1
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Besci O, Foss de Freitas MC, Guidorizzi NR, Guler MC, Gilio D, Maung JN, Schill RL, Hoose KS, Obua BN, Gomes AD, Yıldırım Şimşir I, Demir K, Akinci B, MacDougald OA, Oral EA. Deciphering the Clinical Presentations in LMNA-related Lipodystrophy: Report of 115 Cases and a Systematic Review. J Clin Endocrinol Metab 2024; 109:e1204-e1224. [PMID: 37843397 PMCID: PMC10876415 DOI: 10.1210/clinem/dgad606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
CONTEXT Lipodystrophy syndromes are a heterogeneous group of rare genetic or acquired disorders characterized by generalized or partial loss of adipose tissue. LMNA-related lipodystrophy syndromes are classified based on the severity and distribution of adipose tissue loss. OBJECTIVE We aimed to annotate all clinical and metabolic features of patients with lipodystrophy syndromes carrying pathogenic LMNA variants and assess potential genotype-phenotype relationships. METHODS We retrospectively reviewed and analyzed all our cases (n = 115) and all published cases (n = 379) curated from 94 studies in the literature. RESULTS The study included 494 patients. The most common variants in our study, R482Q and R482W, were associated with similar metabolic characteristics and complications though those with the R482W variant were younger (aged 33 [24] years vs 44 [25] years; P < .001), had an earlier diabetes diagnosis (aged 27 [18] vs 40 [17] years; P < .001) and had lower body mass index levels (24 [5] vs 25 [4]; P = .037). Dyslipidemia was the earliest biochemical evidence described in 83% of all patients at a median age of 26 (10) years, while diabetes was reported in 61% of cases. Among 39 patients with an episode of acute pancreatitis, the median age at acute pancreatitis diagnosis was 20 (17) years. Patients who were reported to have diabetes had 3.2 times, while those with hypertriglyceridemia had 12.0 times, the odds of having pancreatitis compared to those who did not. CONCLUSION This study reports the largest number of patients with LMNA-related lipodystrophy syndromes to date. Our report helps to quantify the prevalence of the known and rare complications associated with different phenotypes and serves as a comprehensive catalog of all known cases.
Collapse
Affiliation(s)
- Ozge Besci
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Pediatric Endocrinology, Dokuz Eylul University, Izmir 35340, Turkey
| | | | | | - Merve Celik Guler
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Internal Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Donatella Gilio
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Clinical and Translational Sciences, University of Pisa, Pisa 56126, Italy
| | - Jessica N Maung
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Keegan S Hoose
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bonje N Obua
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anabela D Gomes
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilgın Yıldırım Şimşir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ege University, Izmir 35100, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Dokuz Eylul University, Izmir 35340, Turkey
| | - Baris Akinci
- DEPARK, Dokuz Eylul University & Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Elif A Oral
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Saadi A, Navarro C, Ozalp O, Lourenco CM, Fayek R, Da Silva N, Chaouch A, Benahmed M, Kubisch C, Munnich A, Lévy N, Roll P, Pacha LA, Chaouch M, Lessel D, De Sandre-Giovannoli A. A recurrent homozygous LMNA missense variant p.Thr528Met causes atypical progeroid syndrome characterized by mandibuloacral dysostosis, severe muscular dystrophy, and skeletal deformities. Am J Med Genet A 2023; 191:2274-2289. [PMID: 37387251 DOI: 10.1002/ajmg.a.63335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.
Collapse
Affiliation(s)
- Abdelkrim Saadi
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Claire Navarro
- INSERM, MMG, Aix Marseille University, Marseille, France
- Neoflow Therapeutics, 61 boulevard des Dames, 13002, Marseille, France
| | - Ozge Ozalp
- Genetic Diagnosis Center, Adana City Training and Research Hospital University of Health Sciences, Adana, Turkey
| | - Charles Marques Lourenco
- Neurogenetics Unit-Inborn Errors of Metabolism Clinics, National Reference Center for Rare Diseases, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Specialized Education, Personalized Medicine Area, DLE/Grupo Pardini, Rio de Janeiro, Brazil
| | - Racha Fayek
- INSERM, MMG, Aix Marseille University, Marseille, France
| | | | - Athmane Chaouch
- Service de neurophysiologie, Etablissement Hospitalier Specialisé, Algiers, Algeria
| | - Meryem Benahmed
- Service d'anatomo-pathologie, Centre Pierre Marie Curie, Algiers, Algeria
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnold Munnich
- Department of Clinical Genetics, Institut de Recherche Necker Enfants Malades, Paris, France
| | - Nicolas Lévy
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
| | - Patrice Roll
- INSERM, MMG, Aix Marseille University, Marseille, France
- Cell Biology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Lamia Ali Pacha
- Laboratoire de Neurosciences, Service de neurologie, Centre Hospitalo Universitaire Mustapha Bacha, Université Benyoucef Benkhedda Alger, Algiers, Algeria
| | - Malika Chaouch
- Service de neurologie, Etablissement Hospitalier Specialisé de Ben Aknoun, Université Benyoucef Benkhedda, Algiers, Algeria
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Annachiara De Sandre-Giovannoli
- INSERM, MMG, Aix Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Hospital, APHM, Marseille, France
- Biological Resource Center (CRB-TAC), La Timone Hospital, APHM, Marseille, France
| |
Collapse
|
4
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
5
|
Lightbourne M, Startzell M, Bruce KD, Brite B, Muniyappa R, Skarulis M, Shamburek R, Gharib AM, Ouwerkerk R, Walter M, Eckel RH, Brown RJ. Volanesorsen, an antisense oligonucleotide to apolipoprotein C-III, increases lipoprotein lipase activity and lowers triglycerides in partial lipodystrophy. J Clin Lipidol 2022; 16:850-862. [PMID: 36195542 PMCID: PMC9771980 DOI: 10.1016/j.jacl.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Partial lipodystrophy (PL) syndromes involve deficiency of adipose tissue, causing severe insulin resistance and hypertriglyceridemia. Apolipoprotein C-III (apoC-III) is elevated in PL and is thought to contribute to hypertriglyceridemia by inhibiting lipoprotein lipase (LPL). OBJECTIVE We hypothesized that volanesorsen, an antisense oligonucleotide to apoC-III, would decrease apoC-III, increase LPL activity, and lower triglycerides in PL. METHODS Five adults with PL enrolled in a 16-week placebo-controlled, randomized, double blind study of volanesorsen, 300 mg weekly, followed by 1-year open label extension. RESULTS Within-subject effects of volanesorsen before and after 16 weeks of active drug are reported due to small sample size. From week 0 to 16, apoC-III decreased from median (25th, 75th %ile) 380 (246, 600) to 75 (26, 232) ng/mL, and triglycerides decreased from 503 (330, 1040) to 116 (86, 355) mg/dL while activation of LPL by subjects' serum increased from 21 (20, 25) to 36 (29, 42) nEq/mL*min. Although, A1c did not change, peripheral and hepatic insulin sensitivity (glucose disposal and suppression of glucose production during hyperinsulinemic clamp) increased and palmitate turnover decreased. After 32-52 weeks of volanesorsen, liver fat decreased. Common adverse events included injection site reactions and decreased platelets. CONCLUSIONS In PL, volanesorsen decreased apoC-III and triglycerides, in part through an LPL dependent mechanism, and may improve insulin resistance and hepatic steatosis.
Collapse
Affiliation(s)
- Marissa Lightbourne
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brianna Brite
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ranganath Muniyappa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monica Skarulis
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Shamburek
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Vasandani C, Li X, Sekizkardes H, Brown RJ, Garg A. Phenotypic Differences Among Familial Partial Lipodystrophy Due to LMNA or PPARG Variants. J Endocr Soc 2022; 6:bvac155. [PMID: 36397776 PMCID: PMC9664976 DOI: 10.1210/jendso/bvac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Context Despite several reports of familial partial lipodystrophy (FPLD) type 2 (FPLD2) due to heterozygous LMNA variants and FPLD3 due to PPARG variants, the phenotypic differences among them remain unclear. Objective To compare the body fat distribution, metabolic parameters, and prevalence of metabolic complications between FPLD3 and FPLD2. Methods A retrospective, cross-sectional comparison of patients from 2 tertiary referral centers-UT Southwestern Medical Center and the National Institute of Diabetes and Digestive and Kidney Diseases. A total of 196 females and 59 males with FPLD2 (age 2-86 years) and 28 females and 4 males with FPLD3 (age 9-72 years) were included. The main outcome measures were skinfold thickness, regional body fat by dual-energy X-ray absorptiometry (DXA), metabolic variables, and prevalence of diabetes mellitus and hypertriglyceridemia. Results Compared with subjects with FPLD2, subjects with FPLD3 had significantly increased prevalence of hypertriglyceridemia (66% vs 84%) and diabetes (44% vs 72%); and had higher median fasting serum triglycerides (208 vs 255 mg/dL), and mean hemoglobin A1c (6.4% vs 7.5%). Compared with subjects with FPLD2, subjects with FPLD3 also had significantly higher mean upper limb fat (21% vs 27%) and lower limb fat (16% vs 21%) on DXA and increased median skinfold thickness at the anterior thigh (5.8 vs 11.3 mm), calf (4 vs 6 mm), triceps (5.5 vs 7.5 mm), and biceps (4.3 vs 6.8 mm). Conclusion Compared with subjects with FPLD2, subjects with FPLD3 have milder lipodystrophy but develop more severe metabolic complications, suggesting that the remaining adipose tissue in subjects with FPLD3 may be dysfunctional or those with mild metabolic disease are underrecognized.
