1
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
2
|
Deer RR, Stallone JN. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol 2016; 310:H1285-94. [PMID: 26993224 DOI: 10.1152/ajpheart.00645.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
In the present study, interactions of age and estrogen in the modulation of cerebrovascular function were examined in small arteries <150 μM. The hypothesis tested was that age enhances deleterious effects of exogenous estrogen by augmenting constrictor prostanoid (CP)-potentiated reactivity of the female (F) cerebrovasculature. F Sprague-Dawley rats approximating key stages of "hormonal aging" in humans were studied: perimenopausal (mature multi-gravid, MA, cyclic, 5-6 mo of age) and postmenopausal (reproductively senescent, RS, acyclic 10-12 mo of age). Rats underwent bilateral ovariectomy and were given estrogen replacement therapy (E) or placebo (O) for 14-21 days. Vasopressin reactivity (VP, 10(-12)-10(-7) M) was measured in pressurized middle cerebral artery segments, alone or in the presence of COX-1- (SC560, 1 μM) or COX-2- (NS398, 10 μM) selective inhibitors. VP-stimulated release of prostacyclin (PGI2) and thromboxane (TXA2) were assessed by radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites). VP-induced vasoconstriction was attenuated in ovariectomized + estrogen-replaced, multigravid adult rats (5-6 mo; MAE) but potentiated in older ovariectomized + estrogen-replaced, reproductively senescent rats (12-14 mo; RSE). SC560 and NS398 reduced reactivity similarly in ovariectomized multigravid adult rats (5-6 mo; MAO) and ovariectomized reproductively senescent rat (12-14 mo; RSO). In MAE, reactivity to VP was reduced to a greater extent by SC560 than by NS398; however, in RSE, this effect was reversed. VP-stimulated PGI2 was increased by estrogen, yet reduced by age. VP-stimulated TXA2 was increased by estrogen and age in RSE but did not differ in MAO and RSO. Taken together, these data reveal that the vascular effects of estrogen are distinctly age-dependent in F rats. In younger MA, beneficial and protective effects of estrogen are evident (decreased vasoconstriction, increased dilator prostanoid function). Conversely, in older RS, detrimental effects of estrogen begin to be manifested (enhanced vasoconstriction and CP function). These findings may lead to age-specific estrogen replacement therapies that maximize beneficial and minimize detrimental effects of this hormone on small cerebral arteries that regulate blood flow.
Collapse
Affiliation(s)
- Rachel R Deer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Deer RR, Stallone JN. Effects of age and sex on cerebrovascular function in the rat middle cerebral artery. Biol Sex Differ 2014; 5:12. [PMID: 25780555 PMCID: PMC4360140 DOI: 10.1186/s13293-014-0012-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Although the mechanisms underlying the beneficial effects of estrogen on cerebrovascular function are well known, the age-dependent deleterious effects of estrogen are largely unstudied. It was hypothesized that age and sex interact in modulating cerebrovascular reactivity to vasopressin (VP) by altering the role of prostanoids in vascular function. METHODS Female (F) Sprague-Dawley rats approximating key stages of "hormonal aging" in humans were studied: premenopausal (mature multigravid, MA, cyclic, 5-6 months) and postmenopausal (reproductively senescent, RS, acyclic, 10-12 months). Age-matched male (M) rats were also studied. Reactivity to VP (10(-12)-10(-7) M) was measured in pressurized middle cerebral artery segments in the absence or presence of selective inhibitors of COX-1 (SC560, SC, 1 μM) or COX-2 (NS398, NS, 10 μM). VP-stimulated release of PGI2 and TXA2 were measured using radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites, pg/mg dry wt/45 min). RESULTS In M, there were no changes in VP-induced vasoconstriction with age. Further, there were no significant differences in basal or in low- or high-VP-stimulated PGI2 or TXA2 production in younger or older M. In contrast, there were marked differences in cerebrovascular reactivity and prostanoid release with advancing age in F. Older RS F exhibited reduced maximal constrictor responses to VP, which can be attributed to enhanced COX-1 derived dilator prostanoids. VP-induced vasoconstriction in younger MA F utilized both COX-1 and COX-2 derived constrictor prostanoids. Further, VP-stimulated PGI2 and TXA2 production was enhanced by endogenous estrogen and decreased with advancing age in F, but not in M rats. CONCLUSIONS This is the first study to examine the effects of age and sex on the mechanisms underlying cerebrovascular reactivity to VP. Interestingly, VP-mediated constriction was reduced by age in F, but was unchanged in M rats. Additionally, it was observed that selective blockade of COX-1 or COX-2 produced age-dependent changes in cerebrovascular reactivity to VP and that VP-stimulated PGI2 and TXA2 production were enhanced by endogenous estrogen in younger F. A better understanding of the mechanisms by which estrogen exerts its effects may lead to new age- and sex-specific therapeutic agents for the prevention and/or treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Rachel R Deer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station 77843-4466, TX, USA ; Sealy Center on Aging, University of Texas Medical Branch, 301 University Boulevard, Galveston 77550-0177, TX, USA
