pragmatic approach used to establish safe thresholds below which there can be no appreciable risk to human health. Here, a large inventory of ~45,000 substances (referred to as the LRI dataset) was profiled through the Kroes TTC decision module within Toxtree v3.1 to assign substances into their respective TTC categories. Four thousand and two substances were found to be not applicable for the TTC approach. However, closer examination of these substances uncovered several implementation issues: substances represented in their salt forms were automatically assigned as not appropriate for TTC when many of these contained essential metals as counter ions which would render them TTC applicable. High Potency Carcinogens and dioxin-like substances were not fully captured based on the rules currently implemented in the software. Phosphorus containing substances were considered exclusions when many of them would be appropriate for TTC. Refinements were proposed to address the limitations in the current software implementation. A second component of the study explored a set of substances representative of those released from medical devices and compared them to the LRI dataset as well as other toxicity datasets to investigate their structural similarity. A third component of the study sought to extend the exclusion rules to address application to substances released from medical devices that lack toxicity data. The refined rules were then applied to this dataset and the TTC assignments were compared. This case study demonstrated the importance of evaluating the software implementation of an established TTC workflow, identified certain limitations and explored potential refinements when applying these concepts to medical devices.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
| | - Mark Nelms
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- RTI International, Durham, NC, USA
| | - Diego Rua
- Center for Devices and Radiological Health (CDRH), US Food & Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
9
|
Patlewicz G, Worth A, Yang C, Zhu T. Editorial: Advances and Refinements in the Development and Application of Threshold of Toxicological Concern. FRONTIERS IN TOXICOLOGY 2022; 4:882321. [PMID: 35573274 PMCID: PMC9096208 DOI: 10.3389/ftox.2022.882321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | |
Collapse
|
10
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. The RIFM approach to evaluating Natural Complex Substances (NCS). Food Chem Toxicol 2022; 159 Suppl 1:112715. [PMID: 34848254 DOI: 10.1016/j.fct.2021.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The Research Institute for Fragrance Materials, Inc. (RIFM) has evaluated safety data for fragrance materials for 55 years. The safety assessment of Natural Complex Substances (NCS) is similar to that of discrete fragrance materials; all of the same endpoints are evaluated. A series of decision trees, reflecting advances in risk assessment approaches of mixtures and toxicological methodologies, follows a tiered approach for each endpoint using a 4-step process with testing only as a last resort: 1) evaluate available data on NCS; 2) verify whether the Threshold of Toxicological Concern (TTC) can be applied; 3) verify whether the NCS risk assessment can be achieved on a component basis; and 4) determine whether data must be generated. Using in silico tools, RIFM examined NCS similarities based on the plant part, processing, and composition of materials across 81 plant families to address data gaps. Data generated from the Creme RIFM Aggregate Exposure Model for over 900 fragrance NCS demonstrate that dermal exposure is the primary route of human exposure for NCS fragrance uses. Over a third of materials are below the most conservative TTC limits. This process aims to provide a comprehensive Safety Assessment of NCS used as a fragrance ingredient.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
11
|
Thakkar Y, Moustakas H, Api AM, Smith B, Williams G, Greim H, Eisenbrand G, Dekant W. Assessment of the genotoxic potential of mintlactone. Food Chem Toxicol 2021; 159:112659. [PMID: 34801651 DOI: 10.1016/j.fct.2021.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Mintlactone (chemical name 3,6-dimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one, CAS Number 13341-72-5) is a fragrance and flavor ingredient with reported uses in many different cosmetics, personal care, and household products. In order to evaluate the genotoxic potential of mintlactone, in vitro and in vivo genotoxicity tests were conducted. Results from bacterial mutagenicity tests varied across different batches of differing purity with positive results observed in TA98 only. An in vivo comet assay was also considered to be positive in livers of female mice but negative in male mice. In contrast, in vitro and in vivo micronucleus tests, as well as 3D skin comet/micronucleus tests, were negative, indicating no chromosomal or DNA damage. The underlying causes for these contradictory results are not clear. It appears that the purity and/or stability of the test material may be an issue. In the absence of dependable scientific information on the purity and/or storage stability of mintlactone, its safety for use as a fragrance ingredient cannot be substantiated.
