1
|
Vyas SK, Das A, Suryanarayana Murty U, Dixit VA. Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms. Mol Inform 2024; 43:e202400008. [PMID: 39110066 DOI: 10.1002/minf.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/18/2024] [Accepted: 06/24/2024] [Indexed: 10/16/2024]
Abstract
Sulphotransferases (SULTs) are a major phase II metabolic enzyme class contributing ~20 % to the Phase II metabolism of FDA-approved drugs. Ignoring the potential for SULT-mediated metabolism leaves a strong potential for drug-drug interactions, often causing late-stage drug discovery failures or black-boxed warnings on FDA labels. The existing models use only accessibility descriptors and machine learning (ML) methods for class and site of sulfonation (SOS) predictions for SULT. In this study, a variety of accessibility, reactivity, and hybrid models and algorithms have been developed to make accurate substrate and SOS predictions. Unlike the literature models, reactivity parameters for the aliphatic or aromatic hydroxyl groups (R/Ar-O-H), the Bond Dissociation Energy (BDE) gave accurate models with a True Positive Rate (TPR)=0.84 for SOS predictions. We offer mechanistic insights to explain these novel findings that are not recognized in the literature. The accessibility parameters like the ratio of Chemgauss4 Score (CGS) and Molecular Weight (MW) CGS/MW and distance from cofactor (Dis) were essential for class predictions and showed TPR=0.72. Substrates consistently had lower BDE, Dis, and CGS/MW than non-substrates. Hybrid models also performed acceptablely for SOS predictions. Using the best models, Algorithms gave an acceptable performance in class prediction: TPR=0.62, False Positive Rate (FPR)=0.24, Balanced accuracy (BA)=0.69, and SOS prediction: TPR=0.98, FPR=0.60, and BA=0.69. A rule-based method was added to improve the predictive performance, which improved the algorithm TPR, FPR, and BA. Validation using an external dataset of drug-like compounds gave class prediction: TPR=0.67, FPR=0.00, and SOS prediction: TPR=0.80 and FPR=0.44 for the best Algorithm. Comparisons with standard ML models also show that our algorithm shows higher predictive performance for classification on external datasets. Overall, these models and algorithms (SOS predictor) give accurate substrate class and site (SOS) predictions for SULT-mediated Phase II metabolism and will be valuable to the drug discovery community in academia and industry. The SOS predictor is freely available for academic/non-profit research via the GitHub link.
Collapse
Affiliation(s)
- Shivam Kumar Vyas
- Department of Medicinal Chemistry, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Pin, National Institute of Pharmaceutical Education and Research, Guwahati, (NIPER Guwahati), Guwahati, Assam, 781101, India
| | - Avik Das
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Vidya Vihar Campus 41, Pilani, Rajasthan, 333031, India
- Current address: Department of Primary Intelligence, IQVIA, Sarjapur-Marathahalli Outer Ring Road Embassy Tech Square, Bangalore, 560103 Karnataka, India
| | - Upadhyayula Suryanarayana Murty
- Department of Medicinal Chemistry, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Pin, National Institute of Pharmaceutical Education and Research, Guwahati, (NIPER Guwahati), Guwahati, Assam, 781101, India
| | - Vaibhav A Dixit
- Department of Medicinal Chemistry, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Pin, National Institute of Pharmaceutical Education and Research, Guwahati, (NIPER Guwahati), Guwahati, Assam, 781101, India
| |
Collapse
|
2
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
3
|
Deng Q, Yang Y, Liu Y, Zou M, Huang G, Yang S, Li L, Qu Y, Luo Y, Zhang X. Assessing immune hepatotoxicity of troglitazone with a versatile liver-immune-microphysiological-system. Front Pharmacol 2024; 15:1335836. [PMID: 38873410 PMCID: PMC11169855 DOI: 10.3389/fphar.2024.1335836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Youlong Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuangui Liu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengting Zou
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Guiyuan Huang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Shiqi Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lingyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Roux S, Cherradi S, Duong HT. Exploiting the predictive power of educated spheroids to detect immune-mediated idiosyncratic drug-induced liver injury: the case of troglitazone. Front Pharmacol 2024; 15:1378371. [PMID: 38659594 PMCID: PMC11039894 DOI: 10.3389/fphar.2024.1378371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a major concern in drug development because its occurrence is unpredictable. Presently, iDILI prediction is a challenge, and cell toxicity is observed only at concentrations that are much higher than the therapeutic doses in preclinical models. Applying a proprietary cell educating technology, we developed a person-dependent spheroid system that contains autologous educated immune cells that can detect iDILI risk at therapeutic concentrations. Integrating this system into a high-throughput screening platform will help pharmaceutical companies accurately detect the iDILI risk of new molecules de-risking drug development.