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, Texas A & M University, College Station 77843-4466, TX, USA ; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station 77843-4466, TX, USA
| |
Collapse
|
4
|
Scientific rationale for postmenopause delay in the use of conjugated equine estrogens among postmenopausal women that causes reduction in breast cancer incidence and mortality. Menopause 2014; 20:372-82. [PMID: 23921472 DOI: 10.1097/gme.0b013e31828865a5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-dose synthetic estrogens were the first successful chemical therapy used in the treatment of metastatic breast cancer in postmenopausal women, and this approach became the standard of care in postmenopausal women with metastatic breast cancer between the 1950s and the end of the 1970s. The most recent analysis of the Women's Health Initiative estrogen-alone trial in hysterectomized women revealed a persistently significant decrease in the incidence of breast cancer and breast cancer mortality. Although estrogens are known to induce the proliferation of breast cancer cells, we have shown that physiologic concentrations induce apoptosis in breast cancer cells with long-term estrogen deprivation. We have developed laboratory models that illustrate the new biology of estrogen-induced apoptosis or growth to explain the effects of estrogen therapy. The key to the success of estrogen therapy lies in a sufficient period of withdrawal of physiologic estrogens (5-10 y) and the subsequent regrowth of nascent breast tumor cells that survive under estrogen-deprived conditions. These nascent tumors are now vulnerable to estrogen-induced apoptosis.
Collapse
|
5
|
Florian M, Florianova L, Hussain S, Magder S. Interaction of estrogen and tumor necrosis factor alpha in endothelial cell migration and early stage of angiogenesis. ACTA ACUST UNITED AC 2009; 15:265-75. [PMID: 19065318 DOI: 10.1080/10623320802487775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The role of estrogen replacement therapy in postmenopausal women remains controversial. The authors hypothesized that contradictory results with estrogen therapy may be explained by estrogen's potent proangiogenic property, which could be protective in women without atherosclerotic disease but in the presence of chronic inflammation, could lead to destabilization of atherosclerotic plaques. The authors thus examined the interaction between 17beta-estradiol (E2) and the inflammatory cytokine tumor necrosis factor alpha (TNFalpha) in an early stage of angiogenesis. Human umbilical endothelial cells were grown to confluence. Migration was assessed with a wound assay and proliferation was assessed with 5-bromo-2'-deoxyuridine (BrDU). Cells were treated with medium alone, TNFalpha at 0.3, 1, or 20 ng/ml, E2 at 20 nM, or the combination of E2 and TNFalpha. The authors used real-time polymerase chain reaction (PCR) to measure changes in expression of the angiogenesis genes angiopoeitin-2 (Ang-2), vacular endothelial growth factor (VEGF)-A and -C, and interleukin (IL)-8. A large dose of TNFalpha (20 ng/ml) inhibited healing at 24 to 48 h and the addition of E2 preserved some healing. E2 by itself doubled migration, with only a minimal effect on proliferation. A low dose of TNFalpha (0.3 ng/ml) had no effect on migration, 1.0 ng/ml moderately increased it, but the addition of E2 to both doses of TNFalpha increased migration. There was no change in migration when cells were pretreated with E2 and given TNFalpha after wounding, whereas pretreatment with TNFalpha followed by E2 significantly increased wound healing. The nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine-methyl ester (l-NAME) completely blocked the E2 effect on migration. TNFalpha (0.3 and 1.0 ng/ml) increased expression of VEGF-C (2.8 +/- 0.1- and 2.5 +/- 0.2-fold, respectively) and IL-8 (32.8 +/- 1.2- and 42.7 +/- 3.6-fold, respectively) mRNA, but E2 had no significant effect on these molecules. E2 increases the angiogenic activity of TNFalpha. This could potentially worsen the stability of complex atherosclerotic plaques and increase cardiovascular events.