Collapse
Affiliation(s)
- Chandna Vasandani
- Division of Nutrition and Metabolic Diseases and the Center for Human Nutrition, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hilal Sekizkardes
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases and the Center for Human Nutrition, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Eldin AJ, Akinci B, da Rocha AM, Meral R, Simsir IY, Adiyaman SC, Ozpelit E, Bhave N, Gen R, Yurekli B, Kutbay NO, Siklar Z, Neidert AH, Hench R, Tayeh MK, Innis JW, Jalife J, Oral H, Oral EA. Cardiac phenotype in familial partial lipodystrophy. Clin Endocrinol (Oxf) 2021; 94:1043-1053. [PMID: 33502018 PMCID: PMC9003538 DOI: 10.1111/cen.14426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES LMNA variants have been previously associated with cardiac abnormalities independent of lipodystrophy. We aimed to assess cardiac impact of familial partial lipodystrophy (FPLD) to understand the role of laminopathy in cardiac manifestations. STUDY DESIGN Retrospective cohort study. METHODS Clinical data from 122 patients (age range: 13-77, 101 females) with FPLD were analysed. Mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with an LMNA variant were studied as proof-of-concept for future studies. RESULTS Subjects with LMNA variants had a higher prevalence of overall cardiac events than others. The likelihood of having an arrhythmia was significantly higher in patients with LMNA variants (OR: 3.77, 95% CI: 1.45-9.83). These patients were at higher risk for atrial fibrillation or flutter (OR: 5.78, 95% CI: 1.04-32.16). The time to the first arrhythmia was significantly shorter in the LMNA group, with a higher HR of 3.52 (95% CI: 1.34-9.27). Non-codon 482 LMNA variants were more likely to be associated with cardiac events (vs. 482 LMNA: OR: 4.74, 95% CI: 1.41-15.98 for arrhythmia; OR: 17.67, 95% CI: 2.45-127.68 for atrial fibrillation or flutter; OR: 5.71, 95% CI: 1.37-23.76 for conduction disease). LMNA mutant hiPSC-CMs showed a higher frequency of spontaneous activity and shorter action potential duration. Functional syncytia of hiPSC-CMs displayed several rhythm alterations such as early afterdepolarizations, spontaneous quiescence and spontaneous tachyarrhythmia, and significantly slower recovery in chronotropic changes induced by isoproterenol exposure. CONCLUSIONS Our results highlight the need for vigilant cardiac monitoring in FPLD, especially in patients with LMNA variants who have an increased risk of developing cardiac arrhythmias. In addition, hiPSC-CMs can be studied to understand the basic mechanisms for the arrhythmias in patients with lipodystrophy to understand the impact of specific mutations.
Collapse
Affiliation(s)
- Abdelwahab Jalal Eldin
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Baris Akinci
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Andre Monteiro da Rocha
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rasimcan Meral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ilgin Yildirim Simsir
- Division of Endocrinology, Department of Internal Medicine, Ege University, Izmir, Turkey
| | - Suleyman Cem Adiyaman
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ebru Ozpelit
- Division of Cardiology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nicole Bhave
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ramazan Gen
- Division of Endocrinology, Department of Internal Medicine, Mersin University, Mersin, Turkey
| | - Banu Yurekli
- Division of Endocrinology, Department of Internal Medicine, Ege University, Izmir, Turkey
| | - Nilufer Ozdemir Kutbay
- Division of Endocrinology, Department of Internal Medicine, Celal Bayar University, Manisa, Turkey
| | - Zeynep Siklar
- Division of Endocrinology, Department of Pediatrics, Ankara University, Ankara, Turkey
| | - Adam H. Neidert
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Hench
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Marwan K. Tayeh
- Departments of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey W. Innis
- Departments of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jose Jalife
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Cardiac Arrhythmia Section, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Hakan Oral
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elif A. Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Cecchetti C, D’Apice MR, Morini E, Novelli G, Pizzi C, Pagotto U, Gambineri A. Case Report: An Atypical Form of Familial Partial Lipodystrophy Type 2 Due to Mutation in the Rod Domain of Lamin A/C. Front Endocrinol (Lausanne) 2021; 12:675096. [PMID: 33953703 PMCID: PMC8092436 DOI: 10.3389/fendo.2021.675096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Familial partial lipodystrophy type 2 (FPLD2) patients generally develop a wide variety of severe metabolic complications. However, they are not usually affected by primary cardiomyopathy and conduction system disturbances, although a few cases of FPLD2 and cardiomyopathy have been reported in the literature. These were all due to amino-terminal heterozygous lamin A/C mutations, which are considered as new forms of overlapping syndromes. Methods and Results Here we report the identification of a female patient with FPLD2 due to a heterozygous missense variant c.604G>A in the exon 3 of the LMNA gene, leading to amino acid substitution (p.Glu202Lys) in the central alpha-helical rod domain of lamin A/C with a high propensity to form coiled-coil dimers. The patient's cardiac evaluations that followed the genetic diagnosis revealed cardiac rhythm disturbances which were promptly treated pharmacologically. Conclusions This report supports the idea that there are "atypical forms" of FPLD2 with cardiomyopathy, especially when a pathogenic variant affects the lamin A/C head or alpha-helical rod domain. It also highlights how increased understanding of the genotype-phenotype correlation could help clinicians to schedule personalized monitoring of the lipodystrophic patient, in order to prevent uncommon but possible devastating manifestations, including arrhythmias and sudden death.
Collapse
Affiliation(s)
- Carolina Cecchetti
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Elena Morini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Carmine Pizzi
- Unit of Cardiology, Department of Specialistic, Diagnostic and Experimental Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Uberto Pagotto
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences (DIMEC), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Araújo-Vilar D, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Hermida-Ameijeiras Á, Rodríguez-Carnero G, Casanueva FF, Fernández-Pombo A. Variable Expressivity in Type 2 Familial Partial Lipodystrophy Related to R482 and N466 Variants in the LMNA Gene. J Clin Med 2021; 10:jcm10061259. [PMID: 33803652 PMCID: PMC8002937 DOI: 10.3390/jcm10061259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Patients with Dunnigan disease (FPLD2) with a pathogenic variant affecting exon 8 of the LMNA gene are considered to have the classic disease, whereas those with variants in other exons manifest the "atypical" disease. The aim of this study was to investigate the degree of variable expressivity when comparing patients carrying the R482 and N466 variants in exon 8. Thus, 47 subjects with FPLD2 were studied: one group of 15 patients carrying the N466 variant and the other group of 32 patients with the R482 variant. Clinical, metabolic, and body composition data were compared between both groups. The thigh skinfold thickness was significantly decreased in the R482 group in comparison with the N466 group (4.2 ± 1.8 and 5.6 ± 2.0 mm, respectively, p = 0.002), with no other differences in body composition. Patients with the N466 variant showed higher triglyceride levels (177.5 [56-1937] vs. 130.0 [55-505] mg/dL, p = 0.029) and acute pancreatitis was only present in these subjects (20%). Other classic metabolic abnormalities related with the disease were present regardless of the pathogenic variant. Thus, although FPLD2 patients with the R482 and N466 variants share most of the classic characteristics, some phenotypic and metabolic differences suggest possible heterogeneity even within exon 8 of the LMNA gene.
Collapse
Affiliation(s)
- David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
| | - Ana I. Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- Correspondence: ; Tel.: +34-981-951-611
| |
Collapse
|
10
|
Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, Mosbah H, Donadille B, Janmaat S, Fève B, Jéru I, Vigouroux C. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne) 2021; 12:803189. [PMID: 35046902 PMCID: PMC8763341 DOI: 10.3389/fendo.2021.803189] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.