Collapse
Affiliation(s)
| | | | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| |
Collapse
|
5
|
Singh G, Kumar R, D S D, Chaudhary M, Kaur C, Khurrana N. Thiazolidinedione as a Promising Medicinal Scaffold for the Treatment of Type 2 Diabetes. Curr Diabetes Rev 2024; 20:e201023222411. [PMID: 37867272 DOI: 10.2174/0115733998254798231005095627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Thiazolidinediones, also known as glitazones, are considered as biologically active scaffold and a well-established class of anti-diabetic agents for the treatment of type 2 diabetes mellitus. Thiazolidinediones act by reducing insulin resistance through elevated peripheral glucose disposal and glucose production. These molecules activate peroxisome proliferated activated receptor (PPARγ), one of the sub-types of PPARs, and a diverse group of its hybrid have also shown numerous therapeutic activities along with antidiabetic activity. OBJECTIVE The objective of this review was to collect and summarize the research related to the medicinal potential, structure-activity relationship and safety aspects of thiazolidinedione analogues designed and investigated in type 2 diabetes during the last two decades. METHODS The mentioned objective was achieved by collecting and reviewing the research manuscripts, review articles, and patents from PubMed, Science Direct, Embase, google scholar and journals related to the topic from different publishers like Wiley, Springer, Elsevier, Taylor and Francis, Indian and International government patent sites etc. Results: The thiazolidinedione scaffold has been a focus of research in the design and synthesis of novel derivatives for the management of type 2 diabetes, specifically in the case of insulin resistance. The complications like fluid retention, idiosyncratic hepatotoxicity, weight gain and congestive heart failure in the case of trosiglitazone, and pioglitazone have restricted their use. The newer analogues have been synthesized by different research groups to attain better efficacy and less side effects. CONCLUSION Thus, the potential of thiazolidinediones in terms of their chemical evolution, action on nuclear receptors, aldose reductase and free fatty acid receptor 1 is well established. The newer TZD analogues with better safety profiles and tolerability will soon be available in the market for common use without further delay.
Collapse
Affiliation(s)
- Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Desna D S
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Navneet Khurrana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
6
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
7
|
Takemura A, Ishii S, Ikeyama Y, Esashika K, Takahashi J, Ito K. New in vitro screening system to detect drug-induced liver injury using a culture plate with low drug sorption and high oxygen permeability. Drug Metab Pharmacokinet 2023; 52:100511. [PMID: 37531708 DOI: 10.1016/j.dmpk.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023]
Abstract
Drug-induced liver injury (DILI) is a major factor underlying drug withdrawal from the market. Therefore, it is important to predict DILI during the early phase of drug discovery. Metabolic activation and mitochondrial toxicity are good indicators of the potential for DILI. However, hepatocyte function, including drug-metabolizing enzyme activity and mitochondrial function, reportedly decreases under conventional culture conditions; therefore, these conditions fail to precisely detect metabolic activation and mitochondrial toxicity-induced cell death. To resolve this issue, we employed a newly developed cell culture plate with high oxygen permeability and low drug sorption (4-polymethyl-1-pentene [PMP] plate). Under PMP plate conditions, cytochrome P450 (CYP) activity and mitochondrial function were increased in primary rat hepatocytes. Following l-buthionine-sulfoximine-induced glutathione depletion, acetaminophen-induced cell death significantly increased under PMP plate conditions. Additionally, 1-aminobenzotriazole reduced cell death. Moreover, mitochondrial toxicity due to mitochondrial complex inhibitors (ketoconazole, metformin, and phenformin) increased under PMP plate conditions. In summary, PMP plate conditions could improve CYP activity and mitochondrial function in primary rat hepatocytes and potentially detect metabolic activation and mitochondrial toxicity.
Collapse
Affiliation(s)
- Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Sanae Ishii
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yugo Ikeyama
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Katsuhiro Esashika
- New Business Solutions Department, Innovative Solutions Center for Information & Communication Technology, Mitsui Chemicals, Inc., Chiba, Japan
| | - Jun Takahashi
- Bio Technology & Medical Materials Department, Synthetic Chemicals Laboratory, R&D Center, Mitsui Chemicals, Inc., Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
8
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
9
|
Lin X, Meng X, Song Z, Lin J. Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry. Mol Cell Biochem 2022; 477:1905-1920. [PMID: 35348980 DOI: 10.1007/s11010-022-04417-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of psoriasis is complex and has not been completely elucidated. Better understanding of the pathogenesis may contribute to further improvement of our therapeutic strategies controlling psoriasis. Emerging evidence points to a causative relationship between altered activity of peroxisome proliferator-activated receptor γ (PPARγ) and psoriasis. The present review focuses on deeper understanding of the possible role of PPARγ in the pathogenesis of psoriasis and the potential of PPARγ agonist to improve the treatment of psoriasis. PPARγ is decreased in psoriasis. PPARγ possibly has effects on the multiple aspects of the pathogenesis of psoriasis, including abnormal lipid metabolism, insulin resistance, immune cells, pro-inflammatory cytokines, keratinocytes, angiogenesis, oxidative stress, microRNAs and nuclear factor kappa B. As defective activation of PPARγ is involved in psoriasis development, PPARγ agonists may be promising agents for treatment of psoriasis. Pioglitazone appears an effective and safe option in the treatment of patients with psoriasis, but there are still concerns about its potential side effects. Research effort has recently been undertaken to explore the PPARγ-activating potential of natural products. Among them some have been studied clinically or preclinically for treatment of psoriasis with promising results.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, 450 Cresson BLVD, Oaks, PA, 19456, USA
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| |
Collapse
|
10
|