Collapse
Affiliation(s)
- Maria Florian
- Division of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
6
|
Roth TM, Petty EM, Barald KF. The role of steroid hormones in the NF1 phenotype: focus on pregnancy. Am J Med Genet A 2008; 146A:1624-33. [PMID: 18481270 DOI: 10.1002/ajmg.a.32301] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Neurofibromatosis Type 1 (NF1) gene functions as a tumor suppressor gene. Loss of its protein, neurofibromin, in the autosomal dominant disorder NF1 is associated with peripheral nervous system tumors, particularly neurofibromas, benign lesions in which the major cell type is the Schwann Cell (SC). Benign and malignant human tumors found in NF1 patients are heterogeneous with respect to their cellular composition. The number and size of neurofibromas in NF1 patients has been shown to increase during pregnancy, with, in some cases, post-partum regression, which suggests hormonal involvement in this increase. However, in this review, we consider evidence from the literature that both direct hormonal influence on tumor growth and on angiogenesis may contribute to these effects.
Collapse
Affiliation(s)
- Therese M Roth
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | |
Collapse
|
7
|
Miller AP, Xing D, Feng W, Fintel M, Chen YF, Oparil S. Aged rats lose vasoprotective and anti-inflammatory actions of estrogen in injured arteries. Menopause 2007; 14:251-60. [PMID: 17194962 DOI: 10.1097/01.gme.0000235366.39726.f6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE 17beta-estradiol (E2) negatively modulates neointima formation, leukocyte infiltration, and proinflammatory mediator expression after vascular injury in young (10-wk-old) ovariectomized (OVX) rats. Trials of E2 in elderly postmenopausal women have not confirmed a vasoprotective effect. This study tested the hypothesis that responsiveness to E2 is lost in injured arteries of aged (12-mo-old) OVX rats. DESIGN E2- or vehicle-treated OVX rats underwent balloon injury of the carotid artery and were killed after 2 weeks for morphometric examination of arteries, after 24 hours for assessment of leukocyte infiltration, and after 2 hours for quantification of proinflammatory mediator mRNA expression. RESULTS Neointima formation was significantly reduced in aged compared with young vehicle-treated rats. E2 treatment had directionally opposite effects on intima/media ratios in aged (+75%) and young (-40%) rats. Injury induced increases in infiltrating total leukocytes, neutrophils, monocytes/macrophages, and expression of proinflammatory mediators in arteries of aged rats; E2 had no effect on these inflammatory responses to injury. Estrogen receptor alpha and beta protein expression were similar in carotid arteries of young and aged rats on immunofluorescence testing. CONCLUSIONS Aged OVX rats lose the vasoprotective and anti-inflammatory responses to exogenous E2 seen in younger animals. These results may be relevant to the lack of vasoprotection observed in outcome trials of estrogen therapy in postmenopausal women.
