1
|
Tassi EM, do Nascimento EM, Continentino MA, Pereira BDB, Pedrosa RC. Relationship between Urinary Norepinephrine, Fibrosis, and Arrhythmias in Chronic Chagas Heart Disease with Preserved or Mildly Reduced Ejection Fraction. Arq Bras Cardiol 2022; 119:3-11. [PMID: 35830096 PMCID: PMC9352138 DOI: 10.36660/abc.20210400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In Chronic Chagas Cardiomyopathy (CCC), studies are needed to identify arrhythmogenic risk factors in patients in which moderate to severe ventricular dysfunction is not present. OBJECTIVE To verify the correlation between frequent ventricular arrhythmias (PVC), left ventricular ejection fraction (LVEF), extension of fibrosis by cardiac magnetic resonance (CMR), and urinary norepinephrine measurement (NOREPI) in CCC with preserved or mildly compromised LVEF. METHODS The presence of ventricular extrasystoles > 30/h was analyzed on Holter. At CMR, LVEF and quantification of fibrosis mass were evaluated. The dosage of NOREPI was performed using the Muskiet method. The correlation coefficient matrix was calculated to measure the predictive ability of the variables to predict another variable, with p < 0.05 being considered significant. RESULTS A total of 59 patients were included. The mean age was 57.9 + 10.94 years. PVC was detected in 28 patients. The fibrosis variable was inversely proportional to LVEF (R of -0.61) and NOREPI (R of -0.68). Also, the variable PVC was inversely proportional to LVEF (R of -0.33) and NOREPI (R of -0.27). On the other hand, LVEF was directly proportional to NOREPI (R of 0.83). CONCLUSION In this sample, in patients with CCC with preserved or slightly reduced LVEF, integrity of the autonomic nervous system is observed in hearts with little fibrosis and higher LVEF despite the presence of traditional risk factors for sudden cardiac death. There is correlation between the levels of NOREPI, LVEF, and myocardial fibrosis, but not with PVC.
Collapse
Affiliation(s)
- Eduardo Marinho Tassi
- Universidade Federal do Rio de JaneiroFaculdade de MedicinaInstituto do Coração Edson SaadRio de JaneiroRJBrasilInstituto do Coração Edson Saad, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil, Rio de Janeiro, RJ – Brasil,Correspondência: Eduardo Marinho Tassi • Universidade Federal do Rio de Janeiro – Hospital Universitário Clementino Fraga Filho/Faculdade de Medicina – R. Prof. Rodolpho Paulo Rocco, 255. CEP 21941-590, Ilha do Fundão, Rio de Janeiro, RJ – Brasil. E-mail:
| | - Emília Matos do Nascimento
- Universidade Federal do Rio de JaneiroFaculdade de MedicinaInstituto do Coração Edson SaadRio de JaneiroRJBrasilInstituto do Coração Edson Saad, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil, Rio de Janeiro, RJ – Brasil
| | - Marcelo Abramoff Continentino
- Universidade Federal do Rio de JaneiroFaculdade de MedicinaInstituto do Coração Edson SaadRio de JaneiroRJBrasilInstituto do Coração Edson Saad, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil, Rio de Janeiro, RJ – Brasil
| | - Basilio de Bragança Pereira
- Universidade Federal do Rio de JaneiroFaculdade de MedicinaInstituto do Coração Edson SaadRio de JaneiroRJBrasilInstituto do Coração Edson Saad, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil, Rio de Janeiro, RJ – Brasil
| | - Roberto Coury Pedrosa
- Universidade Federal do Rio de JaneiroFaculdade de MedicinaInstituto do Coração Edson SaadRio de JaneiroRJBrasilInstituto do Coração Edson Saad, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil, Rio de Janeiro, RJ – Brasil
| |
Collapse
|
2
|
Garcia-Bustos V, Moral Moral P, Cabañero-Navalon MD, Salavert Lletí M, Calabuig Muñoz E. Does Autoimmunity Play a Role in the Immunopathogenesis of Vasculitis Associated With Chronic Chagas Disease? Front Cell Infect Microbiol 2021; 11:671962. [PMID: 34295833 PMCID: PMC8290184 DOI: 10.3389/fcimb.2021.671962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Pedro Moral Moral
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Marta Dafne Cabañero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Miguel Salavert Lletí
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Eva Calabuig Muñoz
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Olivera V, Bizai ML, Arias E, Suasnabar S, Bottasso O, Marcipar I, Fabbro D. Levels of anti-B13 antibodies over time in a cohort of chronic infected by Trypanosoma cruzi. Its relationship with specific treatment and clinical status. Acta Trop 2021; 218:105908. [PMID: 33789152 DOI: 10.1016/j.actatropica.2021.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
The immunodominant B13 protein of Trypanosoma cruzi is found on the surface of trypomastigotes and exhibits cross-reactivity with the human cardiac myosin heavy chain; for which antibodies against this parasitic antigen may be involved in the development of disease pathology. In a cohort of chronically T. cruzi-infected adults, undergoing trypanocidal treatment, or not, we, therefore, decided to evaluate the levels of anti-B13 antibodies (ELISA-B13) and its eventual relationship with heart complaints. Two hundred twenty-eight serum samples from 76 chronically infected adults with an average follow-up of 24 years were analyzed. Thirty of them had received trypanocidal treatment. Among treated patients, anti-B13 Ab levels in successive samples showed a significant decrease in reactivity as the years after treatment increased (ANOVA test, p = 0.0049). At the end of the follow-up, 36.7% became non-reactive for ELISA B13. Untreated patients did not have significant variations in the level of anti-B13 antibodies during follow-up. None of the treated patients had electrocardiographic changes compatible with chronic chagasic cardiomyopathy, whereas 21.7% of those undergoing no treatment did show such kind of pathological electrocardiogram tracings. ELISA-B13 was reactive in all cases with heart involvement. Among untreated patients, there were no significant differences in anti-B13 antibodies when comparing individuals without proven pathology with those with chronic chagasic cardiomyopathy. Although treatment with trypanocidal drugs was followed by decreased anti-B13 antibody levels, such assessment was unhelpful in differentiating the evolution of chronic chagasic heart disease.
Collapse
|
4
|
Acevedo GR, Juiz NA, Ziblat A, Pérez Perri L, Girard MC, Ossowski MS, Fernández M, Hernández Y, Chadi R, Wittig M, Franke A, Nielsen M, Gómez KA. In Silico Guided Discovery of Novel Class I and II Trypanosoma cruzi Epitopes Recognized by T Cells from Chagas' Disease Patients. THE JOURNAL OF IMMUNOLOGY 2020; 204:1571-1581. [PMID: 32060134 DOI: 10.4049/jimmunol.1900873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/29/2019] [Indexed: 11/19/2022]
Abstract
T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.
