1
|
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620045. [PMID: 39484388 PMCID: PMC11527105 DOI: 10.1101/2024.10.24.620045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
2
|
Adungo F, Mokaya T, Makwaga O, Mwau M. Tsetse distribution, trypanosome infection rates, and small-holder livestock producers' capacity enhancement for sustainable tsetse and trypanosomiasis control in Busia, Kenya. Trop Med Health 2020; 48:62. [PMID: 32760194 PMCID: PMC7393918 DOI: 10.1186/s41182-020-00249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tsetse flies are the cyclical vectors of both human and animal diseases. Kenya's commitment to eradicate tsetse and trypanosomiasis dates to the 1980s through various control approaches which were spearheaded by the African Union. The aggressive control programmes together with climatic, land-use, and socio-economic changes immensely contributed to the reduction of African trypanosomiasis. Since 2012, Kenya has not recorded a case of human trypanosomiasis. However, African animal trypanosomiasis remains a major challenge to livestock production in 38 out of 47 counties. We aimed to determine the prevalence of tsetse flies and trypanosome infection rate and to build the capacity of small-holder livestock producers in vector control activities in Busia county. METHODS This cross-sectional study was conducted between May 2018 and December 2018 in Busia county, a beneficiary of the previous African Union-led trypanosomiasis and tsetse control initiatives. Odour-baited biconical traps were deployed for 48 h in five sampling areas. Captured tsetse flies were analysed by microscopy for trypanosome infections. Additionally, training and field demonstrations were conducted as part of capacity building to enhance participation of small-holder livestock producers in tsetse control activities. RESULTS A total of 94 tsetse flies mainly Glossina fuscipes fuscipes were captured from the five sampling areas. The apparent fly densities range from 0.08 to 1.55 tsetse per trap per day. Additionally, 75 biting flies mainly Stomoxys spp. were also trapped. An overall tsetse infection rate of 1.39% and 4.17% was observed for Trypanosoma congolense and Trypanosoma vivax, respectively. Regarding capacity building, a total of 26 small-holder livestock producers were trained on tsetse and trypanosomiasis control activities. Out of which, five were selected as focal persons and were further trained on integrated vector management techniques and tsetse survey methods. CONCLUSIONS Our findings revealed the existence of trypanosome-infected tsetse flies which could potentially spread to other parts of the county. Training of small-holder livestock producers in tsetse and trypanosomiasis control activities should be supported and integrated in the county animal health and veterinary services. Given the observed low tsetse densities and trypanosome infection rates, the elimination of trypanosomiasis in Busia county is feasible.
Collapse
Affiliation(s)
- Ferdinard Adungo
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Tom Mokaya
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Olipher Makwaga
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Matilu Mwau
- Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
3
|
Abdi RD, Agga GE, Aregawi WG, Bekana M, Van Leeuwen T, Delespaux V, Duchateau L. A systematic review and meta-analysis of trypanosome prevalence in tsetse flies. BMC Vet Res 2017; 13:100. [PMID: 28403841 PMCID: PMC5390347 DOI: 10.1186/s12917-017-1012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background The optimisation of trypanosomosis control programs warrants a good knowledge of the main vector of animal and human trypanosomes in sub-Saharan Africa, the tsetse fly. An important aspect of the tsetse fly population is its trypanosome infection prevalence, as it determines the intensity of the transmission of the parasite by the vector. We therefore conducted a systematic review of published studies documenting trypanosome infection prevalence from field surveys or from laboratory experiments under controlled conditions. Publications were screened in the Web of Science, PubMed and Google Scholar databases. Using the four-stage (identification, screening, eligibility and inclusion) process in the PRISMA statement the initial screened total of 605 studies were reduced to 72 studies. The microscopic examination of dissected flies (dissection method) remains the most used method to detect trypanosomes and thus constituted the main focus of this analysis. Meta-regression was performed to identify factors responsible for high trypanosome prevalence in the vectors and a random effects meta-analysis was used to report the sensitivity of molecular and serological tests using the dissection method as gold standard. Results The overall pooled prevalence was 10.3% (95% confidence interval [CI] = 8.1%, 12.4%) and 31.0% (95% CI = 20.0%, 42.0%) for the field survey and laboratory experiment data respectively. The country and the year of publication were found to be significantly factors associated with the prevalence of trypanosome infection in tsetse flies. The alternative diagnostic tools applied to dissection positive samples were characterised by low sensitivity, and no information on the specificity was available at all. Conclusion Both temporal and spatial variation in trypanosome infection prevalence of field collected tsetse flies exists, but further investigation on real risk factors is needed how this variation can be explained. Improving the sensitivity and determining the specificity of these alternative diagnostic tools should be a priority and will allow to estimate the prevalence of trypanosome infection in tsetse flies in high-throughput. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1012-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reta D Abdi
- Department of Clinical studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia, Ethiopia. .,Department of Animal Science, Institute of Agriculture, University of Tennessee, 2506 River Drive, Knoxville, USA.
