1
|
Corbo MD, Vitale E, Pesolo M, Casavecchia G, Gravina M, Pellegrino P, Brunetti ND, Iacoviello M. Recent Non-Invasive Parameters to Identify Subjects at High Risk of Sudden Cardiac Death. J Clin Med 2022; 11:jcm11061519. [PMID: 35329848 PMCID: PMC8955301 DOI: 10.3390/jcm11061519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases remain among the leading causes of death worldwide and sudden cardiac death (SCD) accounts for ~25% of these deaths. Despite its epidemiologic relevance, there are very few diagnostic strategies available useful to prevent SCD mainly focused on patients already affected by specific cardiovascular diseases. Unfortunately, most of these parameters exhibit poor positive predictive accuracy. Moreover, there is also a need to identify parameters to stratify the risk of SCD among otherwise healthy subjects. This review aims to provide an update on the most relevant non-invasive diagnostic features to identify patients at higher risk of developing malignant ventricular arrhythmias and SCD.
Collapse
Affiliation(s)
- Maria Delia Corbo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Enrica Vitale
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Maurizio Pesolo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Grazia Casavecchia
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Matteo Gravina
- University Radiology Unit, University Polyclinic Hospital of Foggia, 71100 Foggia, Italy;
| | - Pierluigi Pellegrino
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Natale Daniele Brunetti
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
- Correspondence: or
| |
Collapse
|
2
|
Parker LE, Landstrom AP. The clinical utility of pediatric cardiomyopathy genetic testing: From diagnosis to a precision medicine-based approach to care. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62. [PMID: 34776723 DOI: 10.1016/j.ppedcard.2021.101413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. Aim of Review In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. Key Scientific Concepts of Review Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Kim KH, Pereira NL. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ J 2021; 51:797-836. [PMID: 34327881 PMCID: PMC8484993 DOI: 10.4070/kcj.2021.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic cardiomyopathies are an important cause of sudden cardiac death across all age groups. Genetic testing in heart failure clinics is useful for family screening and providing individual prognostic insight. Obtaining a family history of at least three generations, including the creation of a pedigree, is recommended for all patients with primary cardiomyopathy. Additionally, when appropriate, consultation with a genetic counsellor can aid in the success of a genetic evaluation. Clinical screening should be performed on all first-degree relatives of patients with genetic cardiomyopathy. Genetics has played an important role in the understanding of different cardiomyopathies, and the field of heart failure (HF) genetics is progressing rapidly. Much research has also focused on distinguishing markers of risk in patients with cardiomyopathy using genetic testing. While these efforts currently remain incomplete, new genomic technologies and analytical strategies provide promising opportunities to further explore the genetic architecture of cardiomyopathies, afford insight into the early manifestations of cardiomyopathy, and help define the molecular pathophysiological basis for cardiac remodeling. Cardiovascular physicians should be fully aware of the utility and potential pitfalls of incorporating genetic test results into pre-emptive treatment strategies for patients in the preliminary stages of HF. Future work will need to be directed towards elucidating the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype-phenotype relationship. This future research should aim to further our ability to identify, diagnose, and treat disorders that cause HF and sudden cardiac death in young patients, as well as prioritize improving our ability to stratify the risk for these patients prior to the onset of the more severe consequences of their disease.
Collapse
Affiliation(s)
- Kyung Hee Kim
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea.
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Marsiglia JDC, Pereira AC. Hypertrophic cardiomyopathy: how do mutations lead to disease? Arq Bras Cardiol 2014; 102:295-304. [PMID: 24714796 PMCID: PMC3987320 DOI: 10.5935/abc.20140022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic genetic cardiac
disease, with an estimated prevalence of 1:500 in the general population. Clinically,
HCM is characterized by hypertrophy of the left ventricle (LV) walls, especially the
septum, usually asymmetric, in the absence of any cardiac or systemic disease that
leads to a secondary hypertrophy. The clinical course of the disease has a large
inter- and intrafamilial heterogeneity, ranging from mild symptoms of heart failure
late in life to the onset of sudden cardiac death at a young age and is caused by a
mutation in one of the genes that encode a protein from the sarcomere, Z-disc or
intracellular calcium modulators. Although many genes and mutations are already known
to cause HCM, the molecular pathways that lead to the phenotype are still unclear.