Collapse
Affiliation(s)
- Gonzalo R Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia A Juiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Ziblat
- Instituto de Biología y Medicina Experimental, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Pérez Perri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Magalí C Girard
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela S Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Yolanda Hernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Raúl Chadi
- Hospital General de Agudos Dr. Ignacio Pirovano, C1430BKC Ciudad Autónoma de Buenos Aires, Argentina
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, CONICET, 1650 San Martín, Argentina; and.,Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karina A Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina;
| |
Collapse
|
5
|
Wesley M, Moraes A, Rosa ADC, Lott Carvalho J, Shiroma T, Vital T, Dias N, de Carvalho B, do Amaral Rabello D, Borges TKDS, Dallago B, Nitz N, Hagström L, Hecht M. Correlation of Parasite Burden, kDNA Integration, Autoreactive Antibodies, and Cytokine Pattern in the Pathophysiology of Chagas Disease. Front Microbiol 2019; 10:1856. [PMID: 31496999 PMCID: PMC6712995 DOI: 10.3389/fmicb.2019.01856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), is the main parasitic disease in the Western Hemisphere. Unfortunately, its physiopathology is not completely understood, and cardiomegaly development is hard to predict. Trying to explain tissue lesion and the fact that only a percentage of the infected individuals develops clinical manifestations, a variety of mechanisms have been suggested as the provokers of CD, such as parasite persistence and autoimmune responses. However, holistic analysis of how parasite and host-related elements may connect to each other and influence clinical outcome is still scarce in the literature. Here, we investigated murine models of CD caused by three different pathogen strains: Colombian, CL Brener and Y strains, and employed parasitological and immunological tests to determine parasite load, antibody reactivity, and cytokine production during the acute and chronic phases of the disease. Also, we developed a quantitative PCR (qPCR) protocol to quantify T. cruzi kDNA minicircle integration into the mammalian host genome. Finally, we used a correlation analysis to interconnect parasite- and host-related factors over time. Higher parasite load in the heart and in the intestine was significantly associated with IgG raised against host cardiac proteins. Also, increased heart and bone marrow parasitism was associated with a more intense leukocyte infiltration. kDNA integration rates correlated to the levels of IgG antibodies reactive to host cardiac proteins and interferon production, both influencing tissue inflammation. In conclusion, our results shed light into how inflammatory process associates with parasite load, kDNA transfer to the host, autoreactive autoantibody production and cytokine profile. Altogether, our data support the proposal of an updated integrative theory regarding CD pathophysiology.
Collapse
Affiliation(s)
- Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Ana de Cássia Rosa
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil.,Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Shiroma
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tamires Vital
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruna de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Doralina do Amaral Rabello
- Laboratory of Molecular Pathology of Cancer, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Karla Dos Santos Borges
- Laboratory of Cellular and Molecular Immunology, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruno Dallago
- Laboratory of Animal Welfare, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
De Bona E, Lidani KCF, Bavia L, Omidian Z, Gremski LH, Sandri TL, de Messias Reason IJ. Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front Immunol 2018; 9:1842. [PMID: 30127792 PMCID: PMC6088212 DOI: 10.3389/fimmu.2018.01842] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan Trypanosoma cruzi, affects around six million individuals in Latin America. Currently, CD occurs worldwide, becoming a significant public health concern due to its silent aspect and high morbimortality rate. T. cruzi presents different escape strategies which allow its evasion from the host immune system, enabling its persistence and the establishment of chronic infection which leads to the development of chronic Chagas cardiomyopathy (CCC). The potent immune stimuli generated by T. cruzi persistence may result in tissue damage and inflammatory response. In addition, molecular mimicry between parasites molecules and host proteins may result in cross-reaction with self-molecules and consequently in autoimmune features including autoantibodies and autoreactive cells. Although controversial, there is evidence demonstrating a role for autoimmunity in the clinical progression of CCC. Nevertheless, the exact mechanism underlying the generation of an autoimmune response in human CD progression is unknown. In this review, we summarize the recent findings and hypotheses related to the autoimmune mechanisms involved in the development and progression of CCC.
Collapse
Affiliation(s)
- Elidiana De Bona
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Zahra Omidian
- Department of Pathology, Division of Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J de Messias Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Silva DMMD, Pinheiro L, Azevedo CS, Costa GDP, Talvani A. Influence of environmental enrichment on the behavior and physiology of mice infected by Trypanosoma cruzi. Rev Soc Bras Med Trop 2017; 50:341-349. [DOI: 10.1590/0037-8682-0536-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/18/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - André Talvani
- Universidade Federal de Ouro Preto, Brazil; Universidade Federal de Ouro Preto, Brazil; Universidade Federal de Ouro Preto, Brazil; Universidade Federal de Ouro Preto, Brazil
| |
Collapse
|
9
|
El-Henawy AA, Hafez EAR, Nabih N, Shalaby NM, Mashaly M. Anti-Toxoplasma antibodies in Egyptian rheumatoid arthritis patients. Rheumatol Int 2017; 37:785-790. [DOI: 10.1007/s00296-017-3703-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
10
|
Pertino MW, Vega C, Rolón M, Coronel C, Rojas de Arias A, Schmeda-Hirschmann G. Antiprotozoal Activity of Triazole Derivatives of Dehydroabietic Acid and Oleanolic Acid. Molecules 2017; 22:molecules22030369. [PMID: 28264505 PMCID: PMC6155273 DOI: 10.3390/molecules22030369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Tropical parasitic diseases such as Chagas disease and leishmaniasis are considered a major public health problem affecting hundreds of millions of people worldwide. As the drugs currently used to treat these diseases have several disadvantages and side effects, there is an urgent need for new drugs with better selectivity and less toxicity. Structural modifications of naturally occurring and synthetic compounds using click chemistry have enabled access to derivatives with promising antiparasitic activity. The antiprotozoal activity of the terpenes dehydroabietic acid, dehydroabietinol, oleanolic acid, and 34 synthetic derivatives were evaluated against epimastigote forms of Trypanosoma cruzi and promastigotes of Leishmaniabraziliensis and Leishmania infantum. The cytotoxicity of the compounds was assessed on NCTC-Clone 929 cells. The activity of the compounds was moderate and the antiparasitic effect was associated with the linker length between the diterpene and the triazole in dehydroabietinol derivatives. For the oleanolic acid derivatives, a free carboxylic acid function led to better antiparasitic activity.
Collapse
Affiliation(s)
- Mariano Walter Pertino
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile.
| | - Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O'Leary, Barrio La Encarnación 1255, 2511 Asunción, Paraguay.
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
11
|
Ohyama K, Huy NT, Yoshimi H, Kishikawa N, Nishizawa JE, Roca Y, Revollo Guzmán RJ, Velarde FUG, Kuroda N, Hirayama K. Proteomic profile of circulating immune complexes in chronic Chagas disease. Parasite Immunol 2016; 38:609-17. [PMID: 27223052 DOI: 10.1111/pim.12341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Immune complexes (ICs) are the direct and real-time products of humoral immune responses. The identification of constituent foreign or autoantigens within ICs might bring new insights into the pathology of infectious diseases. We applied immune complexome analysis of plasma to the study of Chagas disease caused by Trypanosoma cruzi. Twenty seropositive plasma samples including cardiac and/or megacolon determinate patients (n = 11) and indeterminate (n = 9) were analysed along with 10 seronegative individuals to characterize the antigens bound to circulating ICs. We identified 39 T. cruzi antigens and 114 human autoantigens specific to patients with Chagas. Among those antigens, two T. cruzi antigens (surface protease GP63, glucose-6-isomerase) and six human autoantigens (CD180 antigen, ceruloplasmin, fibrinogen beta chain, fibrinogen beta chain isoform 2 preprotein, isoform gamma-A of fibrinogen γ-chain, serum paraoxonase) were detected in more than 50% of the patients tested. Human isoform short of complement factor H-related protein 2 and trans-sialidase of T. cruzi were more frequently found in the indeterminate (5/9 for both) compared with in the determinate Chagas (0/11, P = 0·046 for human, 1/11, P = 0·0498 for T. cruzi). The immune complexome could illustrate the difference of immune status between clinical forms of chronic Chagas disease.