Inhibitory effect of a novel thiazolidinedione derivative on hepatitis B virus entry. Antiviral Res 2021; 194:105165. [PMID: 34419484 DOI: 10.1016/j.antiviral.2021.105165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The development of novel antivirals to treat hepatitis B virus (HBV) infection is still needed because currently available drugs do not completely eradicate chronic HBV in some patients. Recently, troglitazone and ciglitazone, classified among the compounds including the thiazolidinedione (TZD) moiety, were found to inhibit HBV infection, but these compounds are not clinically available. In this study, we synthesized 11 TZD derivatives, compounds 1-11, and examined the effect of each compound on HBV infection in HepG2 cells expressing NTCP (HepG2/NTCP cells). Among the derivatives, (Z)-5-((4'-(naphthalen-1-yl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidine-2,4-dione (compound 6) showed the highest antiviral activity, with an IC50 value of 0.3 μM and a selectivity index (SI) of 85, but compound 6 did not affect HCV infection. Treatment with compound 6 inhibited HBV infection in primary human hepatocytes (PHHs) but did not inhibit viral replication in HepG2.2.15 cells or HBV DNA-transfected Huh7 cells. Moreover, treatment with compound 6 significantly impaired hepatitis delta virus (HDV) infection and inhibited a step in HBV particle internalization but did not inhibit attachment of the preS1 lipopeptide or viral particles to the cell surface. These findings suggest that compound 6 interferes with HBV infection via inhibition of the internalization process.
Collapse
|
11
|
Campesi I, Seghieri G, Franconi F. Type 2 diabetic women are not small type 2 diabetic men: Sex-and-gender differences in antidiabetic drugs. Curr Opin Pharmacol 2021; 60:40-45. [PMID: 34325380 DOI: 10.1016/j.coph.2021.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Many pieces of evidence have accumulated over time suggesting sex-and-gender differences in type 2 diabetes, the most relevant being the greater excess risk of cardiovascular diseases in women with diabetes than in men. Drugs available for the treatment of diabetes have, meanwhile, increased in number and effectiveness over the last 20 years. Nonetheless, overall metabolic control of diabetes continues to be suboptimal, with a clear further disadvantage for women. Moreover, old and new glucose-lowering drugs present some sex-and-gender differences, although women continue to be underrepresented in all cardiovascular outcome trials testing their efficacy and protective effects. We conclude that pharmacology should wear gender glasses starting from preclinical research to overcome all these gender gaps.
Collapse
Affiliation(s)
- Ilaria Campesi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100, Sassari, Italy; Laboratorio Nazionale di Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100, Sassari, Italy.
| | | | - Flavia Franconi
- Laboratorio Nazionale di Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100, Sassari, Italy
| |
Collapse
|
12
|
Mueller SL, Chrysanthopoulos PK, Halili MA, Hepburn C, Nebl T, Supuran CT, Nocentini A, Peat TS, Poulsen SA. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors-A Spin-Off Discovery from Fragment Screening. Molecules 2021; 26:3010. [PMID: 34070212 PMCID: PMC8158703 DOI: 10.3390/molecules26103010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.
Collapse
Affiliation(s)
- Sarah L. Mueller
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Panagiotis K. Chrysanthopoulos
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd., Rydalmere, NSW 2116, Australia;
| | - Tom Nebl
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Thomas S. Peat
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
13
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
14
|
Wu G, Win S, Than TA, Chen P, Kaplowitz N. Gut Microbiota and Liver Injury (I)-Acute Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:23-37. [PMID: 32323178 DOI: 10.1007/978-981-15-2385-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, intestinal microbial communities have been considered to play a vital role in host liver health. Acute liver injury (ALI) is the manifestation of sudden hepatic injury and arises from a variety of causes. The studies of dysbiosis in gut microbiota provide new insight into the pathogenesis of ALI. However, the relationship of gut microbiota and ALI is not well understood, and the contribution of gut microbiota to ALI has not been well characterized. In this chapter, we integrate several major pathogenic factors in ALI with the role of gut microbiota to stress the significance of gut microbiota in prevention and treatment of ALI.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, N.No 1838 Guangzhou Ave., Guangzhou, 510515, China
| | - Sanda Win
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90089, USA
| | - Tin A Than
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90089, USA
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, N.No 1838 Guangzhou Ave., Guangzhou, 510515, China
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
S S, Vuppu S. In vitro drug metabolism and pharmacokinetics of a novel thiazolidinedione derivative, a potential anticancer compound. J Pharm Biomed Anal 2020; 179:113000. [PMID: 31787460 DOI: 10.1016/j.jpba.2019.113000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/21/2023]
Abstract
Thiazolidinediones are known for their activity against Type 2 diabetes and are currently being repurposed for their potent anti-cancer activity. In the present study, we have assessed in vitro metabolic properties and in vivo pharmacokinetic parameters of a novel thiazolidinedione derivative, BIT-15-67, a potential anticancer compound. BIT-15-67 showed low solubility in aqueous buffers at different pH values. The permeability was determined across the Caco-2 monolayer and BIT-15-67 showed high permeability and an efflux ratio of less than 2 suggesting that it is not a substrate of the efflux transporters (P-gp & BCRP). The plasma protein binding was evaluated by equilibrium dialysis and the compound exhibited moderate binding to mouse and rat plasma proteins. BIT-15-67 was stable (half-life > 30 min.) in mouse, rat, dog and human liver microsomes and unstable (half-life <15 min.) in rat hepatocytes suggesting possible Phase II metabolism. Liquid chromatography-tandem mass spectrometry was used to identify Phase I and Phase II metabolites. One of each Phase I and Phase II metabolites have been identified in rat hepatocytes samples. The BIT-15-67 is not an inhibitor of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. The PK parameters were determined in both male and female Wistar rats after single intravenous dose administration of BIT-15-67. In rats, the mean plasma clearance of BIT-15-67 was higher in males than in females and the terminal plasma elimination half-life was shorter in males than in females. The compound was highly distributed in the tissues. Overall, the absolute oral bioavailability was 5-fold higher in females (38 %) than in males (7 %). In female nude mice with tumors, BIT-15-67 was well distributed among the collected tissues with the highest concentration in the liver. The ratio of the concentrations in tumor vs. the plasma was 0.5 which could be an important attribute in the development of the compound for anti-cancer research.