This review focus on the molecular mechanisms of HCM, the pathways from mutation to
clinical phenotype and how the disease's genotype correlates with phenotype.
Collapse
Affiliation(s)
- Júlia Daher Carneiro Marsiglia
- Mailing Address: Júlia Daher Carneiro Marsiglia, Av. Dr. Enéas de
Carvalho Aguiar, 44, Cerqueira César. Postal Code 05403- 900, São Paulo, SP - Brazil.
E-mail: ;
| | | |
Collapse
|
5
|
Blankenburg R, Hackert K, Wurster S, Deenen R, Seidman JG, Seidman CE, Lohse MJ, Schmitt JP. β-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations. Circ Res 2014; 115:227-37. [PMID: 24829265 DOI: 10.1161/circresaha.115.303178] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in β-cardiac myosin heavy chain (β-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. OBJECTIVE To characterize disease caused by β-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. METHODS AND RESULTS Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. CONCLUSIONS The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations.
Collapse
Affiliation(s)
- Robert Blankenburg
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - Katarzyna Hackert
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - Sebastian Wurster
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - René Deenen
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - J G Seidman
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - Christine E Seidman
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - Martin J Lohse
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.)
| | - Joachim P Schmitt
- From the Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (R.B., S.W., M.J.L., J.P.S.); Institute of Pharmacology and Clinical Pharmacology, University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University, Düsseldorf, Germany (K.H., J.P.S.); Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.E.S.); Department of Genetics, Harvard Medical School, Boston, MA (J.G.S.); and Bio-Medical Research Center (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany (R.D.).
| |
Collapse
|
6
|
Lee MS, Macrae CA. Revisiting risk stratification in hypertrophic cardiomyopathy: do we need to start from scratch? Heart Rhythm 2011; 9:64-5. [PMID: 22019864 DOI: 10.1016/j.hrthm.2011.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Indexed: 12/28/2022]
|
7
|
Christiaans I, Nannenberg EA, Dooijes D, Jongbloed RJE, Michels M, Postema PG, Majoor-Krakauer D, van den Wijngaard A, Mannens MMAM, van Tintelen JP, van Langen IM, Wilde AAM. Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands. Neth Heart J 2011; 18:248-54. [PMID: 20505798 DOI: 10.1007/bf03091771] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.).
Collapse
Affiliation(s)
- I Christiaans
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, the Netherlands These authors contributed equally
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tanjore R, Rangaraju A, Vadapalli S, Remersu S, Narsimhan C, Nallari P. Genetic variations of β-MYH7 in hypertrophic cardiomyopathy and dilated cardiomyopathy. INDIAN JOURNAL OF HUMAN GENETICS 2011; 16:67-71. [PMID: 21031054 PMCID: PMC2955954 DOI: 10.4103/0971-6866.69348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CONTEXT: Hypertrophic cardiomyopathy (HCM) is known to be manifested by mutations in 12 sarcomeric genes and dilated cardiomyopathy (DCM) is known to manifest due to cytoskeletal mutations. Studies have revealed that sarcomeric mutations can also lead to DCM. Therefore, in the present study, we have made an attempt to compare and analyze the genetic variations of beta-myosin heavy chain gene (β-MYH7), which are interestingly found to be common in both HCM and DCM. The underlying pathophysiological mechanism leading to two different phenotypes has been discussed in this study. Till date, about 186 and 73 different mutations have been reported in HCM and DCM, respectively, with respect to this gene. AIM: The screening of β-MYH7 gene in both HCM and DCM has revealed some common genetic variations. The aim of the present study is to understand the pathophysiological mechanism underlying the manifestation of two different phenotypes. MATERIALS AND METHODS: 100 controls, 95 HCM and 97 DCM samples were collected. Genomic DNA was extracted following rapid nonenzymatic method as described by Lahiri and Nurnberger (1991), and the extracted DNA was later subjected to polymerase chain reaction (PCR) based single stranded conformation polymorphism (SSCP) analysis to identify single nucleotide polymorphism (SNP)s/mutations associated with the diseased phenotypes. RESULTS AND CONCLUSION: Similar variations were observed in β-MYH7 exons 7, 12, 19 and 20 in both HCM and DCM. This could be attributed to impaired energy compromise, or to dose effect of the mutant protein, or to even environmental factors/modifier gene effects wherein an HCM could progress to a DCM phenotype affecting both right and left ventricles, leading to heart failure.