| | - Getahun E Agga
- U.S. Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, Bowling Green, Kentucky, USA
| | - Weldegebrial G Aregawi
- Werer Agricultural Research Center, Ethiopian Institute of Agricultural Research, Afar, Ethiopia
| | - Merga Bekana
- Department of Clinical studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia, Ethiopia
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Gent University, Ghent, Belgium
| | - Vincent Delespaux
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Sciences, Gent University, Ghent, Belgium
| |
Collapse
|
4
|
Aksoy E, Vigneron A, Bing X, Zhao X, O'Neill M, Wu YN, Bangs JD, Weiss BL, Aksoy S. Mammalian African trypanosome VSG coat enhances tsetse's vector competence. Proc Natl Acad Sci U S A 2016; 113:6961-6. [PMID: 27185908 PMCID: PMC4922192 DOI: 10.1073/pnas.1600304113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - XiaoLi Bing
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Xin Zhao
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Michelle O'Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - Yi-Neng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520
| | - James D Bangs
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, NY 14214
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520;
| |
Collapse
|
5
|
Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 135:157-92. [PMID: 23615879 DOI: 10.1007/10_2013_191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
: The most important parasitic diseases, malaria, leishmaniasis, trypanosomiasis, and schistosomiasis, are a great burden to mankind, threatening the life of millions of people worldwide and mostly affecting the poorest. Because drug resistance is increasing and vaccines are rarely available, novel chemotherapeutic compounds are necessary in order to treat these devastating diseases. Insects serve as vectors of many human parasitic diseases and have been shown to express a huge variety of antimicrobial peptides (AMPs). Therefore, research activity on insect-derived AMPs has been increasing in the last 40 years. This chapter summarizes the current state of research on the possible role of AMPs as potential chemotherapeutic compounds against human parasitic diseases. As a representative antimicrobial peptide with antiparasitic activity, the structure of insect defensin A is shown [PDB accession code: 1ICA]. The molecule is surrounded by schematic representations of the human pathogenic parasites Plasmodium, Leishmania and Trypanosoma.
Collapse
Affiliation(s)
- Jette Pretzel
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | | | | | | |
Collapse
|
6
|
Auty HK, Picozzi K, Malele I, Torr SJ, Cleaveland S, Welburn S. Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. PLoS Negl Trop Dis 2012; 6:e1501. [PMID: 22303496 PMCID: PMC3269424 DOI: 10.1371/journal.pntd.0001501] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Background Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data. Human African trypanosomiasis is a fatal disease that is carried by a tsetse vector. Assessing the proportion of tsetse which carries human-infective trypanosomes is important in assessing human disease risk and understanding disease transmission dynamics. However, identifying flies which carry transmissible infections is difficult, due to potential presence of other trypanosome species in the same fly, and concurrent detection of immature infections which are not transmissible. We used three methods to estimate the proportion of flies carrying human-infective trypanosomes: dissection and microscopic examination of flies to visualise trypanosomes directly in the fly; PCR of fly midguts in which trypanosomes were observed by microscopy; and theoretical analysis using a mathematical model of disease transmission. All three methods found the prevalence to be extremely low. Given the low prevalence, dissection/microscopy requires prohibitively large sample sizes and therefore PCR-based approaches are likely to be of most value. However, interpretation of PCR data is not straightforward; whilst PCR identifies flies carrying pathogen genetic material it does not directly identify flies with transmissible infections. This study highlights the need for a consensus approach on the analysis and interpretation of PCR data to generate reliable and comparable measures of the proportion of flies which carry transmissible human-infective trypanosomes.
Collapse
Affiliation(s)
- Harriet K. Auty
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kim Picozzi
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Imna Malele
- Tsetse and Trypanosomiasis Research Institute, Tanga, Tanzania
| | - Steve J. Torr
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Sarah Cleaveland
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sue Welburn
- Division of Pathway Medicine and Centre for Infectious Diseases, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Walshe DP, Lehane MJ, Haines LR. Post eclosion age predicts the prevalence of midgut trypanosome infections in Glossina. PLoS One 2011; 6:e26984. [PMID: 22087240 PMCID: PMC3210762 DOI: 10.1371/journal.pone.0026984] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium) of the fly when it takes the first (infective) bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis) infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon) brucei brucei and Trypanosoma (Nannomonas) congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e.) are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes) does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed.