Collapse
Affiliation(s)
- Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Emilie Capel
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Caroline Storey-London
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Elise Bismuth
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Héléna Mosbah
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Donadille
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sonja Janmaat
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Fève
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Isabelle Jéru
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
11
|
Magno S, Ceccarini G, Pelosini C, Ferrari F, Prodam F, Gilio D, Maffei M, Sessa MR, Barison A, Ciccarone A, Emdin M, Aimaretti G, Santini F. Atypical Progeroid Syndrome and Partial Lipodystrophy Due to LMNA Gene p.R349W Mutation. J Endocr Soc 2020; 4:bvaa108. [PMID: 32913962 PMCID: PMC7474543 DOI: 10.1210/jendso/bvaa108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Atypical progeroid syndrome (APS) comprises heterogeneous disorders characterized by variable degrees of fat loss, metabolic alterations, and comorbidities that affect skeleton, muscles, and/or the heart. We describe 3 patients that were referred to our center for the suspicion of lipodystrophy. They had precocious aging traits such as short stature, mandibular hypoplasia, beaked nose, and partial alopecia manifesting around 10 to 15 years of age recurrently associated with: (1) partial lipodystrophy; (2) proteinuric nephropathy; (3) heart disease (rhythm disorders, valvular abnormalities, and cardiomyopathy); and (4) sensorineural hearing impairment. In all patients, genetic testing revealed a missense heterozygous lamin A/C gene (LMNA) mutation c.1045 C > T (p.Arg349Trp). Ten patients with LMNA p.R349W mutation have been reported so far, all presenting with similar features, which represent the key pathological hallmarks of this subtype of APS. The associated kidney and cardiac complications occurring in the natural history of the disease may reduce life expectancy. Therefore, in these patients a careful and periodic cardiac and kidney function evaluation is required.
Collapse
Affiliation(s)
- Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Caterina Pelosini
- Laboratories of Clinical Chemistry and Endocrinology of the University Hospital of Cisanello, Italy
| | - Federica Ferrari
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Flavia Prodam
- Department of Medical Sciences "Amedeo Avogadro" University of Novara, University of Piemonte Orientale, Division of Pediatrics, Novara, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Margherita Maffei
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.,CNR Institute of Clinical Physiology, Pisa, Italy
| | - Maria Rita Sessa
- Laboratories of Clinical Chemistry and Endocrinology of the University Hospital of Cisanello, Italy
| | - Andrea Barison
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Michele Emdin
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Looking at New Unexpected Disease Targets in LMNA-Linked Lipodystrophies in the Light of Complex Cardiovascular Phenotypes: Implications for Clinical Practice. Cells 2020; 9:cells9030765. [PMID: 32245113 PMCID: PMC7140635 DOI: 10.3390/cells9030765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Variants in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and progeroid syndromes. Cardiovascular laminopathic involvement is classically described as cardiomyopathy in striated muscle laminopathies, and arterial wall dysfunction and/or valvulopathy in lipodystrophic and/or progeroid laminopathies. We report unexpected cardiovascular phenotypes in patients with LMNA-associated lipodystrophies, illustrating the complex multitissular pathophysiology of the disease and the need for specific cardiovascular investigations in affected patients. A 33-year-old woman was diagnosed with generalized lipodystrophy and atypical progeroid syndrome due to the newly identified heterozygous LMNA p.(Asp136Val) variant. Her complex cardiovascular phenotype was associated with atherosclerosis, aortic valvular disease and left ventricular hypertrophy with rhythm and conduction defects. A 29-year-old woman presented with a partial lipodystrophy syndrome and a severe coronary atherosclerosis which required a triple coronary artery bypass grafting. She carried the novel heterozygous p.(Arg60Pro) LMNA variant inherited from her mother, affected with partial lipodystrophy and dilated cardiomyopathy. Different lipodystrophy-associated LMNA pathogenic variants could target cardiac vasculature and/or muscle, leading to complex overlapping phenotypes. Unifying pathophysiological hypotheses should be explored in several cell models including adipocytes, cardiomyocytes and vascular cells. Patients with LMNA-associated lipodystrophy should be systematically investigated with 24-h ECG monitoring, echocardiography and non-invasive coronary function testing.
Collapse
|
13
|
Mosbah H, Vatier C, Boccara F, Jéru I, Vantyghem MC, Donadille B, Wahbi K, Vigouroux C. Cardiovascular complications of lipodystrophic syndromes - focus on laminopathies. ANNALES D'ENDOCRINOLOGIE 2020; 82:146-148. [PMID: 32201029 DOI: 10.1016/j.ando.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Helena Mosbah
- Centre national de Référence des Pathologies Rares de l'Insulino- Sécrétion et de l'Insulino -Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Camille Vatier
- Centre national de Référence des Pathologies Rares de l'Insulino- Sécrétion et de l'Insulino -Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Franck Boccara
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Jéru
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Laboratoire Commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Marie-Christine Vantyghem
- Université de Lille, CHU Lille, Service d'Endocrinologie, Diabétologie et Métabolisme, Inserm U1190, European Genomic Institute for Diabetes (EGID), Lille, France
| | - Bruno Donadille
- Centre national de Référence des Pathologies Rares de l'Insulino- Sécrétion et de l'Insulino -Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Karim Wahbi
- Sorbonne Université, Inserm UMR_S970, FILNEMUS, Service de Cardiologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris-Descartes, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Corinne Vigouroux
- Centre national de Référence des Pathologies Rares de l'Insulino- Sécrétion et de l'Insulino -Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France; Laboratoire Commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
14
|
Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, Bidault G, Béréziat V, Lascols O, Capeau J, Briand N, Jéru I. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 2019; 9:235-248. [PMID: 29578370 PMCID: PMC5973242 DOI: 10.1080/19491034.2018.1456217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic features, combining generalized or partial fat atrophy and metabolic alterations associated with insulin resistance, could result from altered adipocyte differentiation or from altered fat structure. Recent studies shed some light on how pathogenic A-type lamin variants could trigger lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility. Premature senescence of vascular cells could contribute to cardiovascular complications. In affected families, metabolic alterations occur at an earlier age across generations, which could result from epigenetic deregulation induced by LMNA mutations. Novel cellular models recapitulating adipogenic developmental pathways provide scalable tools for disease modeling and therapeutic screening.
Collapse
Affiliation(s)
- Corinne Vigouroux
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France.,c Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
| | - Anne-Claire Guénantin
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,d Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus , Hinxton , UK
| | - Camille Vatier
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,c Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service d'Endocrinologie, Diabétologie et Endocrinologie de la Reproduction , Paris , France
| | - Emilie Capel
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Caroline Le Dour
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Pauline Afonso
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Guillaume Bidault
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,e University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital , Cambridge CB2 0QQ , UK
| | - Véronique Béréziat
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Olivier Lascols
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| | - Jacqueline Capeau
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France
| | - Nolwenn Briand
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,f Department of Molecular Medicine , Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Blindern , Oslo , Norway
| | - Isabelle Jéru
- a Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN) , Paris , France.,b Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires , Paris , France
| |
Collapse
|
15
|
Sui T, Liu D, Liu T, Deng J, Chen M, Xu Y, Song Y, Ouyang H, Lai L, Li Z. LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. Aging Dis 2019; 10:102-115. [PMID: 30705772 PMCID: PMC6345340 DOI: 10.14336/ad.2018.0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Premature aging syndromes are rare genetic disorders mimicking clinical and molecular features of aging. Products of the LMNA gene, primarily lamin A and C, are major components of the nuclear lamina. A recently identified group of premature aging syndromes was related to mutations of the LMNA gene. Although LMNA disorders have been identified in premature aging syndromes, affect specifically the skeletal muscles, cardiac muscles, and lipodystrophy, understanding the pathogenic mechanisms still need to be elucidated. Here, to establish a rabbit knockout (KO) model of premature aging syndromes, we performed precise LMNA targeting in rabbits via co-injection of Cas9/sgRNA mRNA into zygotes. The LMNA-KO rabbits exhibited reduced locomotion activity with abnormal stiff walking posture and a shortened stature, all of them died within 22 days. In addition, cardiomyopathy, muscular dystrophy, bone and joint abnormalities, as well as lipodystrophy were observed in LMNA-KO rabbits. In conclusion, the novel rabbit LMNA-KO model, displayed typical features of histopathological defects that are observed in premature aging syndromes, and may be utilized as a valuable resource for understanding the pathophysiological mechanisms of premature aging syndromes and elucidating mysteries of the normal process of aging in humans.