Collapse
Affiliation(s)
- Reena Tanjore
- Department of Genetics, Osmania University, Jamai Osmania P.O., Hyderabad-500 007, India
| | | | | | | | | | | |
Collapse
|
9
|
Landstrom AP, Ackerman MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation 2010; 122:2441-9; discussion 2450. [PMID: 21135372 PMCID: PMC6309993 DOI: 10.1161/circulationaha.110.954446] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), or clinically unexplained hypertrophy of the heart, is a common genetic cardiovascular disorder marked by genetic and phenotypic heterogeneity. As the genetic mutations underlying the pathogenesis of this disease have been identified, investigators have attempted to link mutations to clearly defined alterations in survival in hopes of identifying prognostically relevant biomarkers of disease. While initial studies labeling particular MYH7 -encoded beta myosin heavy chain and TNNT2 -encoded cardiac troponin T mutations as “malignant” or “benign” raised hopes for mutation-specific risk stratification in HCM, a series of subsequent investigations identified mutations in families with contradictory disease phenotypes. Furthermore, subsequent proband-based cohort studies indicated that the clinical prognostic relevance of individual mutations labeled as “malignant” or “benign” in large referral centers is negligible. Herein, we seek to summarize the controversy and dispute the notion that mutation-specific risk stratification in HCM is possible at the present time. We provide evidence for clinicians and basic scientists alike to move beyond simple mutation descriptors to a more nuanced understanding of HCM mutations that fully captures the multi-factorial nature of HCM disease expression.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Medicine, Division of Cardiovascular Diseases, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
10
|
Callis TE, Jensen BC, Weck KE, Willis MS. Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all. Expert Rev Mol Diagn 2010; 10:329-51. [PMID: 20370590 PMCID: PMC5022563 DOI: 10.1586/erm.10.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiomyopathies are an important and heterogeneous group of common cardiac diseases. An increasing number of cardiomyopathies are now recognized to have familial forms, which result from single-gene mutations that render a Mendelian inheritance pattern, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Recently, clinical genetic tests for familial cardiomyopathies have become available for clinicians evaluating and treating patients with these diseases, making it necessary to understand the current progress and challenges in cardiomyopathy genetics and diagnostics. In this review, we summarize the genetic basis of selected cardiomyopathies, describe the clinical utility of genetic testing for cardiomyopathies and outline the current challenges and emerging developments.
Collapse
Affiliation(s)
- Thomas E Callis
- PGxHealth Division, Clinical Data, Inc., 5 Science Park, New Haven, CT 06511, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599-7126, USA and Department of Internal Medicine, Section of Cardiology, University of North Carolina, Chapel Hill, NC 27599-7075, USA
| | - Karen E Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA and McAllister Heart Institute, University of North Carolina at Chapel Hill, 2340B Medical Biomolecular Research Building, 103 Mason Farm Road, Chapel Hill, NC 27599-7525, USA Tel.: +1 919 843 1938 Fax: +1 919 843 4585
| |
Collapse
|
11
|
Christiaans I, van Engelen K, van Langen IM, Birnie E, Bonsel GJ, Elliott PM, Wilde AAM. Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 2010; 12:313-21. [PMID: 20118111 DOI: 10.1093/europace/eup431] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We performed a systematic literature review of recommended 'major' and 'possible' clinical risk markers for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). We searched the Medline, Embase and Cochrane databases for articles published between 1971 and 2007. We included English language reports on HCM patients containing follow-up data on the endpoint (sudden) cardiac death using survival analysis. Analysis was undertaken using the quality of reporting of meta-analyses (QUORUM) statement checklist. The quality was checked using a quality assessment form from the Cochrane Collaboration. Thirty studies met inclusion criteria and passed quality assessment. The use of the six major risk factors (previous cardiac arrest or sustained ventricular tachycardia, non-sustained ventricular tachycardia, extreme left ventricular hypertrophy, unexplained syncope, abnormal blood pressure response, and family history of sudden death) in risk stratification for SCD as recommended by international guidelines was supported by the literature. In addition, left ventricular outflow tract obstruction seems associated with a higher risk of SCD. Our systematic review provides sound evidence for the use of the six major risk factors for SCD in the risk stratification of HCM patients. Left ventricular outflow tract obstruction could be included in the overall risk profile of patients with a marked left ventricular outflow gradient under basal conditions.