Collapse
Affiliation(s)
| | - Suneetha Vuppu
- Vellore Institute of Technology, 632014, Vellore, India.
| |
Collapse
|
16
|
Weissman S, Rajaratnam NG, Qureshi N, Inayat F, Elias S. Drug-Induced Liver Injury: A Unique Presentation of Single-Dose Administration of Propylthiouracil. J Investig Med High Impact Case Rep 2020; 8:2324709620951323. [PMID: 32830568 PMCID: PMC7448262 DOI: 10.1177/2324709620951323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antithyroid drug-induced severe liver injury is an uncommon but serious complication. We hereby delineate the case of a 38-year-old female who presented to the emergency department for an impending thyroid storm. After initiation of a single dose of propylthiouracil, her liver enzymes went into the thousands. She was subsequently admitted to the intensive care unit. Propylthiouracil was discontinued and corticosteroids were initiated with the resolution of her elevated liver enzymes. On follow-up, her liver function was at its baseline and thyroid hormone levels were under control. We hope this report will encourage clinicians to cast a broad differential diagnosis in patients presenting with liver injury in the acute setting. Furthermore, it is imperative to raise awareness regarding the ever-increasing list of pharmacologic agents that can perpetuate drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Simcha Weissman
- Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ, USA
| | | | - Nabeel Qureshi
- Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ, USA
| | - Faisal Inayat
- Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Sameh Elias
- Hackensack Meridian Health Palisades Medical Center, North Bergen, NJ, USA
| |
Collapse
|
17
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
18
|
Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, Aithal GP. Drug-induced liver injury. Nat Rev Dis Primers 2019; 5:58. [PMID: 31439850 DOI: 10.1038/s41572-019-0105-0] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is an adverse reaction to drugs or other xenobiotics that occurs either as a predictable event when an individual is exposed to toxic doses of some compounds or as an unpredictable event with many drugs in common use. Drugs can be harmful to the liver in susceptible individuals owing to genetic and environmental risk factors. These risk factors modify hepatic metabolism and excretion of the DILI-causative agent leading to cellular stress, cell death, activation of an adaptive immune response and a failure to adapt, with progression to overt liver injury. Idiosyncratic DILI is a relative rare hepatic disorder but can be severe and, in some cases, fatal, presenting with a variety of phenotypes, which mimic other hepatic diseases. The diagnosis of DILI relies on the exclusion of other aetiologies of liver disease as specific biomarkers are still lacking. Clinical scales such as CIOMS/RUCAM can support the diagnostic process but need refinement. A number of clinical variables, validated in prospective cohorts, can be used to predict a more severe DILI outcome. Although no pharmacological therapy has been adequately tested in randomized clinical trials, corticosteroids can be useful, particularly in the emergent form of DILI related to immune-checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Raul J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Naga Chalasani
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Einar S Björnsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, University of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ayako Suzuki
- Gastroenterology, Duke University, Durham, NC, USA.,Gastroenterology, Durham VA Medical Centre, Durham, NC, USA
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.,University of North Carolina Institute for Drug Safety Sciences, Research Triangle Park, Chapel Hill, NC, USA
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Michael Merz
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Patient Safety, AstraZeneca, Gaithersburg, MD, USA
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain. .,Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain.
| | - Neil Kaplowitz
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Andrade RJ, Aithal GP, Björnsson ES, Kaplowitz N, Kullak-Ublick GA, Larrey D, Karlsen TH. EASL Clinical Practice Guidelines: Drug-induced liver injury. J Hepatol 2019; 70:1222-1261. [PMID: 30926241 DOI: 10.1016/j.jhep.2019.02.014] [Citation(s) in RCA: 646] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Idiosyncratic (unpredictable) drug-induced liver injury is one of the most challenging liver disorders faced by hepatologists, because of the myriad of drugs used in clinical practice, available herbs and dietary supplements with hepatotoxic potential, the ability of the condition to present with a variety of clinical and pathological phenotypes and the current absence of specific biomarkers. This makes the diagnosis of drug-induced liver injury an uncertain process, requiring a high degree of awareness of the condition and the careful exclusion of alternative aetiologies of liver disease. Idiosyncratic hepatotoxicity can be severe, leading to a particularly serious variety of acute liver failure for which no effective therapy has yet been developed. These Clinical Practice Guidelines summarize the available evidence on risk factors, diagnosis, management and risk minimization strategies for drug-induced liver jury.