Collapse
Affiliation(s)
- Tingting Sui
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Di Liu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Tingjun Liu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Jichao Deng
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Mao Chen
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuanyuan Xu
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuning Song
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China.,2Key Laboratory of Regenerative Biology, and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhanjun Li
- 1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
16
|
Yanhua X, Suxian Z. Cerebral Haemorrhage in a Young Patient With Atypical Werner Syndrome Due to Mutations in LMNA. Front Endocrinol (Lausanne) 2018; 9:433. [PMID: 30123186 PMCID: PMC6085819 DOI: 10.3389/fendo.2018.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction: Werner syndrome is a rare genetic disorder; classical Werner syndrome is caused by mutations in the WRN gene. However, recent research has shown that LMNA gene mutations can also cause premature ageing syndromes such as atypical Werner syndrome (AWS). AWS usually manifests as muscular damage, defects in the cardiac conduction system, lipoatrophy, diabetes, atherosclerosis, and premature ageing. Clinical presentation: A 24-year-old man presented with severe abdominal aortic and peripheral artery disease and cerebral haemorrhage. He was prescribed once-daily 20 mg atorvastatin. Another large cerebral haemorrhage occurred 8 months after discharge. Although he underwent minimally invasive intracranial haematoma surgery, paralysis set in. Molecular studies showed a missense mutation within exon 5 (c.898G>C) that caused amino acid aspartate 300 to be replaced by histidine (p.Asp300His) in the LMNA gene. The patient was diagnosed with AWS. Conclusions: Haemorrhagic stroke and progeroid features may be manifestations of LMNA-linked AWS. In such cases, the patient's family history and genetic background should be investigated. WRN and LMNA gene testing of the proband and the immediate family should be considered. This case report provides a deeper understanding of the role of LMNA mutations in AWS.
Collapse
Affiliation(s)
- Xiao Yanhua
- Affiliated Hospital of Guilin Medical College, Guilin, China
- Guilin People's Hospital, Guilin, China
| | - Zhou Suxian
- Affiliated Hospital of Guilin Medical College, Guilin, China
| |
Collapse
|
17
|
Guillín-Amarelle C, Sánchez-Iglesias S, Mera A, Pintos E, Castro-Pais A, Rodríguez-Cañete L, Pardo J, Casanueva FF, Araújo-Vilar D. Inflammatory myopathy in the context of an unusual overlapping laminopathy. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:376-382. [PMID: 29791652 PMCID: PMC10118788 DOI: 10.20945/2359-3997000000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/07/2018] [Indexed: 11/23/2022]
Abstract
Laminopathies are genetic disorders associated with alterations in nuclear envelope proteins, known as lamins. The LMNA gene encodes lamins A and C, and LMNA mutations have been linked to diseases involving fat (type 2 familial partial lipodystrophy [FPLD2]), muscle (type 2 Emery-Dreifuss muscular dystrophy [EDMD2], type 1B limb-girdle muscular dystrophy [LGMD1B], and dilated cardiomyopathy), nerves (type 2B1 Charcot-Marie-Tooth disease), and premature aging syndromes. Moreover, overlapping syndromes have been reported. This study aimed to determine the genetic basis of an overlapping syndrome in a patient with heart disease, myopathy, and features of lipodystrophy, combined with severe metabolic syndrome. We evaluated a 54-year-old woman with rheumatoid arthritis, chronic hypercortisolism (endogenous and exogenous), and a history of cured adrenal Cushing syndrome. The patient presented with a complex disorder, including metabolic syndrome associated with mild partial lipodystrophy (Köbberling-like); mild hypertrophic cardiomyopathy, with Wolff-Parkinson- White syndrome and atrial fibrillation; and limb-girdle inflammatory myopathy. Mutational analysis of the LMNA gene showed a heterozygous c.1634G>A (p.R545H) variant in exon 10 of LMNA. This variant has previously been independently associated with FPLD2, EDMD2, LGMD1B, and heart disease. We describe a new, LMNA-associated, complex overlapping syndrome in which fat, muscle, and cardiac disturbances are related to a p.R545H variant.
Collapse
Affiliation(s)
| | - Sofía Sánchez-Iglesias
- UETeM - Molecular Pathology Group. IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antonio Mera
- Division of Rheumatology, University Clinical Hospital of Santiago de Compostela Spain
| | - Elena Pintos
- Division of Pathology, University Clinical Hospital of Santiago de Compostela, Spain
| | - Ana Castro-Pais
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | | | - Julio Pardo
- División of Neurology, University Clinical Hospital of Santiago de Compostela, Spain
| | - Felipe F Casanueva
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - David Araújo-Vilar
- UETeM - Molecular Pathology Group. IDIS-CIMUS, University of Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| |
Collapse
|
18
|
Hoorntje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, Te Meerman GJ, Jansweijer JA, van Essen AJ, Volders PG, Constantinescu AA, van den Akker PC, van Spaendonck-Zwarts KY, Oldenburg RA, Marcelis CL, van der Smagt JJ, Hennekam EA, Vink A, Bootsma M, Aten E, Wilde AA, van den Wijngaard A, Broers JL, Jongbloed JD, van der Velden J, van den Berg MP, van Tintelen JP. Lamin A/C-Related Cardiac Disease: Late Onset With a Variable and Mild Phenotype in a Large Cohort of Patients With the Lamin A/C p.(Arg331Gln) Founder Mutation. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001631. [PMID: 28790152 DOI: 10.1161/circgenetics.116.001631] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Interpretation of missense variants can be especially difficult when the variant is also found in control populations. This is what we encountered for the LMNA c.992G>A (p.(Arg331Gln)) variant. Therefore, to evaluate the effect of this variant, we combined an evaluation of clinical data with functional experiments and morphological studies. METHODS AND RESULTS Clinical data of 23 probands and 35 family members carrying this variant were retrospectively collected. A time-to-event analysis was performed to compare the course of the disease with carriers of other LMNA mutations. Myocardial biopsies were studied with electron microscopy and by measuring force development of the sarcomeres. Morphology of the nuclear envelope was assessed with immunofluorescence on cultured fibroblasts. The phenotype in probands and family members was characterized by atrioventricular conduction disturbances (61% and 44%, respectively), supraventricular arrhythmias (69% and 52%, respectively), and dilated cardiomyopathy (74% and 14%, respectively). LMNA p.(Arg331Gln) carriers had a significantly better outcome regarding the composite end point (malignant ventricular arrhythmias, end-stage heart failure, or death) compared with carriers of other pathogenic LMNA mutations. A shared haplotype of 1 Mb around LMNA suggested a common founder. The combined logarithm of the odds score was 3.46. Force development in membrane-permeabilized cardiomyocytes was reduced because of decreased myofibril density. Structural nuclear LMNA-associated envelope abnormalities, that is, blebs, were confirmed by electron microscopy and immunofluorescence microscopy. CONCLUSIONS Clinical, morphological, functional, haplotype, and segregation data all indicate that LMNA p.(Arg331Gln) is a pathogenic founder mutation with a phenotype reminiscent of other LMNA mutations but with a more benign course.
Collapse
Affiliation(s)
| | - Ilse A Bollen
- For the author affiliations, please see the Appendix
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aryan Vink
- For the author affiliations, please see the Appendix
| | | | - Emmelien Aten
- For the author affiliations, please see the Appendix
| | | | | | - Jos L Broers
- For the author affiliations, please see the Appendix
| | | | | | | | | |
Collapse
|
19
|
Guillín-Amarelle C, Fernández-Pombo A, Sánchez-Iglesias S, Araújo-Vilar D. Lipodystrophic laminopathies: Diagnostic clues. Nucleus 2018; 9:249-260. [PMID: 29557732 PMCID: PMC5973260 DOI: 10.1080/19491034.2018.1454167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina is a complex reticular structure that covers the inner face of the nucleus membrane in metazoan cells. It is mainly formed by intermediate filaments called lamins, and exerts essential functions to maintain the cellular viability. Lamin A/C provides mechanical steadiness to the nucleus and regulates genetic machinery. Laminopathies are tissue-specific or systemic disorders caused by variants in LMNA gene (primary laminopathies) or in other genes encoding proteins which are playing some role in prelamin A maturation or in lamin A/C function (secondary laminopathies). Those disorders in which adipose tissue is affected are called laminopathic lipodystrophies and include type 2 familial partial lipodystrophy and certain premature aging syndromes. This work summarizes the main clinical features of these syndromes, their associated comorbidities and the clues for the differential diagnosis with other lipodystrophic disorders.
Collapse
Affiliation(s)
- Cristina Guillín-Amarelle
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| |
Collapse
|
20
|
Emery–Dreifuss Muscular Dystrophy. Neuromuscul Disord 2018. [DOI: 10.1007/978-981-10-5361-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Francisco ARG, Santos Gonçalves I, Veiga F, Mendes Pedro M, Pinto FJ, Brito D. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. Rev Port Cardiol 2017; 36:669.e1-669.e4. [DOI: 10.1016/j.repc.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 10/18/2022] Open
|
22
|
Francisco ARG, Santos Gonçalves I, Veiga F, Mendes Pedro M, Pinto FJ, Brito D. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
Ambonville C, Bouldouyre MA, Laforêt P, Richard P, Benveniste O, Vigouroux C. [A complex case of diabetes due to LMNA mutation]. Rev Med Interne 2017; 38:695-699. [PMID: 28545855 DOI: 10.1016/j.revmed.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Laminopathies (diseases related to A/C mutations of lamines) are rare genetic diseases with an extensive phenotypic spectrum, including lipodystrophic syndromes-characterized by a selective loss of adipose tissue-of which the partial Dunnigan family type is the most frequent. CASE REPORT We report on a 55-year-old woman with diabetes and long-term disabling myalgia. Her cushingoid morphotype, associated with cutaneous lipo-atrophy and muscle hypertrophy in addition to a genetic heritage, led us to the diagnosis of complex partial familial lipodystrophy heterozygous LMNA_c.82C>T, p.Arg28Trp mutation. CONCLUSION Familial partial lipodystrophic syndromes may have varied phenotypes, mainly cardio-metabolic, which could mimic a particularly severe type 2 diabetes. The diagnostic work-up of this disease has to include a careful investigation of gait troubles and paroxysmal conduction that could lead to sudden death, as well as a genetic examination. In some cases, recombinant leptin can be proposed.