Collapse
Affiliation(s)
- K Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan
| | - N T Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - H Yoshimi
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Y Roca
- Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
| | - R J Revollo Guzmán
- Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
| | | | - N Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - K Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
12
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW American trypanosomiasis, or Chagas disease, is a lifelong and persistent infection caused by the protozoan Trypanosoma cruzi and is the most significant cause of morbidity and mortality in South and Central America. Owing to immigration and additional risks from blood transfusion and organ transplantation, the number of reported cases of Chagas disease has increased recently in Europe and the USA. The disease is caused by a moderate to intense lasting inflammatory response that triggers local expression of inflammatory mediators and activates and recruits leukocytes to various tissues to eliminate the parasites. RECENT FINDINGS This long-term inflammatory process triggers biochemical, physiological and morphological alterations and clinical changes in the digestive, nervous and cardiac (e.g. myocarditis, arrhythmias, congestive heart failure, autonomic dysfunctions and microcirculatory disturbances) systems. Indeed, the pathogenesis of Chagas disease is intricate and multifactorial, and the roles of the parasite and the immune response in initiating and maintaining the disease are still controversial. SUMMARY In this review, we discuss the current knowledge of 'strategies' employed by the parasite to persist in the host and host defence mechanisms against Trypanosoma cruzi infection, which can result in equilibrium (absence of the disease) or disease development, mainly in the cardiac systems.
Collapse
|
14
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
15
|
Bonney KM, Engman DM. Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1537-47. [PMID: 25857229 DOI: 10.1016/j.ajpath.2014.12.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of individuals infected with the protozoan parasite Trypanosoma cruzi. Since the discovery of T. cruzi by Carlos Chagas >100 years ago, much has been learned about Chagas disease pathogenesis; however, the outcome of T. cruzi infection is highly variable and difficult to predict. Many mechanisms have been proposed to promote tissue inflammation, but the determinants and the relative importance of each have yet to be fully elucidated. The notion that some factor other than the parasite significantly contributes to the development of myocarditis was hypothesized by the first physician-scientists who noted the conspicuous absence of parasites in the hearts of those who succumbed to Chagas disease. One of these factors-autoimmunity-has been extensively studied for more than half a century. Although questions regarding the functional role of autoimmunity in the pathogenesis of Chagas disease remain unanswered, the development of autoimmune responses during infection clearly occurs in some individuals, and the implications that this autoimmunity may be pathogenic are significant. In this review, we summarize what is known about the pathogenesis of Chagas heart disease and conclude with a view of the future of Chagas disease diagnosis, pathogenesis, therapy, and prevention, emphasizing recent advances in these areas that aid in the management of Chagas disease.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - David M Engman
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois; Department of Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois.
| |
Collapse
|
16
|
Sanches TLM, Cunha LD, Silva GK, Guedes PMM, Silva JS, Zamboni DS. The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease. PLoS One 2014; 9:e91640. [PMID: 24651711 PMCID: PMC3961278 DOI: 10.1371/journal.pone.0091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
Chagas disease develops upon infection with the protozoan parasite Trypanosoma cruzi and undergoes an acute phase characterized by massive parasite replication and the presence of parasites in the blood. This condition is known as acute phase parasitemia. This initial stage may result in a cure, in the development of the chronic stages of the disease or in the death of the infected host. Despite intensive investigation related to the characterization of the acute and chronic phases of the disease, the cause-effect relationship of acute phase parasitemia to the outcome of the disease is still poorly understood. In this study, we artificially generated a heterogeneously controlled mouse population by intercrossing F1 mice obtained from a parental breeding of highly susceptible A/J with highly resistant C57BL/6 mouse strains. This F2 population was infected and used to assess the correlation of acute phase parasitemia with the longevity of the animals. We used nonparametric statistical analyses and found a significant association between parasitemia and mortality. If males and females were evaluated separately, we found that the former were more susceptible to death, although parasitemia was similar in males and females. In females, we found a strong negative correlation between parasitemia and longevity. In males, however, additional factors independent of parasitemia may favor mouse mortality during the development of the disease. The correlations of acute phase parasitemia with mortality reported in this study may facilitate an appropriate prognostic approach to the disease in humans. Moreover, these results illustrate the complexity of the mammalian genetic traits that regulate host resistance during Chagas disease.
Collapse
Affiliation(s)
- Tiago L. M. Sanches
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Grace K. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Paulo M. M. Guedes
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
17
|
Morrot A. The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects of Trypanosoma cruzi Sialoglycoproteins on the Protective Immunity of the Host. SCIENTIFICA 2013; 2013:965856. [PMID: 24455435 PMCID: PMC3885277 DOI: 10.1155/2013/965856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is an important endemic infection in Latin America. Lately, it has also become a health concern in the United States and Europe. Most of the immunomodulatory mechanisms associated with this parasitic infection have been attributed to mucin-like molecules on the T. cruzi surface. Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities in both normal and pathological conditions. In Trypanosoma cruzi infection, the parasite-derived mucins are the main acceptors of sialic acid and it has been suggested that they play a role in various host-parasite interactions during the course of Chagas disease. Recently, we have presented evidence that sialylation of the mucins is required for the inhibitory effects on CD4(+) T cells. In what follows we propose that signaling via sialic acid-binding Ig-like lectin receptors for these highly sialylated structures on host cells contributes to the arrest of cell cycle progression in the G1 phase and may allow the parasite to modulate the immune system of the host.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, CCS, Sala D1-035, Avenida Carlos Chagas Filho 373, Cidade Universitária, Ilha do Fundão, 21.941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Haberland A, Munoz Saravia SG, Wallukat G, Ziebig R, Schimke I. Chronic Chagas disease: from basics to laboratory medicine. Clin Chem Lab Med 2013; 51:271-94. [DOI: 10.1515/cclm-2012-0316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/15/2012] [Indexed: 12/27/2022]
|
19
|
Junqueira LF. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease. Rev Soc Bras Med Trop 2012; 45:243-52. [PMID: 22535000 DOI: 10.1590/s0037-86822012000200020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.