Collapse
|
20
|
Li Y, Hou L, Wang Y, Xie L, Zhang M, Pan Z, Li Y, Ding Y, Sun M, Qu Y, Liu S. Auricular points acupressure for insulin resistance in overweight/obese women with polycystic ovary syndrome: protocol for a randomised controlled pilot trial. BMJ Open 2019; 9:e027498. [PMID: 31142530 PMCID: PMC6549699 DOI: 10.1136/bmjopen-2018-027498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Approximately 5%-20% of reproductive women suffer from polycystic ovary syndrome (PCOS). Auricular points acupressure (AA) may serve as alternative management for PCOS for its benefits in both physical and psychological well-being. However, the effects of AA for insulin resistance (IR) in overweight/obese PCOS women have not been confirmed. METHODS AND ANALYSIS The present study is designed as a randomised, placebo-controlled pilot trial to evaluate the effectiveness and safety of AA in treating IR in women with PCOS. A total of 60 eligible PCOS subjects will be randomised into an intervention group (AA group) and a control group (sham AA group) in a ratio of 1:1. Magnetic beads will be taped to the auricular points by the same senior acupuncture specialist from the First Affiliated Hospital, Heilongjiang University of Chinese Medicine. The treatment will last for 12 weeks. Primary outcome measure will be changes in homeostasis model assessment of IR between baseline and after 3 months of AA/sham AA treatment. Secondary outcomes include hormonal profile, weight, waist/hip circumference, body mass index, blood pressure, Ferriman-Gallwey score, acne and the assessment of health-related quality of life. Outcome measures are collected at baseline and the end of treatment visit. ETHICS AND DISSEMINATION The protocol has been approved by the ethics committee of the First Affiliated Hospital of Heilongjiang University of Chinese Medicine (HZYLLKY201800301). Written informed consent will be obtained from all participants. The results will be disseminated through peer-reviewed journals for publications. TRIAL REGISTRATION NUMBER NCT03546595; Pre-results.
Collapse
Affiliation(s)
- Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihui Hou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yingji Wang
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Liangzhen Xie
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiwei Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yangyang Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yicheng Ding
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miao Sun
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yufang Qu
- Qiqihar Traditional Chinese Medicine Hospital, Qiqihar, China
| | - Songjiang Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
21
|
Takahashi N, Nobusue H, Shimizu T, Sugihara E, Yamaguchi-Iwai S, Onishi N, Kunitomi H, Kuroda T, Saya H. ROCK Inhibition Induces Terminal Adipocyte Differentiation and Suppresses Tumorigenesis in Chemoresistant Osteosarcoma Cells. Cancer Res 2019; 79:3088-3099. [PMID: 30992323 DOI: 10.1158/0008-5472.can-18-2693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/18/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
Tumors comprise heterogeneous cell types including cancer stem cells (CSC), progenitor cells, and differentiated cells. Chemoresistance is a potential cause of relapse and a key characteristic of CSC, but the development of novel therapeutic approaches for targeting these cells has been limited. We previously established osteosarcoma-initiating (OSi) cells by introducing the gene for c-Myc into bone marrow stromal cells of Ink4a/Arf knockout mice. These OSi cells are composed of two distinct clones: highly tumorigenic cells (AX cells), similar to bipotent committed osteochondral progenitor cells, and tripotent cells of low tumorigenicity (AO cells), similar to mesenchymal stem cells. Here we show that depolymerization of the actin cytoskeleton induces terminal adipocyte differentiation and suppresses tumorigenesis in chemoresistant OSi cells. In contrast to AX cells, AO cells were highly resistant to conventional chemotherapeutic agents such as doxorubicin and were thus identified as chemoresistant cells. Inhibition of Rho-associated coiled-coil containing protein kinase (ROCK) elicited terminal adipocyte differentiation in chemoresistant AO cells through negative regulation of the transcriptional coactivator megakaryoblastic leukemia 1 associated with actin depolymerization. The clinically administered ROCK inhibitor fasudil significantly suppressed growth in vitro and tumorigenicity in vivo of chemoresistant AO cells as well as of OSi cells. Our findings thus suggest a new therapeutic strategy based on the induction of trans-terminal differentiation via modulation of actin cytoskeleton dynamics for therapy-resistant osteosarcoma stem cells. SIGNIFICANCE: These findings suggest that induction of trans-terminal differentiation through regulation of actin dynamics is a potential novel therapeutic approach for targeting chemoresistant stem-like tumor cells.