Collapse
Affiliation(s)
- C Ambonville
- Service d'endocrinologie, diabétologie et maladies métaboliques, centre hospitalier intercommunal Robert-Ballanger, 93603 Aulnay-sous-Bois, France
| | - M-A Bouldouyre
- Service de médecine interne et maladies infectieuses, centre hospitalier intercommunal Robert-Ballanger, 93603 Aulnay-sous-Bois, France.
| | - P Laforêt
- Centre de référence pathologie neuromusculaire Paris Est, groupe hospitalier Pitié-Salpétrière, AH-HP, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| | - P Richard
- Unité fonctionnelle de cardiogénétique et myogénétique moléculaire et cellulaire, service de biochimie métabolique, hôpitaux universitaires Pitié-Salpétrière Charles-Foix, AP-HP, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| | - O Benveniste
- Département de médecine interne et immunologie clinique, centre de référence des maladies rares, pathologies du muscle inflammatoire, groupe hospitalier Pitié-Salpétrière, AP-HP, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| | - C Vigouroux
- Service d'endocrinologie et laboratoire commun de biologie et génétique moléculaires, hôpital Saint-Antoine, AP-HP, 75012 Paris, France; Inserm UMR_S938, centre de recherche Saint-Antoine (CRSA), ICAN, institut de cardio-métabolisme et nutrition, Sorbonne universités, UPMC université Paris 6, 75012 Paris, France
| |
Collapse
|
24
|
Chan D, McIntyre AD, Hegele RA, Don-Wauchope AC. Familial partial lipodystrophy presenting as metabolic syndrome. J Clin Lipidol 2016; 10:1488-1491. [DOI: 10.1016/j.jacl.2016.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
|
25
|
Limb-girdle muscular dystrophy with severe heart failure overlapping with lipodystrophy in a patient with LMNA mutation p.Ser334del. J Appl Genet 2016; 58:87-91. [PMID: 27585670 PMCID: PMC5243892 DOI: 10.1007/s13353-016-0365-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022]
Abstract
Laminopathies, a group of heterogeneous disorders associated with lamin A/C gene (LMNA) mutations, encompass a wide spectrum of clinical phenotypes, which may present as separate disease or as overlapping syndromes. We describe a 35-year-old female in whom a novel sporadic heterozygous mutation c.1001_1003delGCC (p.Ser334del) of the LMNA gene was found. The patient presented with overlapping syndrome of heart failure secondary to dilated cardiomyopathy, limb-girdle dystrophy and partial lipodystrophy. Endomyocardial biopsy revealed strong up-regulation of HLA classes I and II antigens on microvessels and induction of the class I antigens on cardiomyocytes. On muscle biopsy, a wide range of fiber sizes and small clusters of inflammatory infiltrations were found. In the rapid progression of heart failure with arrhythmias or conduction defect, accompanied with muscle atrophy and lipodystrophy, the genetic disease should be taken into consideration. In addition, undefined inflammatory response and fibrosis in the heart or skeletal muscle might further justify screening of the lamin A/C gene.
Collapse
|
26
|
Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. Cells 2016; 5:cells5030033. [PMID: 27529282 PMCID: PMC5040975 DOI: 10.3390/cells5030033] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.
Collapse
|
27
|
Vatier C, Fetita S, Boudou P, Tchankou C, Deville L, Riveline J, Young J, Mathivon L, Travert F, Morin D, Cahen J, Lascols O, Andreelli F, Reznik Y, Mongeois E, Madelaine I, Vantyghem M, Gautier J, Vigouroux C. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes. Diabetes Obes Metab 2016; 18:693-7. [PMID: 26584826 DOI: 10.1111/dom.12606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies.
Collapse
Affiliation(s)
- C Vatier
- Sorbonne Universités, UPMC, Univ Paris 06, Paris, France
- Centre de Recherche Saint-Antoine, INSERM, UMR_S938, Paris, France
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - S Fetita
- Service de Diabétologie et Endocrinologie, AP-HP, Groupe Hospitalier Lariboisière-Saint-Louis, Paris, France
| | - P Boudou
- Service de Biochimie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - C Tchankou
- Service de Diabétologie et Endocrinologie, AP-HP, Groupe Hospitalier Lariboisière-Saint-Louis, Paris, France
| | - L Deville
- Département de Pharmacie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Jp Riveline
- Service de Diabétologie et Endocrinologie, AP-HP, Groupe Hospitalier Lariboisière-Saint-Louis, Paris, France
- Centre de Recherche des Cordeliers, INSERM, UMR_S1138, Paris, France
| | - J Young
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - L Mathivon
- Service de Pédiatrie, Centre Hospitalier de Meaux, Meaux, France
| | - F Travert
- Service d'Endocrinologie, Diabétologie, Nutrition, AP-HP, Hôpital Bichat, Paris, France
| | - D Morin
- Service de Pédiatrie, CHRU Montpellier, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - J Cahen
- Service d'Endocrinologie et Métabolismes, Centre Hospitalier, Argenteuil, France
| | - O Lascols
- Sorbonne Universités, UPMC, Univ Paris 06, Paris, France
- Centre de Recherche Saint-Antoine, INSERM, UMR_S938, Paris, France
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
- Laboratoire Commun de Biologie et Génétique Moléculaires, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - F Andreelli
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
- Service de Diabétologie, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Y Reznik
- Service d'Endocrinologie, Centre Hospitalier Universitaire Côte-de-Nacre, Caen, France
| | - E Mongeois
- Service d'Endocrinologie, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - I Madelaine
- Département de Pharmacie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Mc Vantyghem
- Service d'Endocrinologie et Métabolisme, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Jf Gautier
- Service de Diabétologie et Endocrinologie, AP-HP, Groupe Hospitalier Lariboisière-Saint-Louis, Paris, France
- Centre de Recherche des Cordeliers, INSERM, UMR_S1138, Paris, France
- University Paris-Diderot Paris-7, Paris, France
| | - C Vigouroux
- Sorbonne Universités, UPMC, Univ Paris 06, Paris, France
- Centre de Recherche Saint-Antoine, INSERM, UMR_S938, Paris, France
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
- Laboratoire Commun de Biologie et Génétique Moléculaires, AP-HP, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
28
|
Kutbay NO, Yurekli BS, Onay H, Altay CT, Atik T, Hekimsoy Z, Saygili F, Akinci B. A case of familial partial lipodystrophy caused by a novel lamin A/C (LMNA) mutation in exon 1 (D47N). Eur J Intern Med 2016; 29:37-9. [PMID: 26775134 DOI: 10.1016/j.ejim.2015.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Familial partial lipodystrophy (FPL) is a rare genetic disorder characterized by selective lack of subcutaneous fat which is associated with insulin resistant diabetes. The Dunnigan variety (FPL2) is caused by several missense mutations in the lamin A/C (LMNA) gene, most of which are typically located in exon 8 at the codon position 482. CASE REPORT Here, we report on a Turkish family with FPL2 which is caused by a novel heterozygous missense LMNA mutation in exon 1 (D47N, c.139G>A), in the rod domain of lamins A/C. Fat distribution and metabolic features of LMNA D47N mutation were similar to typical codon 482 mutation. Metabolic abnormalities were observed as a form of insulin resistant diabetes, hypertriglyceridemia, low HDL cholesterol and hepatic steatosis. There was no evidence for neuromuscular and cardiac involvement. CONCLUSION Although it is previously known that alterations in the rod domain of type A lamins are involved in cardiac and neuromuscular diseases, our current observation shows that exon 1 LMNA mutations may be associated with partial lipodystrophy without any cardiac and neurological abnormalities, at least at the time of the presentation.