Collapse
Affiliation(s)
- Luiz Fernando Junqueira
- Laboratório Cardiovascular, Área de Clínica Médica (Cardiologia), Universidade de Brasilia, Brasilia, DF.
| |
Collapse
|
20
|
Muñoz-Saravia SG, Haberland A, Wallukat G, Schimke I. Chronic Chagas' heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail Rev 2012; 17:45-64. [PMID: 21165698 DOI: 10.1007/s10741-010-9211-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chagas' disease, caused by Trypanosoma cruzi infection, is ranked as the most serious parasitic disease in Latin America. Nearly 30% of infected patients develop life-threatening complications, and with a latency of 10-30 years, mostly Chagas' heart disease which is currently the major cause of morbidity and mortality in Latin America, enormously burdening economic resources and dramatically affecting patients' social and labor situations. Because of increasing migration, international tourism and parasite transfer by blood contact, intrauterine transfer and organ transplantation, Chagas' heart disease could potentially become a worldwide problem. To raise awareness of this problem, we reflect on the epidemiology and etiopathology of Chagas' disease, particularly Chagas' heart disease. To counteract Chagas' heart disease, in addition to the general interruption of the infection cycle and chemotherapeutic elimination of the infection agent, early and effective causal or symptomatic therapies would be indispensable. Prerequisites for this are improved knowledge of the pathogenesis and optimized patient management. From economic and logistics viewpoints, this last prerequisite should be performed using laboratory medicine tools. Consequently, we first summarize the mechanisms that have been suggested as driving Chagas' heart disease, mainly those associated with the presence of autoantibodies against G-protein-coupled receptors; secondly, we indicate new treatment strategies involving autoantibody apheresis and in vivo autoantibody neutralization; thirdly, we present laboratory medicine tools such as autoantibody estimation and heart marker measurement, proposed for diagnosis, risk assessment and patient guidance and lastly, we critically reflect upon the increase in inflammation and oxidative stress markers in Chagas' heart disease.
Collapse
|
21
|
Fernandes MC, Andrews NW. Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence. FEMS Microbiol Rev 2012; 36:734-47. [PMID: 22339763 DOI: 10.1111/j.1574-6976.2012.00333.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/14/2011] [Accepted: 02/09/2012] [Indexed: 12/31/2022] Open
Abstract
The intracellular protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a serious disorder that affects millions of people in Latin America. Despite the development of lifelong immunity following infections, the immune system fails to completely clear the parasites, which persist for decades within host tissues. Cardiomyopathy is one of the most serious clinical manifestations of the disease, and a major cause of sudden death in endemic areas. Despite decades of study, there is still debate about the apparent preferential tropism of the parasites for cardiac muscle, and its role in the pathology of the disease. In this review, we discuss these issues in light of recent observations, which indicate that T. cruzi invades host cells by subverting a highly conserved cellular pathway for the repair of plasma membrane lesions. Plasma membrane injury and repair is particularly prevalent in muscle cells, suggesting that the mechanism used by the parasites for cell invasion may be a primary determinant of tissue tropism, intracellular persistence, and Chagas' disease pathology.
Collapse
Affiliation(s)
- Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | | |
Collapse
|
22
|
Genetic polymorphisms in TNFA/TNFR2 genes and Chagas disease in a Colombian endemic population. Cytokine 2012; 57:398-401. [DOI: 10.1016/j.cyto.2011.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 02/07/2023]
|
23
|
Quijano-Hernandez I, Dumonteil E. Advances and challenges towards a vaccine against Chagas disease. HUMAN VACCINES 2011; 7:1184-91. [PMID: 22048121 DOI: 10.4161/hv.7.11.17016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is major public health problem, affecting nearly 10 million people, characterized by cardiac alterations leading to congestive heart failure and death of 20-40% of the patients infected with Trypanosoma cruzi, the protozoan parasite responsible for the disease. A vaccine would be key to improve disease control and we review here the recent advances and challenges of a T. cruzi vaccine. There is a growing consensus that a protective immune response requires the activation of a Th1 immune profile, with the stimulation of CD8 (+) T cells. Several vacines types, including recombinant proteins, DNA and viral vectors, as well as heterologous prime-boost combinations, have been found immunogenic and protective in mouse models, providing proof-of-concept data on the feasibility of a preventive or therapeutic vaccine to control a T. cruzi infection. However, several challenges such as better end-points, safety issues and trial design need to be addressed for further vaccine development to proceed.
Collapse
Affiliation(s)
- Israel Quijano-Hernandez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Merida, Mexico
| | | |
Collapse
|
24
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Caryn Bern
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
26
|
Malafaia G, Rodrigues ASDL. [Centenary of the discovery of Chagas disease: challenges and prospects]. Rev Soc Bras Med Trop 2011; 43:483-5. [PMID: 21085853 DOI: 10.1590/s0037-86822010000500001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Hovsepian E, Mirkin GA, Penas F, Manzano A, Bartrons R, Goren NB. Modulation of inflammatory response and parasitism by 15-Deoxy-Δ(12,14) prostaglandin J(2) in Trypanosoma cruzi-infected cardiomyocytes. Int J Parasitol 2011; 41:553-62. [PMID: 21215746 DOI: 10.1016/j.ijpara.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/27/2023]
Abstract
Trypanosoma cruzi infection produces an intense inflammatory response in diverse tissues including the heart. The inflammatory reaction is critical for the control of the parasites' proliferation and evolution of Chagas disease. 15-Deoxy-Δ(12,14) prostaglandin J(2) (15dPGJ2) can repress the inflammatory response in many experimental models. However, the precise role of peroxisome proliferator-activated receptor γ (PPARγ) ligands in T. cruzi infection or in Chagas disease is poorly understood. This work reports the first evidence that 15dPGJ2 treatment increases the number of intracellular parasites as shown by fluorescence microscopy and it is also able to inhibit the expression and activity of different inflammatory enzymes such as inducible nitric oxide synthase (NOS-2), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), as well as pro-inflammatory cytokine (TNF-α and IL-6) mRNA expression in neonatal mouse cardiomyocytes after T. cruzi infection. Transfection of cardiomyocytes with small interfering RNA (siRNA) induces silencing of PPARγ and impairs the effects of 15dPGJ2 on the modulation of pro-inflammatory enzymes. Moreover, transfection restores the ability of these cells to control the intracellular growth of T. cruzi. We also found that PPARγ-independent pathways are involved, since 15dPGJ2 also exerts its effect through extracellular signal-regulated kinases-mitogen-activated protein kinase (Erk-MAPK) and nuclear factor-κB (NF-κB). The use of specific pharmacological inhibitors confirmed these findings. Our data point out that 15dPGJ2 is a potent modulator of the inflammatory process and regulator of parasites growth through PPARγ-dependent and independent (Erk-MAPK- and NF-κB) pathways in T. cruzi infected neonatal cardiac cells.