Collapse
Affiliation(s)
- Nobuhiro Takahashi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Takatsune Shimizu
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sayaka Yamaguchi-Iwai
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Haruko Kunitomi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
22
|
Sato T, Segawa M, Sekine S, Ito K. Mild depolarization is involved in troglitazone-induced liver mitochondrial membrane permeability transition via mitochondrial iPLA 2 activation. J Toxicol Sci 2019; 44:811-820. [DOI: 10.2131/jts.44.811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Masahiro Segawa
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
23
|
Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH, Cochrane Gynaecology and Fertility Group. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev 2017; 11:CD003053. [PMID: 29183107 PMCID: PMC6486196 DOI: 10.1002/14651858.cd003053.pub6] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is characterised by infrequent or absent ovulation, and high levels of androgens and insulin (hyperinsulinaemia). Hyperinsulinaemia occurs secondary to insulin resistance and is associated with increased risk of cardiovascular disease and diabetes mellitus. Insulin-sensitising agents such as metformin may be effective in treating PCOS-related anovulation. OBJECTIVES To evaluate the effectiveness and safety of insulin-sensitising drugs in improving reproductive and metabolic outcomes for women with PCOS undergoing ovulation induction. SEARCH METHODS We searched the following databases from inception to January 2017: Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO and CINAHL. We searched registers of ongoing trials and reference lists from relevant studies. SELECTION CRITERIA We included randomised controlled trials of insulin-sensitising drugs compared with placebo, no treatment, or an ovulation-induction agent for women with oligo and anovulatory PCOS. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility and bias. Primary outcomes were live birth rate and gastrointestinal adverse effects. Secondary outcomes included other pregnancy outcomes, menstrual frequency and metabolic effects. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I2 statistic and reported quality of the evidence for primary outcomes using GRADE methodology. MAIN RESULTS We assessed the interventions metformin, clomiphene citrate, metformin plus clomiphene citrate, D-chiro-inositol, rosiglitazone and pioglitazone. We compared these with each other, placebo or no treatment. We included 48 studies (4451 women), 42 of which investigated metformin (4024 women). Evidence quality ranged from very low to moderate. Limitations were risk of bias (poor reporting of methodology and incomplete outcome data), imprecision and inconsistency. Metformin versus placebo or no treatmentThe evidence suggests that metformin may improve live birth rates compared with placebo (OR 1.59, 95% CI 1.00 to 2.51, 4 studies, 435 women, I2 = 0%, low-quality evidence). The metformin group experienced more gastrointestinal side effects (OR 4.76, 95% CI 3.06 to 7.41, 7 studies, 670 women, I2 = 61%, moderate-quality evidence) but had higher rates of clinical pregnancy (OR 1.93, 95% CI 1.42 to 2.64, 9 studies, 1027 women, I2 = 43%, moderate-quality evidence), ovulation (OR 2.55, 95% CI 1.81 to 3.59, 14 studies, 701 women, I2 = 58%, moderate-quality evidence) and menstrual frequency (OR 1.72, 95% CI 1.14 to 2.61, 7 studies, 427 women, I2 = 54%, low-quality evidence). There was no clear evidence of a difference in miscarriage rates (OR 1.08, 95% CI 0.50 to 2.35, 4 studies, 748 women, I2 = 0%, low-quality evidence). Metformin plus clomiphene citrate versus clomiphene citrate alone There was no conclusive evidence of a difference between the groups in live birth rates (OR 1.21, 95% CI 0.92 to 1.59, 9 studies, 1079 women, I2 = 20%, low-quality evidence), but gastrointestinal side effects were more common with combined therapy (OR 3.97, 95% CI 2.59 to 6.08, 3 studies, 591 women, I2 = 47%, moderate-quality evidence). However, the combined therapy group had higher rates of clinical pregnancy (OR 1.59, 95% CI 1.27 to 1.99, 16 studies, 1529 women, I2 = 33%, moderate-quality evidence) and ovulation (OR 1.57, 95% CI 1.28 to 1.92, 21 studies, 1624 women, I2 = 64%, moderate-quality evidence). There was a statistically significant difference in miscarriage rate per woman, with higher rates in the combined therapy group (OR 1.59, 95% CI 1.03 to 2.46, 9 studies, 1096 women, I2 = 0%, low-quality evidence) but this is of uncertain clinical significance due to low-quality evidence, and no clear difference between groups when we analysed miscarriage per pregnancy (OR 1.30, 95% CI 0.80 to 2.12, 8 studies; 400 pregnancies, I2 = 0%, low-quality evidence). Metformin versus clomiphene citrateWhen all studies were combined, findings for live birth were inconclusive and inconsistent (OR 0.71, 95% CI 0.49 to 1.01, 5 studies, 741 women, I2 = 86%, very low-quality evidence). In subgroup analysis by