Collapse
Affiliation(s)
| | | | - Huseyin Onay
- Ege University, Division of Medical Genetics, Izmir, Turkey
| | | | - Tahir Atik
- Ege University, Division of Medical Genetics, Izmir, Turkey
| | - Zeliha Hekimsoy
- Celal Bayar University, Division of Endocrinology, Manisa, Turkey
| | - Fusun Saygili
- Ege University, Division of Endocrinology, Izmir, Turkey
| | - Baris Akinci
- Dokuz Eylul University, Division of Endocrinology, Izmir, Turkey
| |
Collapse
|
29
|
Carboni N, Brancati F, Cocco E, Solla E, D'Apice MR, Mateddu A, McIntyre A, Fadda E, Mura M, Lattanzi G, Piras R, Maioli MA, Marrosu G, Novelli G, Marrosu MG, Hegele RA. Partial lipodystrophy associated with muscular dystrophy of unknown genetic origin. Muscle Nerve 2014; 49:928-30. [DOI: 10.1002/mus.24157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Nicola Carboni
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Francesco Brancati
- Istituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza, Mendel Laboratory; San Giovanni Rotondo Italy
| | - Eleonora Cocco
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Elisabetta Solla
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Maria R. D'Apice
- Department of Biopathology and Diagnostic Imaging; University of Tor Vergata; Rome Italy
| | - Anna Mateddu
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Adam McIntyre
- Department of Medicine; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; London Ontario Canada
| | - Elisabetta Fadda
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Marco Mura
- Department of Radiology; Policlinic of Monserrato; Cagliari Italy
| | - Giovanna Lattanzi
- IGM-CNR, Unit of Bologna, Rizzoli Orthopedic Institute; Bologna Italy
| | - Rachele Piras
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Maria A. Maioli
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Giovanni Marrosu
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Giuseppe Novelli
- Department of Biopathology and Diagnostic Imaging; University of Tor Vergata; Rome Italy
| | - Maria G. Marrosu
- Department of Public Health, Clinical and Molecular Medicine; University of Cagliari; Cagliari Italy
| | - Robert A. Hegele
- Department of Medicine; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario; London Ontario Canada
| |
Collapse
|
30
|
Voudris KV, Apostolakis S, Karyofillis P, Doukas K, Zaravinos A, Androutsopoulos VP, Michalis A, Voudris V, Spandidos DA. Genetic diversity of the KCNE1 gene and susceptibility to postoperative atrial fibrillation. Am Heart J 2014; 167:274-280.e1. [PMID: 24439990 DOI: 10.1016/j.ahj.2013.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The human KCNE1 protein forms the β-subunit of the IKs potassium channel and is important in the regulation of the atrial action potential duration. The purpose of this study was to investigate the association between the nonsynonymous 112G>A mutation of the KCNE1 gene and postcardiac surgery atrial fibrillation (AF). METHODS AND RESULTS A cohort of patients scheduled for cardiac surgery was prospectively recruited. The genotype of 112G>A polymorphism was determined using polymerase chain reaction/restriction fragment analysis and confirmed with direct sequencing of the polymerase chain reaction product. In total, 509 patients were recruited in the study, of whom 203 (39.9%) had at least 1 qualifying episode of postoperative AF. An increased frequency of the G allele was observed in the postoperative AF group compared with the group without postoperative AF (0.628 vs 0.552, respectively, P = .016). The individual's relative risk of postoperative AF increased as the number of G alleles increased from 1.36 (95% CI 0.89-2.08) for G allele heterozygotes to 1.62 (95% CI 1.08-2.43) for G allele homozygotes (P = .04 for trend). The multivariate analysis revealed the abnormal ejection fraction (odds ratio [OR] 1.585, 95% CI 1.076-2.331, P = .020), age (OR 1.043, 95% CI 1.022-1.064, P < .001), type of surgery (aortic valve replacement) (OR 1.869, 95% CI 1.094-3.194, P = .022), and the 112G>A genotype (OR 1.401 [in additive model], 95% CI 1.052-1.865, P = .021) to be independent predictors of postoperative AF. CONCLUSION This study confirmed the association of the 112G>A polymorphism and postoperative AF in a cohort of patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Konstantinos V Voudris
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece
| | - Stavros Apostolakis
- Thrombosis Haemostasis and Vascular Biology Unit, University of Birmingham, Birmingham, United Kingdom; Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Apostolos Zaravinos
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Alkis Michalis
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Demetrios A Spandidos
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
31
|
Nolis T. Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies. J Hum Genet 2013; 59:16-23. [PMID: 24152769 DOI: 10.1038/jhg.2013.107] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/31/2013] [Accepted: 09/10/2013] [Indexed: 01/16/2023]
Abstract
Lipodystrophies are an immense group of genetic or acquired metabolic disorders that are characterized by varying degrees of body fat loss and in some instances localized accumulation of subcutaneous fat. Lipodystrophies are often tightly linked with profound metabolic complications; this strong bond emphasizes and reinforces the significance of adipose tissue as a dynamic endocrine organ. The extent of fat loss determines the severity of associated metabolic complications such as diabetes mellitus, hypertriglyceridemia and hepatic steatosis. The lipodystrophies can be divided into generalized, partial or local, depending on the degree and locality of the observable fat loss; moreover, the generalized and partial divisions can be partitioned further into inherited or acquired forms. The major genetic factors in the generalized forms of the lipodystrophies, particularly Congenital generalized lipodystrophy (CGL)-Berardinelli-Seip syndrome, are the AGPAT2, BSCL2, caveolin 1 (CAV1) and polymerase-I-and-transcriptrelease factor (PTRF) genes. In the acquired forms, genes such as LMNA, PPARG, CIDEC (cell-death-inducing DNA fragmentation factor a-like effector c) and PLIN1 are heavily involved in familial partial lipodystrophy (FPLD) type 2 (also known as the Dunnigan-Variety) and WRN along with RECQL5 in Werner Syndrome (WS). Autoimmune causes are particularly noted in acquired partial lipodystrophy (APL)-Barraquer-Simons syndrome and in AGL-Lawrence syndrome; panniculitis has been shown to have a substantial role in the former as well as in other forms of localized lipodystrophies. Patients with human immunodeficiency virus (HIV) exposed to protease inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs) (for example, zidovudine and stavudine) or non-nucleoside reverse transcriptase inhibitors (NNRTIs) (for example, efavirenz) while undergoing Highly Active Antiretroviral Therapy (HAART) have led to the current most-prevalent form of the lipodystrophies: lipodystrophy in HIV-infected patients (LD-HIV) and HAART-associated lipodystrophy syndrome (HALS).
Collapse
Affiliation(s)
- Tom Nolis
- Graduate Entry Medical School, Richmond Hill, Ontario, Canada
| |
Collapse
|
32
|
Multisystem disorder and limb girdle muscular dystrophy caused by LMNA p.R28W mutation. Neuromuscul Disord 2013; 23:587-90. [DOI: 10.1016/j.nmd.2013.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/12/2013] [Accepted: 04/30/2013] [Indexed: 11/22/2022]
|
33
|
Weterings AAW, van Rijsingen IAW, Plomp AS, Zwinderman AH, Lekanne Deprez RH, Mannens MM, van den Bergh Weerman MA, van der Wal AC, Pinto-Sietsma SJ. A novel lamin A/C mutation in a Dutch family with premature atherosclerosis. Atherosclerosis 2013; 229:169-73. [PMID: 23659872 DOI: 10.1016/j.atherosclerosis.2013.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We report a novel lamin A/C (LMNA) mutation, p.Glu223Lys, in a family with extensive atherosclerosis, diabetes mellitus and steatosis hepatis. METHODS Sequence analysis of LMNA (using Alamut version 2.2), co-segregation analysis, electron microscopy, extensive phenotypic evaluation of the mutation carriers and literature comparison were used to determine the loss of function of this mutation. RESULTS The father of three siblings died at the age of 45 years. The three siblings and the brother and sister of the father were referred to the cardiovascular genetics department, because of the premature atherosclerosis and dysmorphic characteristics observed in the father at autopsy. The novel LMNA mutation, p.Glu223Lys, was identified in the proband and his two sons. Clinical evaluation revealed atherosclerosis, insulin resistance and hypertension in the proband and dyslipidemia and hepatic steatosis in all the patients with the mutation. CONCLUSION Based on the facts that in silico analysis predicts a possibly pathogenic mutation, the mutation co-segregates with the disease, only fibroblasts from mutation carriers show nuclear blebbing and a similar phenotype was reported to be due to missense mutations in LMNA we conclude that we deal with a pathogenic mutation. We conclude that the phenotype is similar to Dunnigan-type familial partial lipodystrophy.
Collapse
Affiliation(s)
- A A W Weterings
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xiong Z, Lu Y, Xue J, Luo S, Xu X, Zhang L, Peng H, Li W, Chen D, Hu Z, Xia K. Hutchinson-Gilford progeria syndrome accompanied by severe skeletal abnormalities in two Chinese siblings: two case reports. J Med Case Rep 2013; 7:63. [PMID: 23497705 PMCID: PMC3602076 DOI: 10.1186/1752-1947-7-63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Hutchinson-Gilford progeria syndrome is a rare pediatric genetic syndrome with an incidence of one per eight million live births. The disorder is characterized by premature aging, generally leading to death due to myocardial infarction or stroke at approximately 13.4 years of age. The genetic diagnosis and special clinical manifestation in two Han Chinese siblings observed at our clinic for genetic counseling are described in this report. We screened the LMNA gene in these two siblings as well as in their unaffected parents. A homozygous mutation R527C was identified in the affected siblings, and both parents were heterozygous for this variant. Case presentation In case 1, the elder 10-year-old female sibling showed the classic physical and radiological changes of Hutchinson-Gilford progeria syndrome in addition to a considerable overlap with the phenotype of mandibuloacral dysplasia. In case 2, the younger male sibling had begun to show some early physical changes at age six months. Conclusion The phenotypic findings in the patients we describe here widen the clinical spectrum of Hutchinson-Gilford progeria syndrome symptoms, providing further recognition of the phenotypic range of LMNA-associated diseases.