Collapse
Affiliation(s)
- Eugenia Hovsepian
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Pérez AR, Silva-Barbosa SD, Roggero E, Calmon-Hamaty F, Villar SR, Gutierrez FR, Silva JS, Savino W, Bottasso O. Immunoendocrinology of the thymus in Chagas disease. Neuroimmunomodulation 2011; 18:328-38. [PMID: 21952685 DOI: 10.1159/000329494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During immune response to infectious agents, the host develops an inflammatory response which could fail to eliminate the pathogen or may become dysregulated. In this case, the ongoing response acquires a new status and turns out to be detrimental. The same elements taking part in the establishment and regulation of the inflammatory response (cytokines, chemokines, regulatory T cells and counteracting compounds like glucocorticoids) may also mediate harmful effects. Thymic disturbances seen during Trypanosoma cruzi (T. cruzi) infection fit well with this conceptual framework. After infection, this organ suffers a severe atrophy due to apoptosis-induced thymocyte exhaustion, mainly affecting the immature double-positive (DP) CD4+CD8+ population. Thymus cellularity depletion, which occurs in the absence of main immunological mediators involved in anti-T. cruzi defense, seems to be linked to a systemic cytokine/hormonal imbalance, involving a dysregulated increase in Tumor Necrosis Factor alpha (TNF-α) and corticosterone hormone levels. Additionally, we have found an anomalous exit of potentially autoimmune DP cells to the periphery, in parallel to a shrinkage in the compartment of natural regulatory T cells. In this context, our data clearly point to the view that the thymus is a target organ of T. cruzi infection. Preserved thymus may be essential for the development of an effective immune response against T. cruzi, but this organ is severely affected by a dysregulated circuit of proinflammatory cytokines and glucocorticoids. Also, the alterations observed in the DP population might have potential implications for the autoimmune component of human Chagas disease.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Institute of Immunology, School of Medical Sciences, National University of Rosario (U.N.R.), Rosario, Argentina. perez_anarosa @ yahoo.com.ar
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Parasitic infections previously seen only in developing tropical settings can be currently diagnosed worldwide due to travel and population migration. Some parasites may directly or indirectly affect various anatomical structures of the heart, with infections manifested as myocarditis, pericarditis, pancarditis, or pulmonary hypertension. Thus, it has become quite relevant for clinicians in developed settings to consider parasitic infections in the differential diagnosis of myocardial and pericardial disease anywhere around the globe. Chagas' disease is by far the most important parasitic infection of the heart and one that it is currently considered a global parasitic infection due to the growing migration of populations from areas where these infections are highly endemic to settings where they are not endemic. Current advances in the treatment of African trypanosomiasis offer hope to prevent not only the neurological complications but also the frequently identified cardiac manifestations of this life-threatening parasitic infection. The lack of effective vaccines, optimal chemoprophylaxis, or evidence-based pharmacological therapies to control many of the parasitic diseases of the heart, in particular Chagas' disease, makes this disease one of the most important public health challenges of our time.
Collapse
|
30
|
Nascentes GAN, Meira WSF, Lages-Silva E, Ramírez LE. Immunization of mice with a Trypanosoma cruzi-like strain isolated from a bat: predictive factors for involvement of eosinophiles in tissue damage. Vector Borne Zoonotic Dis 2010; 10:989-97. [PMID: 20455782 DOI: 10.1089/vbz.2009.0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The granules of eosinophiles are cytotoxic to Trypanosoma cruzi trypomastigote and amastigote forms and to several cell types of the host, revealing their role in either parasite elimination or the production of tissue lesions. In this study, we evaluated the biological characteristics of T. cruzi infection that are responsible for the increase in tissue eosinophile levels in mice previously immunized with a bat isolated T. cruzi-like strain that does not infect mice. Nonisogeneic mice were divided into 24 groups that received from zero to three inoculations of T. cruzi-like RM1 strain, with or without adjuvant, followed by challenge with T. cruzi VIC or JG strains. Uni- and multivariate comparisons were performed comparing the tissue eosinophile levels with the parasitemia peak, severity of myositis in skeletal muscle, phase of infection, and the immunization strategies induced by the T. cruzi-like strain (adjuvant, number of reinoculations, and parasites). Although the severity of inflammation was higher in the acute phase, the score of tissue eosinophiles was similar in the acute and chronic phases of infection. In addition, there was a positive correlation among eosinophile levels and parasitemia peak. In the chronic phase, a greater eosinophile count was accompanied by an augmentation of myositis. Regardless of the phase of infection, we observed a positive correlation between the intensity of eosinophile infiltration and the number of sensitizations with T. cruzi-like strain. The multivariate analysis showed that the peak of parasitemia, number of inoculations with the T. cruzi-like strain, and severity of myositis were associated with greater tissue eosinophilia, in comparison with adjuvant, T. cruzi strains used in the challenge or tissue parasitism. Therefore, tissue eosinophile levels proved to be an important parameter in the pathogenesis of experimental Chagas disease in the acute and chronic phases of infection and might be related to reinfections, parasite multiplication ability, and severity of inflammatory process.
Collapse
|
31
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
32
|
Nogueira de Melo AC, de Souza EP, Elias CGR, dos Santos ALS, Branquinha MH, d'Avila-Levy CM, dos Reis FCG, Costa TFR, Lima APCDA, de Souza Pereira MC, Meirelles MNL, Vermelho AB. Detection of matrix metallopeptidase-9-like proteins in Trypanosoma cruzi. Exp Parasitol 2010; 125:256-63. [PMID: 20138866 DOI: 10.1016/j.exppara.2010.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/24/2009] [Accepted: 01/27/2010] [Indexed: 11/25/2022]
Abstract
In this study, the cell-associated and extracellular peptidases of Trypanosoma cruzi grown in modified Roitman's complex (MRC) medium were analyzed by measuring peptidase activity in gelatin-containing zymograms. Our results showed that the cell-associated peptidases as well as peptidases extracellularly released by T. cruzi displayed two distinct proteolytic classes: cysteine and metallopeptidase activities. The major cysteine peptidase, cruzipain, synthesized by T. cruzi cells was detected in cellular parasite content, as a 50kDa reactive polypeptide, after probing with anti-cruzipain antibody. In addition, metallo-type peptidases belonging to the matrix metallopeptidase-9 (MMP-9) family were revealed, after Western blotting, as a 97kDa protein band in cellular extract and an 85kDa polypeptide in both cellular and secreted parasite extracts. The MMP-9-like activity present in cells and spent culture medium was immunoprecipitated by an anti-MMP-9 polyclonal antibody. The surface location of MMP-9-like proteins in T. cruzi was also evidenced by means of flow cytometry analysis. Furthermore, doxycycline that has direct MMP-9 inhibiting properties in vitro, inhibited MMP-9-like activities in gel zymography, immunoprecipitation and flow cytometry analyses. This is the first report of the presence of MMP-9-like molecules in T. cruzi. The presence of a matrix extracellular-degrading enzyme may play a role in the T. cruzi-host cell interaction, making this enzyme a potential target for future drug development against this pathogenic trypanosomatid.