Collapse
Affiliation(s)
- Imke Christiaans
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Andersen PS, Havndrup O, Hougs L, Sørensen KM, Jensen M, Larsen LA, Hedley P, Thomsen ARB, Moolman-Smook J, Christiansen M, Bundgaard H. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat 2009; 30:363-70. [PMID: 19035361 DOI: 10.1002/humu.20862] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The American Heart Association (AHA) recommends family screening for hypertrophic cardiomyopathy (HCM). We assessed the outcome of family screening combining clinical evaluation and screening for sarcomere gene mutations in a cohort of 90 Danish HCM patients and their close relatives, in all 451 persons. Index patients were screened for mutations in all coding regions of 10 sarcomere genes (MYH7, MYL3, MYBPC3, TNNI3, TNNT2, TPM1, ACTC, CSRP3, TCAP, and TNNC1) and five exons of TTN. Relatives were screened for presence of minor or major diagnostic criteria for HCM and tracking of DNA variants was performed. In total, 297 adult relatives (>18 years) (51.2%) fulfilled one or more criteria for HCM. A total of 38 HCM-causing mutations were detected in 32 index patients. Six patients carried two disease-associated mutations. Twenty-two mutations have only been identified in the present cohort. The genetic diagnostic yield was almost twice as high in familial HCM (53%) vs. HCM of sporadic or unclear inheritance (19%). The yield was highest in families with an additional history of HCM-related clinical events. In relatives, 29.9% of mutation carriers did not fulfil any clinical diagnostic criterion, and in 37.5% of relatives without a mutation, one or more criteria was fulfilled. A total of 60% of family members had no mutation and could be reassured and further follow-up ceased. Genetic diagnosis may be established in approximately 40% of families with the highest yield in familial HCM with clinical events. Mutation-screening was superior to clinical investigation in identification of individuals not at increased risk, where follow-up is redundant, but should be offered in all families with relatives at risk for developing HCM.
Collapse
Affiliation(s)
- Paal Skytt Andersen
- Department of Clinical Biochemistry, Statens Serum Institute, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rodríguez JE, McCudden CR, Willis MS. Familial hypertrophic cardiomyopathy: basic concepts and future molecular diagnostics. Clin Biochem 2009; 42:755-65. [PMID: 19318019 DOI: 10.1016/j.clinbiochem.2009.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/24/2009] [Accepted: 01/28/2009] [Indexed: 11/26/2022]
Abstract
Familial hypertrophic cardiomyopathies (FHC) are the most common genetic heart diseases in the United States, affecting nearly 1 in 500 people. Manifesting as increased cardiac wall thickness, this autosomal dominant disease goes mainly unnoticed as most affected individuals are asymptomatic. Up to 1-2% of children and adolescents and 0.5-1% adults with FHC die of sudden cardiac death, making it critical to quickly and accurately diagnose FHC to institute therapy and potentially reduce mortality. However, due to the heterogeneity of the genetic defects in mainly sarcomere proteins, this is a daunting task even with current diagnostic methods. Exciting new methods utilizing high-throughput microarray technology to identify FHC mutations by a method known as array-based resequencing has recently been described. Additionally, next generation sequencing methodologies may aid in improving FHC diagnosis. In this review, we discuss FHC pathophysiology, the rationale for testing, and discuss the limitations and advantages of current and future diagnostics.