Collapse
Affiliation(s)
- Zhimin Xiong
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mory PB, Crispim F, Freire MBS, Salles JEN, Valério CM, Godoy-Matos AF, Dib SA, Moisés RS. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol 2012; 167:423-31. [PMID: 22700598 DOI: 10.1530/eje-12-0268] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Mutations in LMNA have been linked to diverse disorders called laminopathies, which display heterogeneous phenotypes and include diseases affecting muscles, axonal neurons, progeroid syndromes, and lipodystrophies. Among the lipodystrophies, LMNA mutations have been reported most frequently in patients with familial partial lipodystrophy (FPLD) of the Dunnigan variety; however, phenotypic heterogeneity in the pattern of body fat loss has been observed. In this study, we searched for LMNA mutations in patients with various forms of lipodystrophy. DESIGN AND METHODS We studied 21 unrelated individuals with lipodystrophy. Subjects underwent a complete clinical evaluation and were classified as typical FPLD (n=12), atypical partial lipodystrophy (n=7), or generalized lipodystrophy (n=2). Molecular analysis of LMNA gene, analysis of body fat by dual-energy X-ray absorptiometry, and biochemical measurements were performed. RESULTS ALL PATIENTS WITH TYPICAL FPLD WERE FOUND TO CARRY LMNA MUTATIONS: seven patients harbored the heterozygous p.R482W (c.1444C>T), two patients harbored the p.R482Q (c.1445G>A), and two individuals harbored the novel heterozygous variant p.N466D (c.1396A>G), all in exon 8. Also, a homozygous p.R584H (c.1751 G>A) mutation in exon 11 was found. Among patients with atypical partial lipodystrophy, two of them were found to have LMNA mutations: a novel heterozygous p.R582C variation (c.1744 C>T) in exon 11 and a heterozygous substitution p.R349W (c.1045C>T) in exon 6. Among patients with generalized lipodystrophy, only one harbored LMNA mutation, a heterozygous p.T10I (c.29C>T) in exon 1. CONCLUSIONS We have identified LMNA mutations in phenotypically diverse lipodystrophies. Also, our study broadens the spectrum of LMNA mutations in lipodystrophy.
Collapse
Affiliation(s)
- Patricia B Mory
- Division of Endocrinology, Paulista School of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 04039-032 São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
LMNA-linked lipodystrophies: from altered fat distribution to cellular alterations. Biochem Soc Trans 2012; 39:1752-7. [PMID: 22103520 DOI: 10.1042/bst20110675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the LMNA gene, encoding the nuclear intermediate filaments the A-type lamins, result in a wide variety of diseases known as laminopathies. Some of them, such as familial partial lipodystrophy of Dunnigan and metabolic laminopathies, are characterized by lipodystrophic syndromes with altered fat distribution and severe metabolic alterations with insulin resistance and dyslipidaemia. Metabolic disturbances could be due either to the inability of adipose tissue to adequately store triacylglycerols or to other cellular alterations linked to A-type lamin mutations. Indeed, abnormal prelamin A accumulation and farnesylation, which are clearly involved in laminopathic premature aging syndromes, could play important roles in lipodystrophies. In addition, gene expression alterations, and signalling abnormalities affecting SREBP1 (sterol-regulatory-element-binding protein 1) and MAPK (mitogen-activated protein kinase) pathways, could participate in the pathophysiological mechanisms leading to LMNA (lamin A/C)-linked metabolic alterations and lipodystrophies. In the present review, we describe the clinical phenotype of LMNA-linked lipodystrophies and discuss the current physiological and biochemical hypotheses regarding the pathophysiology of these diseases.
Collapse
|
39
|
Abstract
Mutations in the LMNA gene encoding lamins A/C are responsible for more than ten different disorders called laminopathies which affect various tissues in an isolated (striated muscle, adipose tissue or peripheral nerve) or systemic (premature aging syndromes) fashion. Overlapping phenotypes are also observed. Associated with this wide clinical variability, there is also a large genetic heterogeneity, with 408 different mutations being reported to date. Whereas a few hotspot mutations emerge for some types of laminopathies, relationships between genotypes and phenotypes remain poor for laminopathies affecting the striated muscles. In addition, there is important intrafamilial variability, explained only in a few cases by digenism, thus suggesting an additional contribution from modifier genes. In this regard, a chromosomal region linked to the variability in the age at onset of myopathic symptoms in striated muscle laminopathies has recently been identified. This locus is currently under investigation to identify modifier variants responsible for this variability.
Collapse
|
40
|
Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012; 121:153-67. [DOI: 10.1007/s00412-012-0360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/01/2023]
|
41
|
Garg A. Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 2011; 96:3313-25. [PMID: 21865368 PMCID: PMC7673254 DOI: 10.1210/jc.2011-1159] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/28/2011] [Indexed: 12/14/2022]
Abstract
CONTEXT Lipodystrophies are heterogeneous, genetic or acquired disorders characterized by selective loss of body fat and predisposition to insulin resistance. The extent of fat loss determines the severity of associated metabolic complications such as diabetes mellitus, hypertriglyceridemia, and hepatic steatosis. EVIDENCE ACQUISITION AND SYNTHESIS Both original and review articles were found via PubMed search reporting on clinical features and management of various types of lipodystrophies and were integrated with the author's knowledge of the field. CONCLUSION The autosomal recessive congenital generalized lipodystrophy and autosomal dominant familial partial lipodystrophy (FPL) are the two most common types of genetic lipodystrophies. Mutations in AGPAT2, BSCL2, CAV1, and PTRF have been reported in congenital generalized lipodystrophy and in LMNA, PPARG, AKT2, and PLIN1 in FPL. CIDEC is the disease gene for autosomal recessive, FPL and LMNA and ZMPSTE24 for autosomal recessive, mandibuloacral dysplasia-associated lipodystrophy. Recently, an autosomal recessive autoinflammatory lipodystrophy syndrome was reported to be due to PSMB8 mutation. Molecular genetic bases of many rare forms of genetic lipodystrophies remain to be elucidated. The most prevalent subtype of acquired lipodystrophy currently occurs with prolonged duration of protease inhibitor-containing, highly-active antiretroviral therapy in HIV-infected patients. The acquired generalized and partial lipodystrophies are mainly autoimmune in origin and display complement abnormalities. Localized lipodystrophies occur due to drug or vaccine injections, pressure, panniculitis, and other unknown reasons. The current management includes cosmetic surgery and early identification and treatment of metabolic and other complications with diet, exercise, hypoglycemic drugs, and lipid-lowering agents.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8537, USA.
| |
Collapse
|
42
|
Bertrand AT, Chikhaoui K, Ben Yaou R, Bonne G. [Laminopathies: one gene, several diseases]. Biol Aujourdhui 2011; 205:147-62. [PMID: 21982404 DOI: 10.1051/jbio/2011017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 01/03/2023]
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear proteins expressed in all post-mitotic cells. Together with B-type lamins, they form a meshwork of proteins beneath the inner nuclear membrane, the lamina, in connection with the cytoskeleton. Lamins A/C also interact with chromatin and numerous proteins, including transcription factors. Mutations in LMNA are responsible for more than ten different disorders, commonly called "laminopathies". These diseases affect tissues in a specific (striated muscle, adipose tissue, peripheral nerve) or in a systemic manner (premature ageing syndromes). This wide spectrum of phenotypes is associated to a wide variety of mutations. This large clinical and genetic heterogeneity, unique to the LMNA gene, makes genotype-phenotype relations particularly difficult to establish. However, correlations have been obtained in several cases. Hence, LMNA mutations identified in premature ageing syndromes lead to the accumulation of immature proteins with a toxic effect for cells. Mutations in laminopathies of the adipose tissue mainly localize in the Ig-like domain of the proteins, potentially affecting the interaction with the SREBP-1 transcription factor. In laminopathies of the striated muscles, the mutations are spread throughout the gene. These mutations are thought to induce structural modifications of the proteins, thereby affecting their polymerization into nuclear lamina. Such defect would lead to a mechanical weakness of the nuclear lamina and of the cells, particularly in striated muscles continuously stretching. The exploration of pathophysiological mechanisms of LMNA mutations largely benefits from the numerous mouse models created, which have been widely used to analyze affected molecular pathways and to test putative therapeutic treatments.