Collapse
Affiliation(s)
- Deirdre P. Walshe
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J. Lehane
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee R. Haines
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Abstract
The diseases caused by trypanosomes are medically and economically devastating to the population of Sub-Saharan Africa. Parasites of the genus Trypanosoma infect both humans, causing African sleeping sickness, and livestock, causing Nagana. The development of effective treatment strategies has suffered from severe side effects of approved drugs, resistance and major difficulties in delivering drugs. Antimicrobial peptides (AMPs) are ubiquitous components of immune defence and are being rigorously pursued as novel sources of new therapeutics for a variety of pathogens. Here, we review the role of AMPs in the innate immune response of the tsetse fly to African trypanosomes, catalogue trypanocidal AMPs from diverse organisms and highlight the susceptibility of bloodstream form African trypanosomes to killing by unconventional toxic peptides.
Collapse
Affiliation(s)
- J M Harrington
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. )
| |
Collapse
|
9
|
Van Den Abbeele J, Caljon G, De Ridder K, De Baetselier P, Coosemans M. Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. PLoS Pathog 2010; 6:e1000926. [PMID: 20532213 PMCID: PMC2880569 DOI: 10.1371/journal.ppat.1000926] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/26/2010] [Indexed: 12/23/2022] Open
Abstract
Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions. Human African Trypanosomiasis, or sleeping sickness, is a devastating parasitic disease that is fatal if left untreated. Infections are acquired via the bite of an obligate blood feeding fly, the tsetse fly, that is exclusively present on the African continent. In this insect vector, the trypanosome parasite has a complex development ending in the salivary glands. In this experimental study we demonstrate that the Trypanosoma brucei parasites change the composition of the tsetse fly saliva making it less efficient to keep the blood fluid at the biting site in the mammalian host. This results in a more difficult blood feeding process and favors the fly biting activity on multiple hosts, thereby promoting the survival and circulation of the parasite within the natural host population. These findings give us a better understanding of how trypanosome infections in the human population can be maintained given the fact that only very few tsetse flies are actually carrying the parasite.
Collapse
Affiliation(s)
- Jan Van Den Abbeele
- Department of Animal Health, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog 2010; 6:e1000793. [PMID: 20221444 PMCID: PMC2832768 DOI: 10.1371/journal.ppat.1000793] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/26/2010] [Indexed: 11/22/2022] Open
Abstract
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. In Africa, tsetse flies transmit the trypanosomes causing the devastating diseases sleeping sickness in man and nagana in domesticated animals. These diseases are major causes of underdevelopment in Africa. Paradoxically, most, but not all, flies are resistant to infection with trypanosomes, but we do not have a clear picture of how flies fight off trypanosomes. Here we show that a particular, tsetse-specific immune responsive protein called tsetse EP acts as a powerful antagonist of trypanosome establishment in the fly midgut. It is known that starvation of flies leads to an increase in their susceptibility to trypanosomes and this may be a considerable factor in the epidemiology of the disease in Africa. Here we demonstrate that starvation leads to a decrease in tsetse EP levels, which may explain how starvation of the fly works to increase its susceptibility.