Collapse
Affiliation(s)
- Yax Thakkar
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA.
| | - Holger Moustakas
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, NJ, USA
| | - Benjamin Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore; Innovations in Food & Chemical Safety Programme, Agency for Science, Technology & Research, Singapore
| | - Gary Williams
- Prof. Emeritus New York Medical College, Valhalla, NY, USA
| | - Helmut Greim
- Prof. Emeritus of Toxicology Technical University of Munich, USA
| | - Gerhard Eisenbrand
- Senior Research Professor of Food Chemistry and Toxicology, University of Kaiserslautern, Germany
| | - Wolfgang Dekant
- Professor of Toxicology at the Department of Pharmacology and Toxicology of the University of Würzburg, Germany
| |
Collapse
|
12
|
Threshold of Toxicological Concern: Extending the chemical space by inclusion of a highly curated dataset for organosilicon compounds. Regul Toxicol Pharmacol 2021; 127:105074. [PMID: 34757112 DOI: 10.1016/j.yrtph.2021.105074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The Threshold of Toxicological Concern (TTC) for non-genotoxic substances, a risk assessment tool to establish safe exposure levels for chemicals with insufficient toxicological data, is based on the 5th percentile of cumulated distributions of Point of Departures in a high amount of repeat-dose, developmental and reproductive toxicity studies, grouped by Cramer Classes. The lack of organosilicon compounds in this dataset has resulted in regulatory concerns over the applicability of the TTC concept for this chemistry. We collected publicly available, scientifically robust oral repeat-dose and DART studies for 71 organosilicon substances for inclusion in the existing TTC dataset, using criteria for evaluation of studies and derivation of points of departure analogous to the Munro and COSMOS TTC publications. The resulting 5th percentile of this dataset was 13-fold higher than the 5th percentile for Cramer Class III compounds reported by Munro (which is the default for silicon-containing substances). Both the existing TTC for Cramer Class III compounds from Munro (1.5 μg/kg bw/day) and the COSMOS TTC (2.3 μg/kg bw/day), recommended by the SCCS for cosmetics-related substances, provide a conservative and sufficiently protective approach for this class of chemistry.
Collapse
|
13
|
Sartori Tamburlin I, Roux E, Feuillée M, Labbé J, Aussaguès Y, El Fadle FE, Fraboul F, Bouvier G. Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food Chem Toxicol 2021; 157:112603. [PMID: 34648935 DOI: 10.1016/j.fct.2021.112603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are increasingly consumed as food supplements. The few published recommended doses available generally lack details both on the methodology used and concentration limits for substances of concern, including genotoxic carcinogens. We propose a tiered approach based on the toxicological evaluation of maximized concentrations of each constituent present in the EO investigated. The genotoxic potential of each constituent is assessed using literature data or QSAR analyses. Genotoxic constituents are evaluated according to the methodology provided in the ICHM7 guideline. A Toxicological Reference Value (TRV) is associated to each non-genotoxic constituent, using one of the following methodologies (decision-tree successive steps): extraction from recognized databases or clinical studies, application of adequate safety factors to NOAELs established in animal studies, read-across analyses and when none was possible, TTC of Cramer classes. An EO recommended dose is considered safe when the safety margin (ratio between TRV and systemic exposure) for all constituents is all at least equal to 1. In conclusion, this methodology has proven to be robust to establish safe recommended doses for EOs used as food supplements, consistent with those publicly available, and avoiding unnecessary dedicated new animal testing.
Collapse
Affiliation(s)
| | - Elise Roux
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Marion Feuillée
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Julie Labbé
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Yannick Aussaguès
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | | | - Françoise Fraboul
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Guy Bouvier
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| |
Collapse
|
14
|
Zaleski R, Embry M, McKee R, Teuschler LK. Exploring the utility of the Threshold of Toxicological Concern (TTC) as a screening approach for complex substances. Regul Toxicol Pharmacol 2021; 127:105051. [PMID: 34614434 DOI: 10.1016/j.yrtph.2021.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
The Threshold of Toxicological Concern (TTC) has been applied to assess chemical safety for use, particularly in the food safety area. Although the TTC was developed for application to an individual chemical structure, more recently this concept has been suggested for the assessment of combined exposures to multiple chemicals. This study evaluated the potential for applying the TTC to a specific type of co-exposure, that of a complex substance of variable composition which contains multiple constituents, following the World Health Organization/International Programme on Chemical Safety framework for risk assessment of combined exposure to multiple chemicals. The results indicated that the TTC threshold was lower (i.e., more conservative) than regulatory thresholds derived for the same substance or even its most toxic constituent, providing assurance that the TTC could meet the requirements for a conservative screening process. This case study indicates that the TTC concept can be a useful tool to screen for potential risks from complex substances, with the consideration of additional aspects such as variability in chemical constituents and their relative proportions within the substance.