Collapse
|
43
|
Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno CM, Reddy K, Singh H, McNally E. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One 2010; 5:e14342. [PMID: 21179469 PMCID: PMC3001866 DOI: 10.1371/journal.pone.0014342] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. METHODS/FINDINGS To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. CONCLUSIONS These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.
Collapse
Affiliation(s)
- Stephanie K. Mewborn
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Megan J. Puckelwartz
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Fida Abuisneineh
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - John P. Fahrenbach
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Yuan Zhang
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Heather MacLeod
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Lisa Dellefave
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Christine M. Labno
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Karen Reddy
- Howard Hughes Medical Institute and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Harinder Singh
- Howard Hughes Medical Institute and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Elizabeth McNally
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
44
|
Identification of a new lamin A/C mutation in a Chinese family affected with atrioventricular block as the prominent phenotype. ACTA ACUST UNITED AC 2010; 30:103-7. [PMID: 20155465 DOI: 10.1007/s11596-010-0119-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Indexed: 10/19/2022]
Abstract
Even though mutations in LMNA have been reported in patients with typical dilated cardiomyopathy (DCM) and atrioventricular block (AVB) previously, the purpose of this study was to disclose this novel genetic abnormality in one Chinese family with the atypical phenotype of progressive AVB followed by DCM with normal QRS interval. Genome-wide linkage analysis mapped the AVB gene in this family to a marker at chromosome 1q21.2, where the LMNA gene was located. Direct DNA sequence analysis revealed a heterozygous G to A transition at nucleotide 244 in exon 1 of LMNA, which resulted in an E82K mutation. The E82K mutation co-segregated with all affected individuals in the family, and was not present in 200 normal controls. Further clinical evaluation of mutation carriers showed that 5 of 6 AVB patients exhibited mild DCM with a late onset of age in the fourth and fifth decades. Ejection fractions were documented in 5 patients with DCM, but 4 showed a normal value of > or = 50%. Echocardiography showed that atrial dilatation occurred earlier than ventricular dilatation in the patients. This study suggests that progressive AVB with normal QRS interval and accompanying DCM at later stages may represent a distinct type of DCM. The molecular mechanism by which the E82K mutation causes AVB as the prominent phenotype in DCM may be a focus of future studies.
Collapse
|
45
|
Carboni N, Porcu M, Mura M, Cocco E, Marrosu G, Maioli MA, Solla E, Tranquilli S, Orrù P, Marrosu MG. Evolution of the phenotype in a family with an LMNA gene mutation presenting with isolated cardiac involvement. Muscle Nerve 2010; 41:85-91. [DOI: 10.1002/mus.21443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Subramanyam L, Simha V, Garg A. Overlapping syndrome with familial partial lipodystrophy, Dunnigan variety and cardiomyopathy due to amino-terminal heterozygous missense lamin A/C mutations. Clin Genet 2009; 78:66-73. [PMID: 20041886 DOI: 10.1111/j.1399-0004.2009.01350.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Familial partial lipodystrophy, Dunnigan variety (FPLD) is a well-recognized autosomal dominant disorder due to heterozygous missense mutations in lamin A/C (LMNA) gene. Most of the FPLD patients harbor mutations in the C-terminal of the lamin A/C and do not develop cardiomyopathy. On the other hand, affected subjects from three FPLD pedigrees with heterozygous R28W, R60G and R62G LMNA mutations in the amino-terminal had associated cardiomyopathy presenting as premature onset of congestive heart failure, dilated cardiomyopathy and conduction system disturbances. We report three new FPLD pedigrees presenting with cardiomyopathy associated with heterozygous LMNA mutations in the amino-terminal region. Two of them had previously reported R60G and R62G mutations and one has a novel D192V mutation. Affected subjects belonging to the pedigree with heterozygous R62G mutation had atrial fibrillation and required pacemaker implantation. The affected subjects from the other pedigrees with R60G and D192V mutations developed severe cardiomyopathy requiring defibrillator implantation and cardiac transplantation before 30 years of age in some and premature death in the fourth decade in others. Thus, our report provides further evidence of association of a multisystem dystrophy syndrome in FPLD patients harboring amino-terminal mutations in LMNA. Increased understanding of the genotype-phenotype association might help devise clinical strategies aimed at preventing devastating manifestations of cardiomyopathy including heart failure, arrhythmias and sudden death. Furthermore, the underlying molecular mechanisms by which these amino-terminal mutations cause lipodystrophy as well as cardiomyopathy remain to be understood.
Collapse
Affiliation(s)
- L Subramanyam
- Department of Internal Medicine, Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8537, USA
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Inherited lipodystrophies are rare autosomal recessive and dominant disorders characterized by selective, but variable, loss of adipose tissue. Marked hypertriglyceridemia is a common feature of these disorders and highlights the role of adipose tissue in lipid homeostasis. In the last decade, advances have been made in elucidating the molecular basis of many inherited lipodystrophies. We review the new insights in the pathophysiology and treatment of these disorders based on the current understanding of the biologic role of these lipodystrophy genes. RECENT FINDINGS Eight different genetic loci, including 1-acylglycerol-3-phosphate-O-acyltransferase 2, Berardinelli-Seip congenital lipodystrophy 2, caveolin 1, lamin A/C, peroxisome proliferator-activated receptor gamma, v-AKT murine thymoma oncogene homolog 2, zinc metalloprotease and lipase maturation factor 1 have been described linked to different lipodystrophy syndromes. Mutations in these genes may cause fat loss and dyslipidemia through multiple mechanisms, which remain fully elucidated; however, they may involve defects in development and differentiation of adipocytes, and premature death and apoptosis of adipocytes. Hypertriglyceridemia is a consequence of increased VLDL synthesis from the liver, which is also loaded by ectopic triglyceride deposition, reduced clearance of triglyceride-rich lipoproteins or both. A recent study in mice with Agpat2 deficiency reports marked reduction in serum triglyceride upon feeding a fat-free diet, which suggests that low-fat diets are likely to be beneficial in lipodystrophic patients. Leptin replacement therapy is also a promising therapeutic option for lipodystrophic patients with hypoleptinemia. SUMMARY Inherited lipodystrophies are an important cause for monogenic hypertriglyceridemia and serve to highlight the role of adipocytes in maintaining normolipidemia.
Collapse
Affiliation(s)
- Vinaya Simha
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
48
|
Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009; 119:1825-36. [PMID: 19587457 PMCID: PMC2701866 DOI: 10.1172/jci37679] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The main function of the nuclear lamina, an intermediate filament meshwork lying primarily beneath the inner nuclear membrane, is to provide structural scaffolding for the cell nucleus. However, the lamina also serves other functions, such as having a role in chromatin organization, connecting the nucleus to the cytoplasm, gene transcription, and mitosis. In somatic cells, the main protein constituents of the nuclear lamina are lamins A, C, B1, and B2. Interest in the nuclear lamins increased dramatically in recent years with the realization that mutations in LMNA, the gene encoding lamins A and C, cause a panoply of human diseases ("laminopathies"), including muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. Here, we review the laminopathies and the long strange trip from basic cell biology to therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Loren G. Fong
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Antoine Muchir
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Stephen G. Young
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
49
|
Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:507-13. [PMID: 19162222 PMCID: PMC2693450 DOI: 10.1016/j.bbalip.2008.12.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/26/2008] [Accepted: 12/23/2008] [Indexed: 11/15/2022]
Abstract
The adipocytes synthesize and store triglycerides as lipid droplets surrounded by various proteins and phospholipids at its surface. Recently, the molecular basis of some of the genetic syndromes of lipodystrophies has been elucidated and some of these genetic loci have been found to contribute to lipid droplet formation in adipocytes. The two main types of genetic lipodystrophies are congenital generalized lipodystrophy (CGL) and familial partial lipodystrophy (FPL). So far, three CGL loci: 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2) and caveolin 1 (CAV1) and four FPL loci: lamin A/C (LMNA), peroxisome proliferator-activated receptor gamma (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2) and zinc metalloprotease (ZMPSTE24), have been identified. AGPAT2 plays a critical role in the synthesis of glycerophospholipids and triglycerides required for lipid droplet formation. Another protein, seipin (encoded by BSCL2 gene), has been found to induce lipid droplet fusion. CAV1 is an integral component of caveolae and might contribute towards lipid droplet formation. PPARgamma and AKT2 play important role in adipogenesis and lipid synthesis. In this review, we discuss and speculate about the contribution of various lipodystrophy genes and their products in the lipid droplet formation.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | |
Collapse
|
50
|
McPherson E, Turner L, Zador I, Reynolds K, Macgregor D, Giampietro PF. Ovarian failure and dilated cardiomyopathy due to a novel lamin mutation. Am J Med Genet A 2009; 149A:567-72. [DOI: 10.1002/ajmg.a.32627] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|