Collapse
Affiliation(s)
- Ana Cristina Nogueira de Melo
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Bloco I, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM. Induction of cardiac autoimmunity in Chagas heart disease: A case for molecular mimicry. Autoimmunity 2009; 39:41-54. [PMID: 16455581 DOI: 10.1080/08916930500485002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Up to 18 million of individuals are infected by the protozoan parasite Trypanosoma cruzi in Latin America, one third of whom will develop chronic Chagas disease cardiomyopathy (CCC) up to 30 years after infection. Cardiomyocyte destruction is associated with a T cell-rich inflammatory infiltrate and fibrosis. The presence of such lesions in the relative scarcity of parasites in the heart, suggested that CCC might be due, in part, to a postinfectious autoimmune process. Over the last two decades, a significant amount of reports of autoimmune and molecular mimicry phenomena have been described in CCC. The authors will review the evidence in support of an autoimmune basis for CCC pathogenesis in humans and experimental animals, with a special emphasis on molecular mimicry as a fundamental mechanism of autoimmunity.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), Laboratory of Immunology, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Torres OA, Calzada JE, Beraún Y, Morillo CA, González CI, González A, Martín J. Association of the macrophage migration inhibitory factor -173G/C polymorphism with Chagas disease. Hum Immunol 2009; 70:543-6. [PMID: 19376177 DOI: 10.1016/j.humimm.2009.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 01/25/2023]
Abstract
Our aim was to evaluate the association of functional polymorphism of macrophage migration inhibitory factor (MIF) gene with Chagas disease. Our study includes two independent cohorts: 240 chagasic patients and 199 controls from Colombia; and 74 chagasic patients and 85 controls from Peru. The single nucleotide polymorphism (SNP) -173 G/C of MIF gene was determined using a polymerase chain reaction (PCR) system with pre-developed TaqMan assay. We observed a statistically significant difference in the distribution of -173*C allele of MIF gene between patients and controls in the Colombian cohort (OR = 1.6, 95% CI = 1.12-2.18, p = 0.006). Similar association was found in the Peruvian cohort (OR = 2.4, 95% CI = 1.31-4.38, p = 0.003). A meta-analysis of the Colombian and Peruvian cohorts demonstrated that the -173 C allele confers a risk effect in chagasic patients (pooled OR = 1.75, 95% CI = 1.30-2.33, p = 0.0002). In addition, a gene dose of the MIF -173 C allele was observed (pooled OR = 4.01, 95% CI = 1.25-12.85, p = 0.004). Our results suggest that the MIF -173G/C polymorphism confers susceptibility to Chagas disease in the populations under study.
Collapse
Affiliation(s)
- Orlando A Torres
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Caetano LC, Brazão V, Filipin MDV, Santello FH, Caetano LN, Toldo MPA, Caldeira JC, do Prado JC. Effects of repetitive stress during the acute phase of Trypanosoma cruzi infection on chronic Chagas' disease in rats. Stress 2009; 12:144-51. [PMID: 18850489 DOI: 10.1080/10253890802168648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effect of repetitive stress during acute infection with Trypanosoma cruzi (T. cruzi) on the chronic phase of ensuing Chagas' disease was the focus of this investigation. The aim of this study was to evaluate in Wistar rats the influence of repetitive stress during the acute phase of infection (7 days) with the Y strain of T. cruzi on the chronic phase of the infection (at 180 days). Exposure to ether vapor for 1 min twice a day was used as a stressor. Repetitive stress enhanced the number of circulating parasites and cardiac tissue disorganization, from a moderate to a severe diffuse mononuclear inflammatory process and the presence of amastigote burden in the cardiac fibers. Immunological parameters revealed that repetitive stress triggered a reduced concanavalin A induced splenocyte proliferation in vitro with major effects on the late chronic phase. Serum interleukin-12 concentration decreased in both stressed and infected rats in the early phase of infection although it was higher on 180 days post-infection. These results suggest that repetitive stress can markedly impair the host's immune system and enhance the pathological process during the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- Leony Cristina Caetano
- Laboratório de Parasitologia, Departamento de Análises Clinicas, Toxicológicas e Bromatológicas, Faculdade de Ciéncias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Changes in cellular contractility and cytokines profile during Trypanosoma cruzi infection in mice. Basic Res Cardiol 2009; 104:238-46. [DOI: 10.1007/s00395-009-0776-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/17/2008] [Indexed: 02/05/2023]
|
37
|
Scharfstein J, Monteiro AC, Schmitz V, Svensjö E. Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway. Biol Chem 2008; 389:1015-24. [PMID: 18979626 DOI: 10.1515/bc.2008.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tissue injury by pathogens induces a stereotyped inflammatory response that alerts the innate immune system of the potential threat to host integrity. Here, we review knowledge emerging from investigations of the role of the kinin system in the mechanisms that link innate to the adaptive phase of immunity. Progress in this field started with results demonstrating that bradykinin is an endogenous danger signal that induces dendritic cell (DC) maturation via G protein-coupled bradykinin B2 receptors (B2R). The immunostimulatory role of kinins was recently confirmed in two different mouse models of Trypanosoma cruzi infection, a parasitic protozoan equipped with kinin-releasing cysteine proteases (cruzipain). Infection by the intraperitoneal route showed that DCs from B2R-/- mice (susceptible phenotype) failed to sense kinin 'danger' signals proteolytically released by parasites, explaining why these mutant mice display lower frequencies of interferon-gamma-producing effector T-cells. Studies of the dynamics of inflammation in the subcutaneous model of infection revealed that the balance between cruzipain and angiotensin-converting enzyme, respectively acting as kinin-generating and degrading enzymes, governs extent of DC maturation and TH1 development via the B2R-dependent innate pathway. Studies of the kinin role in immunity may shed light on the relationship between proteolytic networks and the cytokine circuits that guide T-cell development.
Collapse
Affiliation(s)
- Julio Scharfstein
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21949-900 Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
38
|
Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzicysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway. Biol Chem 2008. [DOI: 10.1515/bc.2008.126_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
da Silva-Lopez RE, Morgado-Díaz JA, dos Santos PT, Giovanni-De-Simone S. Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 2008; 107:159-67. [PMID: 18599007 DOI: 10.1016/j.actatropica.2008.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/17/2022]
Abstract
An extracellular serine peptidase was purified 460-fold from Trypanosoma cruzi epimastigotes culture supernatant with (NH(4))(2)SO(4) precipitation followed by affinity chromatography aprotinin-agarose and continuous elution electrophoresis, yielding a total recovery of 65%. The molecular mass of the active enzyme estimated by reducing and non-reducing SDS-PAGE was about 75kDa. The optimal pH and temperature of this glycosylated peptidase were 8.0 and 37 degrees C using alpha-N-rho-tosyl-L-arginine-methyl ester (L-TAME) as substrate. The enzyme did not hydrolyze polypeptide substrates but was active against short peptide substrates containing arginine at the P1 site, in both ester and amide bonds. The peptidase was inhibited by TPCK and TCLK but not by other protease inhibitors suggesting that the enzyme belongs to the serine peptidase class. Interestingly, the enzyme seems to demonstrate some metal dependence since its activity was reduced by 1,10-phenanthroline, calcium and zinc ions. Rabbit anti-T. cruzi extracellular serine peptidase antiserum was used to show that the enzyme was restricted to intracellular structures, including the flagellar pocket, plasma membrane and cytoplasmic vesicles resembling reservosomes. These results suggest that the serine oligopeptidase is secreted into the extracellular environment through the flagellar pocket and the intracellular location could suggest its participation in certain proteolysis events in reservosomes. These findings show that this peptidase is a novel T. cruzi serine oligopeptidase, which differs not only from other peptidases described in the same parasite but also in other species of Trypanosoma.