Collapse
Affiliation(s)
- Jessica E Rodríguez
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
14
|
Genotype phenotype correlations of cardiac beta-myosin heavy chain mutations in Indian patients with hypertrophic and dilated cardiomyopathy. Mol Cell Biochem 2008; 321:189-96. [PMID: 18953637 DOI: 10.1007/s11010-008-9932-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130 consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14 mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in the sudden cardiac death (SCD) of the proband at the age of 21 years. Further, a DCM causing novel mutation p.Gly377Ser was identified which resulted in the milder phenotype. The present study shows that there is genetic and phenotypic heterogeneity of cardiomyopathies in Indian population. Further, the location and type of mutation in a given sarcomeric gene determines the severity and phenotypic plasticity in cardiomyopathies.
Collapse
|
15
|
Mogensen J. Troponin mutations in cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:201-26. [PMID: 17278367 DOI: 10.1007/978-4-431-38453-3_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jens Mogensen
- Department of Cardiology, Skejby University Hospital Aarhus, Denmark
| |
Collapse
|
16
|
Hougs L, Havndrup O, Bundgaard H, Køber L, Vuust J, Larsen LA, Christiansen M, Andersen PS. One third of Danish hypertrophic cardiomyopathy patients have mutations in MYH7 rod region. Eur J Hum Genet 2004; 13:161-5. [PMID: 15483641 DOI: 10.1038/sj.ejhg.5201310] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is, in most cases, a disease of the sarcomere, caused by a mutation in one of 10 known sarcomere disease genes. More than 266 mutations have been identified since 1989. The FHC disease gene first characterized MYH7, encodes the cardiac beta-myosin heavy chain, and contains more than 115 of these mutations. However, in most studies, only the region encoding the globular head and the hinge region of the mature cardiac beta-myosin heavy chain have been investigated. Furthermore, most studies carries out screening for mutations in the most prevalent disease genes, and discontinues screening when an apparent disease-associated mutation has been identified. The aim of the present study was to screen for mutations in the rod region of the MYH7 gene in all probands of the cohort, regardless of the known genetic status of the proband. Three disease-causing mutations were identified in the rod region in four probands using capillary electrophoresis single-strand conformation polymorphism as a screening method. All mutations were novel: N1327K, R1712W, and E1753K. Two of the probands had already been shown to carry other FHC-associated mutations. In conclusion, we show that in the Danish cohort we find one third of all MYH7 mutations in the rod-encoding region and we find that two of the patients carrying these mutations also carry mutations in other FHC disease genes stressing the need for a complete screening of all known disease genes in FHC-patients.