Collapse
|
11
|
Aksoy S, Gibson WC, Lehane MJ. Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. ADVANCES IN PARASITOLOGY 2003; 53:1-83. [PMID: 14587696 DOI: 10.1016/s0065-308x(03)53002-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors of several species of pathogenic trypanosomes in tropical Africa. Human African trypanosomiasis (HAT) is a zoonosis caused by Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West and Central Africa. About 100000 new cases are reported per year, with many more probably remaining undetected. Sixty million people living in 36 countries are at risk of infection. Recently, T. b. gambiense trypanosomiasis has emerged as a major public health problem in Central Africa, especially in the Democratic Republic of Congo, Angola and southern Sudan where civil war has hampered control efforts. African trypanosomes also cause nagana in livestock. T. vivax and T. congolense are major pathogens of cattle and other ruminants, while T. simiae causes high mortality in domestic pigs; T. brucei affects all livestock, with particularly severe effects in equines and dogs. Central to the control of these diseases is control of the tsetse vector, which should be very effective since trypanosomes rely on this single insect for transmission. However, the area infested by tsetse has increased in the past century. Recent advances in molecular technologies and their application to insects have revolutionized the field of vector biology, and there is hope that such new approaches may form the basis for future tsetse control strategies. This article reviews the known biology of trypanosome development in the fly in the context of the physiology of the digestive system and interactions of the immune defences and symbiotic flora.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
12
|
Aksoy S, Hao Z, Strickler PM. What can we hope to gain for trypanosomiasis control from molecular studies on tsetse biology ? KINETOPLASTID BIOLOGY AND DISEASE 2002; 1:4. [PMID: 12234385 PMCID: PMC119325 DOI: 10.1186/1475-9292-1-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 06/06/2002] [Indexed: 12/02/2022]
Abstract
At times of crisis when epidemics rage and begin to take their toll on affected populations, as we have been witnessing with African trypanosomiasis in subSahara, the dichotomy of basic versus applied research deepens. While undoubtedly the treatment of thousands of infected people is the top priority, without continued research and development on the biology of disease agents and on ecological and evolutionary forces impacting these epidemics, little progress can be gained in the long run for the eventual control of these diseases. Here, we argue the need for additional research in one under-investigated area, that is the biology of the tsetse vector. Lacking are studies aimed to understand the genetic and cellular basis of tsetse interactions with trypanosomes as well as the genetic and biochemical basis of its ability to transmit these parasites. We discuss how this knowledge has the potential to contribute to the development of new vector control strategies as well as to improve the efficacy and affordability of the existing control approaches.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | - Zhengrong Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | - Patricia M Strickler
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Yan J, Cheng Q, Li CB, Aksoy S. Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. INSECT MOLECULAR BIOLOGY 2002; 11:57-65. [PMID: 11841503 DOI: 10.1046/j.0962-1075.2001.00308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Insect gut enzymes are involved in digestion of dietary proteins. Additionally, these enzymes have been implicated in the process of pathogen establishment in several insects including the tsetse fly (Diptera:Glossinidae), which is the vector for African trypanosomes. Both the male and female tsetse can transmit trypanosomes and are strict blood feeders during all stages of their development. Here, we describe the molecular characterization of three gut genes: cathepsin B (GmCatB), zinc-metalloprotease (GmZmp) and zinc-carboxypeptidase (GmZcp). The cDNA for GmCatB encodes a protein for 340 amino acids with a predicted molecular mass of 38.2 kDa, while the 854 bp GmZmp cDNA encodes a protein of 254 amino acids with a molecular mass of 29 kDa. The GmZcp cDNA is 1319 bp in length and has a 354 amino acids open reading frame for coding a 40 kDa protein. All three cDNAs have signal peptide sequences associated with their N-terminal domains and structure analysis indicates that GmCatB and GmZmp are expressed as zymogens with pro-domains proteolytically removed for activity. The activation domain associated with the carboxypeptidase sequences is lacking in GmZcp. While GmCatB transcription is constitutive, teneral flies express very low levels of transcripts for GmZmp and GmZcp prior to the first bloodmeal. Transcription of all genes is induced and remains high throughout the digestion cycle within a few hours following the first bloodmeal ingestion. Both GmCatB and GmZcp are parasite responsive, with the expression of both genes being higher in trypanosome infected flies.
Collapse
Affiliation(s)
- J Yan
- Institute of Genetics, Fudan University, Shanghai, PR China
| | | | | | | |
Collapse
|
14
|
Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci U S A 2001; 98:12648-53. [PMID: 11592981 PMCID: PMC60108 DOI: 10.1073/pnas.221363798] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies are the medically and agriculturally important vectors of African trypanosomes. Information on the molecular and biochemical nature of the tsetse/trypanosome interaction is lacking. Here we describe three antimicrobial peptide genes, attacin, defensin, and diptericin, from tsetse fat body tissue obtained by subtractive cloning after immune stimulation with Escherichia coli and trypanosomes. Differential regulation of these genes shows the tsetse immune system can discriminate not only between molecular signals specific for bacteria and trypanosome infections but also between different life stages of trypanosomes. The presence of trypanosomes either in the hemolymph or in the gut early in the infection process does not induce transcription of attacin and defensin significantly. After parasite establishment in the gut, however, both antimicrobial genes are expressed at high levels in the fat body, apparently not affecting the viability of parasites in the midgut. Unlike other insect immune systems, the antimicrobial peptide gene diptericin is constitutively expressed in both fat body and gut tissue of normal and immune stimulated flies, possibly reflecting tsetse immune responses to the multiple Gram-negative symbionts it naturally harbors. When flies were immune stimulated with bacteria before receiving a trypanosome containing bloodmeal, their ability to establish infections was severely blocked, indicating that up-regulation of some immune responsive genes early in infection can act to block parasite transmission. The results are discussed in relation to transgenic approaches proposed for modulating vector competence in tsetse.
Collapse
Affiliation(s)
- Z Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|