Collapse
|
40
|
Benznidazole therapy during acute phase of Chagas disease reduces parasite load but does not prevent chronic cardiac lesions. Parasitol Res 2008; 103:413-21. [DOI: 10.1007/s00436-008-0992-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 04/04/2008] [Indexed: 11/26/2022]
|
41
|
Gironès N, Carrasco-Marin E, Cuervo H, Guerrero NA, Sanoja C, John S, Flores-Herráez R, Fernández-Prieto L, Chico-Calero I, Salgado H, Carrión J, Fresno M. Role of Trypanosoma cruzi autoreactive T cells in the generation of cardiac pathology. Ann N Y Acad Sci 2007; 1107:434-44. [PMID: 17804572 DOI: 10.1196/annals.1381.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects several million people in Central and South America. About 30% of chronic patients develop cardiomyopathy probably caused by parasite persistence and/or autoimmunity. While several cross-reactive antibodies generated during mammal T. cruzi infection have been described, very few cross-reactive T cells have been identified. We performed adoptive transfer experiments of T cells isolated from chronically infected mice. The results showed the generation of cardiac pathology in the absence of parasites. We also transferred cross-reactive SAPA-specific T cells and observed unspecific alterations in heart repolarization, cardiac inflammatory infiltration, and tissue damage.
Collapse
Affiliation(s)
- Núria Gironès
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marinho CRF, Nuñez-Apaza LN, Martins-Santos R, Bastos KRB, Bombeiro AL, Bucci DZ, Sardinha LR, Lima MRD, Alvarez JM. IFN-gamma, but not nitric oxide or specific IgG, is essential for the in vivo control of low-virulence Sylvio X10/4 Trypanosoma cruzi parasites. Scand J Immunol 2007; 66:297-308. [PMID: 17635807 DOI: 10.1111/j.1365-3083.2007.01958.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly virulent strains of Trypanosoma cruzi are frequently used as murine models of Chagas' disease. However, these strains do not fully represent the spectrum of parasites involved in the human infection. In this paper, we analysed parasitaemia, mortality, tissue pathology and parasite-specific IgG serum levels in immune-deficient mice infected with Sylvio X10/4 parasites, a T. cruzi derived from a chagasic patient that yields very low parasitaemias and in C3H/HePAS mice induces a chronic cardiopathy resembling the human disease. IFN-gamma was identified as a crucial element for parasite control as its absence determined a drastic increase in parasitaemia, tissue parasitism, leukocyte infiltrates at the heart and striated muscles and mortality. The lack of IFN-gamma or IL-12p40, a molecule shared by IL-12 and IL-23, also resulted in spinal cord lesions and a progressive paralysis syndrome. Whereas IgG2a was the main Ig isotype in infected C57BL/6 mice, IL-12p40-KO mice produced IgG2a and IgG1 and IFN-gamma-KO mice produced only IgG1. The IFN-gamma-protective effect was not essentially mediated by nitric oxide (NO), inasmuch as infected iNOS-KO mice showed no parasitaemia and low tissue damage. Mice deficient in CD4(+) or CD8(+) T cells showed an intermediate phenotype with increased mortality and tissue pathology but no parasitaemia. Interestingly, CD28-KO mice were unable to produce anti-T. cruzi IgG antibodies but presented moderate tissue pathology and managed to control the infection. Thus, differently from infections with high virulence parasites, neither IgG, NO nor CD28-mediated signalling are essential for the non-sterile control of Sylvio X10/4 parasites.
Collapse
Affiliation(s)
- C R F Marinho
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hyland KV, Leon JS, Daniels MD, Giafis N, Woods LM, Bahk TJ, Wang K, Engman DM. Modulation of autoimmunity by treatment of an infectious disease. Infect Immun 2007; 75:3641-50. [PMID: 17485457 PMCID: PMC1932944 DOI: 10.1128/iai.00423-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/16/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022] Open
Abstract
Chagas' heart disease (CHD), caused by the parasite Trypanosoma cruzi, is the most common form of myocarditis in Central America and South America. Some humans and experimental animals develop both humoral and cell-mediated cardiac-specific autoimmunity during infection. Benznidazole, a trypanocidal drug, is effective at reducing parasite load and decreasing the severity of myocarditis in acutely infected patients. We hypothesized that the magnitude of autoimmunity that develops following T. cruzi infection is directly proportional to the amount of damage caused by the parasite. To test this hypothesis, we used benznidazole to reduce the number of parasites in an experimental model of CHD and determined whether this treatment altered the autoimmune response. Infection of A/J mice with the Brazil strain of T. cruzi leads to the development of severe inflammation, fibrosis, necrosis, and parasitosis in the heart accompanied by vigorous cardiac myosin-specific delayed-type hypersensitivity (DTH) and antibody production at 21 days postinfection. Mice succumbed to infection within a month if left untreated. Treatment of infected mice with benznidazole eliminated mortality and decreased disease severity. Treatment also reduced cardiac myosin-specific DTH and antibody production. Reinfection of treated mice with a heart-derived, virulent strain of T. cruzi or immunization with myosin led to the redevelopment of myosin-specific autoimmune responses and inflammation. These results provide a direct link between the levels of T. cruzi and the presence of autoimmunity and suggest that elimination of the parasite may result in the reduction or elimination of autoimmunity in the chronic phase of infection.
Collapse
Affiliation(s)
- Kenneth V Hyland
- Department of Microbiology-Immunology and Pathology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Thekisoe OMM, Kuboki N, Nambota A, Fujisaki K, Sugimoto C, Igarashi I, Yasuda J, Inoue N. Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Trop 2007; 102:182-9. [PMID: 17574198 DOI: 10.1016/j.actatropica.2007.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 05/10/2007] [Accepted: 05/10/2007] [Indexed: 11/24/2022]
Abstract
In this study, we developed loop-mediated isothermal amplification (LAMP) for the specific detection of both animal and human trypanosomosis using primer sets that are designed from 5.8S rRNA-internal transcribed spacer 2 (ITS2) gene for Trypanosoma brucei gambiense, 18S rRNA for both T. congolense and T. cruzi, and VSG RoTat 1.2 for T. evansi. These LAMP primer sets are highly sensitive and are capable of detecting down to 1 fg trypanosomal DNA, which is equivalent to approximately 0.01 trypanosomes. LAMP is a rapid and simple technique since it can be carried out in 1 h and requires only a simple heating device for incubation. Therefore, LAMP has great potential of being used for diagnosis of trypanosomosis in the laboratory and the field, especially in countries that lack sufficient resources needed for application of molecular diagnostic techniques.