Collapse
Affiliation(s)
- R Zaleski
- ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, Annandale, NJ, 08801, USA.
| | - M Embry
- Health and Environmental Sciences Institute, 740 15th Street NW, Suite 600, Washington, DC, 20005, USA.
| | - R McKee
- ExxonMobil Biomedical Sciences Inc, 1545 Route 22 East, Annandale, NJ, 08801, USA; Hillsborough, NJ, USA.
| | - L K Teuschler
- LK Teuschler & Associates, 6634 Tenth Avenue Terr So, St. Petersburg, FL, 33707, USA.
| |
Collapse
|
15
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Batke M, Afrapoli FM, Kellner R, Rathman JF, Yang C, Cronin MTD, Escher SE. Threshold of Toxicological Concern—An Update for Non-Genotoxic Carcinogens. FRONTIERS IN TOXICOLOGY 2021; 3:688321. [PMID: 35295144 PMCID: PMC8915827 DOI: 10.3389/ftox.2021.688321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
The Threshold of Toxicological Concern (TTC) concept can be applied to organic compounds with the known chemical structure to derive a threshold for exposure, below which a toxic effect on human health by the compound is not expected. The TTC concept distinguishes between carcinogens that may act as genotoxic and non-genotoxic compounds. A positive prediction of a genotoxic mode of action, either by structural alerts or experimental data, leads to the application of the threshold value for genotoxic compounds. Non-genotoxic substances are assigned to the TTC value of their respective Cramer class, even though it is recognized that they could test positive in a rodent cancer bioassay. This study investigated the applicability of the Cramer classes specifically to provide adequate protection for non-genotoxic carcinogens. For this purpose, benchmark dose levels based on tumor incidence were compared with no observed effect levels (NOELs) derived from non-, pre- or neoplastic lesions. One key aspect was the categorization of compounds as non-genotoxic carcinogens. The recently finished CEFIC LRI project B18 classified the carcinogens of the Carcinogenicity Potency DataBase (CPDB) as either non-genotoxic or genotoxic compounds based on experimental or in silico data. A detailed consistency check resulted in a dataset of 137 non-genotoxic organic compounds. For these 137 compounds, NOEL values were derived from high quality animal studies with oral exposure and chronic duration using well-known repositories, such as RepDose, ToxRef, and COSMOS DB. Further, an effective tumor dose (ETD10) was calculated and compared with the lower confidence limit on benchmark dose levels (BMDL10) derived by model averaging. Comparative analysis of NOEL/EDT10/BMDL10 values showed that potentially bioaccumulative compounds in humans, as well as steroids, which both belong to the exclusion categories, occur predominantly in the region of the fifth percentiles of the distributions. Excluding these 25 compounds resulted in significantly higher but comparable fifth percentile chronic NOEL and BMDL10 values, while the fifth percentile EDT10 value was slightly higher but not statistically significant. The comparison of the obtained distributions of NOELs with the existing Cramer classes and their derived TTC values supports the application of Cramer class thresholds to all non-genotoxic compounds, such as non-genotoxic carcinogens.