Collapse
Affiliation(s)
- Andrew P Miller
- Department of Medicine, University of Alabama at Birmingham 35294-0007, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Register TC, Cann JA, Kaplan JR, Williams JK, Adams MR, Morgan TM, Anthony MS, Blair RM, Wagner JD, Clarkson TB. Effects of soy isoflavones and conjugated equine estrogens on inflammatory markers in atherosclerotic, ovariectomized monkeys. J Clin Endocrinol Metab 2005; 90:1734-40. [PMID: 15585561 DOI: 10.1210/jc.2004-0939] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The effects of dietary soy isoflavones (IF) and conjugated equine estrogens (CEE) on circulating inflammatory markers were determined at the end of a 3-yr study of ovariectomized monkeys consuming a moderately atherogenic diet. Treatments were: 1) control, receiving alcohol-extracted soy-protein-based diet with low IF content (comparable to approximately 5 mg/d); 2) CEE, added to the control diet at a dose comparable to 0.625 mg/d; and 3) IF, consumed as a part of unextracted soy protein isolate at a dose comparable to 129 mg/d. Serum soluble vascular cell adhesion molecule-1 (sVCAM-1) was reduced by both IF (P < 0.006) and CEE (P < 0.0001) relative to controls. Serum monocyte chemoattractant protein (MCP)-1 was reduced by CEE (P < 0.0001) but not by IF (P = 1.00). Treatments did not affect serum IL-6 (P = 0.40), soluble E-selectin (P = 0.17), or C-reactive protein (P = 0.15). Serum MCP-1 and, to a lesser extent, IL-6 significantly correlated with atherosclerosis (plaque area) in the iliac and carotid arteries (all P < 0.05). Serum MCP-1 was also strongly associated with coronary artery atherosclerosis and with indices of plaque inflammation and matrix remodeling (matrix metalloproteinase-9) in the coronary artery intima (all P < 0.01). We conclude that, in this well-established nonhuman primate model of atherosclerosis, this dose of soy IF provided an antiinflammatory effect specific for sVCAM-1, whereas the effects of CEE extended to both sVCAM-1 and MCP1. It is possible that the atheroprotective effects of IF and CEE are mediated, at least in part, by effects on VCAM-1. The sites of IF inhibitory effects on sVCAM-1 production are not known, but likely candidates include the liver and/or the cardiovascular system.
Collapse
Affiliation(s)
- Thomas C Register
- Comparative Medicine Clinical Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, North Carolina 27157-1040, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Suwannaprapha P, Chaisri U, Riyong D, Maneerat Y. Improvement of Function and Morphology of Tumor Necrosis Factor-.ALPHA. Treated Endothelial Cells With 17-.BETA. Estradiol A Preliminary Study for a Feasible Simple Model for Atherosclerosis. Circ J 2005; 69:730-8. [PMID: 15914954 DOI: 10.1253/circj.69.730] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells (EC) to produce endothelial nitric oxide synthase (eNOS) by tumor necrosis factor-alpha (TNF-alpha) causes critical features of vascular inflammation associated with several disease states (eg, atherosclerosis including increased platelet aggregation and adhesion on EC, elevated adhesion molecules and enhanced inflammatory cells binding to EC). 17-beta estradiol (E2) can stimulate eNOS production and improve the critical features of atherosclerosis. Using TNF-alpha and E2, we attempted to develop an in vitro vascular model for studying atherosclerosis. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVEC) grown in transwells were cocultured with smooth muscle cells in a 24-well plate to mimic the major components of the vascular wall. The model was incubated with TNF-alpha (10 ng/ml) for 12 h, prior exposed to E2 (100 pg/ml) for 6-12 h, then investigated by transmission and scanning electron microscopes. The result indicated recovered morphology with good tight junction, and decreased platelet adhesion was noted in defective HUVEC after E2 treatment. CONCLUSION 17-beta estradiol was represented as an antiatherosclerogenic agent to demonstrate feasibility of the model. Although our finding focused only on the endothelium, this would be the basis for our future studies to develop ex vivo continuous perfusion of human vessel segments for a further atherosclerosis study.
Collapse
Affiliation(s)
- Parin Suwannaprapha
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Richard H Karas
- Department of Medicine, Division of Cardiology, Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA.
| |
Collapse
|