obesity status, obese women had a lower birth rate in the metformin group (OR 0.30, 95% CI 0.17 to 0.52, 2 studies, 500 women, I2 = 0%, very low-quality evidence), while data from the non-obese group showed a possible benefit from metformin, with high heterogeneity (OR 1.71, 95% CI 1.00 to 2.94, 3 studies, 241 women, I2 = 78%, very low-quality evidence). Similarly, among obese women taking metformin there were lower rates of clinical pregnancy (OR 0.34, 95% CI 0.21 to 0.55, 2 studies, 500 women, I2 = 0%, very low-quality evidence) and ovulation (OR 0.29, 95% CI 0.20 to 0.43 2 studies, 500 women, I2 = 0%, low-quality evidence) while among non-obese women, the metformin group had more pregnancies (OR 1.56, 95% CI 1.05 to 2.33, 5 studies, 490 women, I2 = 41%, very low-quality evidence) and no clear difference in ovulation rates (OR 0.81, 95% CI 0.51 to 1.28, 4 studies, 312 women, low-quality evidence, I2=0%). There was no clear evidence of a difference in miscarriage rates (overall: OR 0.92, 95% CI 0.50 to 1.67, 5 studies, 741 women, I2 = 52%, very low-quality evidence). D-chiro-inositol (2 studies), rosiglitazone (1 study) or pioglitazone (1 study) versus placebo or no treatmentWe were unable to draw conclusions regarding other insulin-sensitising drugs as no studies reported primary outcomes. AUTHORS' CONCLUSIONS Our updated review suggests that metformin alone may be beneficial over placebo for live birth, although the evidence quality was low. When metformin was compared with clomiphene citrate, data for live birth were inconclusive, and our findings were limited by lack of evidence. Results differed by body mass index (BMI), emphasising the importance of stratifying results by BMI. An improvement in clinical pregnancy and ovulation suggests that clomiphene citrate remains preferable to metformin for ovulation induction in obese women with PCOS.An improved clinical pregnancy and ovulation rate with metformin and clomiphene citrate versus clomiphene citrate alone suggests that combined therapy may be useful although we do not know whether this translates into increased live births. Women taking metformin alone or with combined therapy should be advised that there is no evidence of increased miscarriages, but gastrointestinal side effects are more likely.
Collapse
Affiliation(s)
- Lara C Morley
- The General Infirmary of LeedsDepartment of Obstetrics and GynaecologyUnited Leeds Teaching Hospitals NHS TrustBelmont GroveLeedsUKLS2 9NS
| | - Thomas Tang
- Royal Jubilee Maternity ServiceRegional Fertility CentreGrosvenor RoadBelfastUKBT12 6BA
| | - Ephia Yasmin
- University College Hospital2nd floor North, 250 Euston RoadLondonUKNW1 2PG
| | - Robert J Norman
- University of AdelaideObstetrics & Gynaecology, Robinson InstituteAdelaideSouth AustraliaAustralia5005
| | - Adam H Balen
- The Leeds Centre for Reproductive Medicine, Seacroft HospitalReproductive Medicine and SurgeryYork RoadLeedsUKLS14 6UH
| | | |
Collapse
|
24
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
25
|
Abstract
BACKGROUND Many countries lack fully functional pharmacovigilance programs, and public budgets allocated to pharmacovigilance in industrialized countries remain low due to resource constraints and competing priorities. OBJECTIVE Using 3 case examples, we sought to estimate the public health and economic benefits resulting from public investment in active pharmacovigilance programs to detect adverse drug effects. RESEARCH DESIGN We assessed 3 examples in which early signals of safety hazards were not adequately recognized, resulting in continued exposure of a large number of patients to these drugs when safer and effective alternative treatments were available. The drug examples studied were rofecoxib, cerivastatin, and troglitazone. Using an individual patient simulation model and the health care system perspective, we estimated the potential costs that could have been averted by early systematic detection of safety hazards through the implementation of active surveillance programs. RESULTS We found that earlier drug withdrawal made possible by active safety surveillance would most likely have resulted in savings in direct medical costs of $773-$884 million for rofecoxib, $3-$10 million for cerivastatin, and $38-$63 million for troglitazone in the United States through the prevention of adverse events. By contrast, the yearly public investment in Food and Drug Administration initiated population-based pharmacovigilance activities in the United States is about $42.5 million at present. CONCLUSION These examples illustrate a critical and economically justifiable role for active adverse effect surveillance in protecting the health of the public.
Collapse
|
26
|
Patil PD, Mahajan UB, Patil KR, Chaudhari S, Patil CR, Agrawal YO, Ojha S, Goyal SN. Past and current perspective on new therapeutic targets for Type-II diabetes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1567-1583. [PMID: 28579755 PMCID: PMC5446975 DOI: 10.2147/dddt.s133453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.