Collapse
Affiliation(s)
- Oriel M M Thekisoe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080 8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 2007; 40:1-10. [PMID: 17486245 DOI: 10.1590/s0037-86822007000100001] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 01/07/2007] [Indexed: 11/22/2022] Open
Abstract
The efficacy of treatment with nifurtimox and/or benznidazole among adults with chronic Chagas disease with no previous electrocardiographic disturbances was evaluated over a mean follow-up of 21 years, by means of conventional serology, xenodiagnosis, clinical examination, electrocardiograms and chest X-ray. One hundred and eleven patients, between 17 and 46 years old, were studied: 54 underwent treatment (nifurtimox 27, benznidazole 27) and 57 remained untreated (control group). Xenodiagnosis was performed on 65% of them: 36/38 of the treated and 9/34 of the untreated patients had previous positive xenodiagnosis. Post-treatment, 133 xenodiagnoses were performed on 41 patients, all resulting negative. In the control group, 29 xenodiagnoses were performed on 14 patients; 2 resulted positive. Sera stored during the follow-up were simultaneously analyzed through conventional serology tests (IHA; DA-2ME; IIF). The serological evolution in the treated group was: a) 37% underwent negative seroconversion (nifurtimox 11, benznidazole 9); b) 27.8% decreased titers (nifurtimox 9, benznidazole 6), 9 showed inconclusive final serology (nifurtimox 7, benznidazole 2); c) 35.2% remained positive with constant titers (nifurtimox 7; benznidazole 12). The control group conserved the initial antibody levels during the follow-up. In the clinical evolution, 2/54 (3.7%) of the treated and 9/57 (15.8%) of the untreated patients showed electrocardiographic disturbances attributable to Chagas myocardiopathy, with a statistically relevant difference (p<0.05). Treatment caused deparasitation in at least 37% of the chronically infected adults and a protective effect on their clinical evolution.
Collapse
Affiliation(s)
- Diana L Fabbro
- Centro de Investigaciones sobre Endemias Nacionales, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | | | | | | | | | | |
Collapse
|
46
|
Coutinho-Silva R, Monteiro da Cruz C, Persechini PM, Ojcius DM. The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 2007; 3:83-90. [PMID: 18404421 PMCID: PMC2096763 DOI: 10.1007/s11302-006-9039-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/13/2006] [Indexed: 01/10/2023] Open
Abstract
A growing number of studies have demonstrated the importance of ATP(e)-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATP(e) can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATP(e) may function as a "danger signal" that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATP(e)-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Bloco G do CCS, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil,
| | | | | | | |
Collapse
|
47
|
Teixeira ARL, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA. Chagas disease. Postgrad Med J 2006; 82:788-98. [PMID: 17148699 PMCID: PMC2653922 DOI: 10.1136/pgmj.2006.047357] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/13/2006] [Indexed: 01/12/2023]
Abstract
Chagas disease is the clinical condition triggered by infection with the protozoan Trypanosoma cruzi. The infection is transmitted by triatomine insects while blood feeding on a human host. Field studies predict that one third of an estimated 18 million T cruzi-infected humans in Latin America will die of Chagas disease. Acute infections are usually asymptomatic, but the ensuing chronic T cruzi infections have been associated with high ratios of morbidity and mortality: Chagas heart disease leads to unexpected death in 37.5% of patients, 58% develop heart failure and die and megacolon or megaoesophagus has been associated with death in 4.5%. The pathogenesis of Chagas disease appears to be related to a parasite-induced mutation of the vertebrate genome. Currently, treatment is unsatisfactory.
Collapse
Affiliation(s)
- A R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, Faculty of Medicine, University of Brasília, PO Box 04536 70919-970, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
48
|
Rocha NN, Garcia S, Giménez LED, Hernández CCQ, Senra JFV, Lima RS, Cyrino F, Bouskela E, Soares MBP, Ribeiro dos Santos R, Campos de Carvalho AC. Characterization of cardiopulmonary function and cardiac muscarinic and adrenergic receptor density adaptation in C57BL/6 mice with chronic Trypanosoma cruzi infection. Parasitology 2006; 133:729-37. [PMID: 16978452 DOI: 10.1017/s0031182006001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/10/2006] [Accepted: 06/13/2006] [Indexed: 02/05/2023]
Abstract
Circulating antibodies in chagasic patients interact with myocardial beta adrenergic and muscarinic cholinergic receptors, triggering intracellular signals that alter cardiac function along the course of the disease. However, until now, experimental data in models of chronically infected chagasic mice linking the effects on myocardial beta adrenergic and muscarinic receptors to cardiopulmonary dysfunction is lacking. Thus, we studied C57BL/6 mice 8 months after intraperitoneal injection of 100 trypomastigote forms of the Colombian strain of T. cruzi. Uninfected mice, matched in age, were used as controls. Histopathological analyses (inflammation and fibrosis) and radio-ligand binding assays for estimation of muscarinic and adrenergic receptor density were performed in myocardium tissue samples. When compared to controls, infected mice had electrical conduction disturbances, diastolic dysfunction, lower O2 consumption and anaerobic threshold. In addition, hearts of chronic chagasic mice had intense inflammation and fibrosis, and decreased beta adrenergic and increased muscarinic receptor densities than normal controls. Our data suggest that chronic T. cruzi infection causes alterations in cardiac receptor density and fibrosis deposition which can be associated with cardiac conduction abnormalities, diastolic dysfunction and lower exercise capacity, associating for the first time all these functional and histopathological alterations in chagasic mice.
Collapse
Affiliation(s)
- N N Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mendes-da-Cruz DA, Silva JS, Cotta-de-Almeida V, Savino W. Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur J Immunol 2006; 36:1486-93. [PMID: 16637021 DOI: 10.1002/eji.200535629] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously showed migration disturbances in the thymus during experimental infection with Trypanosoma cruzi, the causative agent of Chagas disease. These changes were related to the enhanced expression of extracellular matrix ligands and receptors, leading to the escape of immature cells to the periphery. Here, we analyzed the expression and role of selected chemokines (CXCL12 and CCL4) and their receptors (CXCR4 and CCR5) in regulating thymocyte migration in conjunction with extracellular matrix during acute T. cruzi infection. We found increased chemokine deposition in the thymus of infected mice when compared to controls, accompanied by enhanced co-localization with fibronectin as well as up-regulated surface expression of CXCR4 and CCR5 in thymocytes. We also noticed altered thymocyte migration towards the chemokines analyzed. Such an enhancement was even more prominent when fibronectin was added as a haptotatic stimulus in combination with a given chemokine. Our findings suggest that thymocyte migration results from a combined action of chemokines and extracellular matrix (ECM), which can be altered during pathological conditions such as T. cruzi infection, and may be at the origin of the changes in the T cell repertoire seen in this pathological process.
Collapse
MESH Headings
- Animals
- Cell Movement/immunology
- Chagas Disease/immunology
- Chagas Disease/parasitology
- Chemokine CCL4
- Chemokine CXCL12
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Extracellular Matrix/immunology
- Extracellular Matrix/parasitology
- Fibronectins/immunology
- Immunohistochemistry
- Macrophage Inflammatory Proteins/biosynthesis
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mice
- Mice, Inbred BALB C
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/parasitology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/parasitology
- Trypanosoma cruzi/immunology
Collapse
Affiliation(s)
- Daniella Arêas Mendes-da-Cruz
- Laboratory of Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
50
|
Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, Campbell DA, Sturm NR. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics 2006; 7:60. [PMID: 16553959 PMCID: PMC1559615 DOI: 10.1186/1471-2164-7-60] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. RESULTS We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. CONCLUSION The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Collapse
Affiliation(s)
- Scott J Westenberger
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles 90095, USA
| | - Gustavo C Cerqueira
- Department of Parasite Genomics, The Institute for Genomic Research, Rockville, MD 20850, USA
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Najib M El-Sayed
- Department of Parasite Genomics, The Institute for Genomic Research, Rockville, MD 20850, USA
| | - Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - David A Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles 90095, USA
| |
Collapse
|