Collapse
Affiliation(s)
- Lotte Hougs
- Department of Clinical Biochemistry, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Van Driest SL, Maron BJ, Ackerman MJ. From malignant mutations to malignant domains: the continuing search for prognostic significance in the mutant genes causing hypertrophic cardiomyopathy. BRITISH HEART JOURNAL 2004; 90:7-8. [PMID: 14676227 PMCID: PMC1768027 DOI: 10.1136/heart.90.1.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetic causes of hypertrophic cardiomyopathy are diverse and thus present challenges in the development of genetic tests to identify patients at risk
Collapse
|
18
|
García-Castro M, Reguero JR, Batalla A, Díaz-Molina B, González P, Alvarez V, Cortina A, Cubero GI, Coto E. Hypertrophic cardiomyopathy: low frequency of mutations in the beta-myosin heavy chain (MYH7) and cardiac troponin T (TNNT2) genes among Spanish patients. Clin Chem 2003; 49:1279-85. [PMID: 12881443 DOI: 10.1373/49.8.1279] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mutations in the cardiac beta-myosin heavy chain (MYH7) and cardiac troponin T (TNNT2) genes are reportedly responsible for up to 40% of familial cases with hypertrophic cardiomyopathy (HC). Although there are no mutational hotspots, most of the mutations are located in specific exons of the MYH7 and TNNT2 genes. Currently it is not possible to predict the phenotype in carriers of mutations in these genes, although it is widely accepted that mutations in the MYH7 gene predispose to severe HC, whereas TNNT2 mutations are frequently linked to sudden cardiac death (SCD) in spite of minimal hypertrophy. METHODS We sequenced exons 8, 9, 13-16, 19, 20, 22-24, and 30 of the MYH7 gene and exons 8, 9, 11, and 14-16 of the TNNT2 gene in 30 HC patients (18-60 years of age) from the region of Asturias (Northern Spain); 25 cases (80%) had a family history of the disease. Genomic DNA was amplified, and fragments were directly sequenced. Each DNA variant found in the patients was also analyzed in 200 healthy controls through single-strand conformation analysis. RESULTS Four of the probands had nucleotide changes absent in the healthy controls. Two cases had mutations previously described in the MYH7 gene (exon 14, Arg453Cys) or the TNNT2 gene (exon 16, Arg278Cys). Two cases had new mutations (MYH7 exon 22, Met822Val; TNNT2 exon 14, Lys247Arg) not found among the healthy controls. We found MYH7 Met822Val in a woman with a severe form of HC; the mutation was absent in her parents, indicating a de novo mutation. MYH7 R453C was present in a woman with mild HC, mother of a son who died from SCD. TNNT2 R278C was present in a woman with severe HC, but a sister and a daughter were mutation carriers and did not have hypertrophy. A patient with severe HC was carrier of TNNT2 247Arg. CONCLUSIONS Mutations in the MYH7 and TNNT2 genes can be found in patients without a family history of HC. However, compared with other populations MYH7 or TNNT2 mutations were rare among our HC patients. This study illustrates the extreme phenotypic heterogeneity in carriers of MYH7 or TNNT2 mutations.
Collapse
Affiliation(s)
- Mónica García-Castro
- Genética Molecular-Instituto de Investigación Nefrológica (IRSIN-FRIAT) and. Servicio de Cardiología, Hospital Central de Asturias, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Van Driest SL, Ackerman MJ, Ommen SR, Shakur R, Will ML, Nishimura RA, Tajik AJ, Gersh BJ. Prevalence and severity of "benign" mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation 2002; 106:3085-90. [PMID: 12473556 DOI: 10.1161/01.cir.0000042675.59901.14] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genotype-phenotype correlative studies have implicated 8 particular mutations that cause hypertrophic cardiomyopathy (HCM) as "benign defects," associated with near-normal survival: N232S, G256E, F513C, V606M, R719Q, and L908V of beta-myosin heavy chain (MYH7); S179F of troponin T (TNNT2); and D175N of alpha-tropomyosin (TPM1). Routine genetic screening of HCM patients for specific mutations is anticipated to provide important diagnostic and prognostic information. The frequency and associated phenotype of these mutations in a large, unselected cohort of HCM is unknown. METHODS AND RESULTS A total of 293 unrelated HCM patients were genotyped for the presence of a benign mutation. DNA was obtained after informed consent; specific MHY7, TNNT2, and TPM1 fragments were amplified by polymerase chain reaction; and the mutations were detected by denaturing high-performance liquid chromatography and automated DNA sequencing. Only 5 (1.7%) of the 293 patients possessed a benign mutation. Moreover, all 5 subjects with an ascribed benign mutation had already manifested clinically severe expression of HCM, with all 5 requiring surgical myectomy, 3 of the 5 having a family history of sudden cardiac death, and 1 adolescent requiring an orthotopic heart transplant. CONCLUSIONS These findings demonstrate the rarity of specific mutations in HCM and challenge the notion of mutation-specific clinical outcomes. Fewer than 2% of the subjects harbored a benign mutation, and those patients with a benign mutation experienced a very serious clinical course.
Collapse
Affiliation(s)
- Sara L Van Driest
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|