Collapse
Affiliation(s)
- Monika Batke
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - James F. Rathman
- Altamira, LLC, Columbus, OH, United States
- Molecular Networks GmbH, Nuremberg, Germany
| | - Chihae Yang
- Altamira, LLC, Columbus, OH, United States
- Molecular Networks GmbH, Nuremberg, Germany
| | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sylvia E. Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- *Correspondence: Sylvia E. Escher
| |
Collapse
|
17
|
Bury D, Head J, Keller D, Klaric M, Rose J. The Threshold of Toxicological Concern (TTC) is a pragmatic tool for the safety assessment: Case studies of cosmetic ingredients with low consumer exposure. Regul Toxicol Pharmacol 2021; 123:104964. [PMID: 34023455 DOI: 10.1016/j.yrtph.2021.104964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
The Threshold of Toxicological Concern (TTC) is an internationally accepted pragmatic and conservative tool for the safety assessment of substances, which is used in a wide range of regulatory contexts. The TTC approach produces human exposure threshold values (TTC values) originally derived by Munro from oral toxicity data on cancer and non-cancer toxicity endpoints. This database has been recently substantially enlarged by the COSMOS database, an enhanced oral non-cancer TTC dataset on a larger chemical domain, thereby resulting in a new, transparent and public TTC database also including 552 cosmetics-related chemicals. The 5th percentile point of departure value for each Cramer Class was determined, from which human exposure TTC values have been derived. The combined COSMOS/Munro dataset provided TTC values of 46, 6.2 and 2.3 μg/kg bw/day for Cramer Classes I, II or III, respectively. In order to demonstrate the diverse scope and successful application of the TTC concept to cosmetic ingredients including hair dyes, fragrances and plant-derived ingredients, Cosmetics Europe has prepared several case studies. Overall, the TTC concept is not only useful to replace animal testing but can also successfully be applied to the safety evaluation of cosmetic ingredients in the marketed formulas with low human exposure.
Collapse
Affiliation(s)
- Dagmar Bury
- L'Oréal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France.
| | - Julia Head
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | | | - Martina Klaric
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | | | | |
Collapse
|
18
|
Ellison CA, Api AM, Becker RA, Efremenko AY, Gadhia S, Hack CE, Hewitt NJ, Varcin M, Schepky A. Internal Threshold of Toxicological Concern (iTTC): Where We Are Today and What Is Possible in the Near Future. FRONTIERS IN TOXICOLOGY 2021; 2:621541. [PMID: 35296119 PMCID: PMC8915896 DOI: 10.3389/ftox.2020.621541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
The Threshold of Toxicological Concern (TTC) is a risk assessment tool for evaluating low-level exposure to chemicals with limited toxicological data. A next step in the ongoing development of TTC is to extend this concept further so that it can be applied to internal exposures. This refinement of TTC based on plasma concentrations, referred to as internal TTC (iTTC), attempts to convert the chemical-specific external NOAELs (in mg/kg/day) in the TTC database to an estimated internal exposure. A multi-stakeholder collaboration formed, with the aim of establishing an iTTC suitable for human safety risk assessment. Here, we discuss the advances and future directions for the iTTC project, including: (1) results from the systematic literature search for metabolism and pharmacokinetic data for the 1,251 chemicals in the iTTC database; (2) selection of ~350 chemicals that will be included in the final iTTC; (3) an overview of the in vitro caco-2 and in vitro hepatic metabolism studies currently being generated for the iTTC chemicals; (4) demonstrate how PBPK modeling is being utilized to convert a chemical-specific external NOAEL to an internal exposure; (5) perspective on the next steps in the iTTC project.
Collapse
Affiliation(s)
- Corie A Ellison
- The Procter and Gamble Company, Cincinnati, OH, United States
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Woodcliff Lake, NJ, United States
| | | | - Alina Y Efremenko
- ScitoVation, Limited Liability Company (LLC), Durham, NC, United States
| | - Sanket Gadhia
- Research Institute for Fragrance Materials, Woodcliff Lake, NJ, United States
| | - C Eric Hack
- ScitoVation, Limited Liability Company (LLC), Durham, NC, United States
| | | | | | | |
Collapse
|
19
|
Nelms MD, Patlewicz G. Derivation of New Threshold of Toxicological Concern Values for Exposure via Inhalation for Environmentally-Relevant Chemicals. FRONTIERS IN TOXICOLOGY 2020; 2:580347. [PMID: 35296122 PMCID: PMC8915872 DOI: 10.3389/ftox.2020.580347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mark D. Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- *Correspondence: Grace Patlewicz
| |
Collapse
|