Collapse
Affiliation(s)
- Pradip D Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Kalpesh R Patil
- Department of Pharmacology, H. R. Patel Institute of Pharmaceutical Education and Research
| | - Sandip Chaudhari
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Yogeeta O Agrawal
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, UAE
| | - Sameer N Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| |
Collapse
|
27
|
Horwitz RI, Singer BH. Why evidence-based medicine failed in patient care and medicine-based evidence will succeed. J Clin Epidemiol 2017; 84:14-17. [DOI: 10.1016/j.jclinepi.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
29
|
Hasegawa T, Nakanishi S, Minami K, Higashino H, Kataoka M, Shitara Y, Yamashita S. Increase in the systemic exposure of primary metabolites of Midazolam in rat arising from CYP inhibition or hepatic dysfunction. Drug Metab Pharmacokinet 2016; 32:69-76. [PMID: 28109684 DOI: 10.1016/j.dmpk.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022]
Abstract
The main purpose of this study is to demonstrate the possibility of increase in the systemic exposure of drug metabolites by CYP-inhibition or acute hepatitis. Midazolam (MDZ) was used as a model substrate of CYP3A and 1-aminobenzotriazole (ABT) was used as a CYP-inhibitor. After oral pretreatment with ABT, MDZ was intravenously injected to rats and the plasma profiles of MDZ and its primary metabolites, 1'-hydroxy MDZ and 4-hydroxy MDZ, were observed. In the ABT-pretreatment rats, plasma AUCs of both metabolites were much larger than those in control rats, demonstrating a higher systemic exposure of metabolites under CYP-inhibited condition. Furthermore, kinetic analysis revealed that the amount of both metabolites entered into the systemic circulation increased significantly (about 5-times). Increases in the systemic exposure of the primary metabolites of MDZ were also observed in the acute hepatitis rats induced by CCl4-pretreatment. As underlying mechanisms, it was speculated that ABT inhibited the subsequent metabolism of primary metabolites of MDZ in the hepatocytes and enhanced their release to the systemic circulation. In vitro study with rat liver microsomes supported this speculation. In conclusion, this study showed the complexity of PK profiles of drug metabolites, which might lead to new aspects on their safety issue.
Collapse
Affiliation(s)
- Tsubasa Hasegawa
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Satomi Nakanishi
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yoshihisa Shitara
- Pharmacokinetics, Dynamics and Metabolism, Sanofi K.K., Tokyo, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| |
Collapse
|
30
|
Vanhove T, Remijsen Q, Kuypers D, Gillard P. Drug-drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus. Transplant Rev (Orlando) 2016; 31:69-77. [PMID: 27665059 DOI: 10.1016/j.trre.2016.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Post-transplant diabetes mellitus is a frequent complication of solid organ transplantation that generally requires treatment with lifestyle interventions and antidiabetic medication. A number of demonstrated and potential pharmacokinetic drug-drug interactions (DDIs) exist between commonly used immunosuppressants and antidiabetic drugs, which are comprehensively summarized in this review. Cyclosporine (CsA) itself inhibits the cytochrome P450 (CYP) 3A4 enzyme and a variety of drug transporters. As a result, it increases exposure to repaglinide and sitagliptin, will likely increase the exposure to nateglinide, glyburide, saxagliptin, vildagliptin and alogliptin, and could theoretically increase the exposure to gliquidone and several sodium-glucose transporter (SGLT)-2 inhibitors. Currently available data, although limited, suggest that these increases are modest and, particularly with regard to gliptins and SGLT-2 inhibitors, unlikely to result in hypoglycemia. The interaction with repaglinide is more pronounced but does not preclude concomitant use if repaglinide dose is gradually titrated. Mycophenolate mofetil and azathioprine do not engage in DDIs with any antidiabetic drug. Although calcineurin inhibitors (CNIs) and mammalian target of rapamycin inhibitors (mTORi) are intrinsically prone to DDIs, their disposition is not influenced by metformin, pioglitazone, sulfonylureas (except possibly glyburide) or insulin. An effect of gliptins on the disposition of CNIs and mTORi is unlikely, but has not been definitively ruled out. Based on their disposition profiles, glyburide and canagliflozin could affect CNI and mTORi disposition although this requires further study. Finally, delayed gastric emptying as a result of glucagon-like peptide-1 agonists seems to have a limited, but not necessarily negligible effect on CNI disposition.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, and Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| | - Quinten Remijsen
- Department of Medical Affairs, AstraZeneca BeLux, Uccle, Belgium
| | - Dirk Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, and Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Gillard
- Laboratory and Clinic of Experimental Medicine and Endocrinology, KU Leuven - University of Leuven, and Department of Endocrinology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Rizos CV, Kei A, Elisaf MS. The current role of thiazolidinediones in diabetes management. Arch Toxicol 2016; 90:1861-81. [DOI: 10.1007/s00204-016-1737-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
|
32
|
Affiliation(s)
- Jennifer Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, New South Wales
| | | |
Collapse
|
33
|
Lewis JH. The Art and Science of Diagnosing and Managing Drug-induced Liver Injury in 2015 and Beyond. Clin Gastroenterol Hepatol 2015; 13:2173-89.e8. [PMID: 26116527 DOI: 10.1016/j.cgh.2015.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) remains a leading reason why new compounds are dropped from further study or are the subject of product warnings and regulatory actions. Hy's Law of drug-induced hepatocellular jaundice causing a case-fatality rate or need for transplant of 10% or higher has been validated in several large national registries, including the ongoing, prospective U.S. Drug-Induced Liver Injury Network. It serves as the basis for stopping rules in clinical trials and in clinical practice. Because DILI can mimic all known causes of acute and chronic liver disease, establishing causality can be difficult. Histopathologic findings are often nonspecific and rarely, if ever, considered pathognomonic. A daily drug dose >50-100 mg is more likely to be hepatotoxic than does <10 mg, especially if the compound is highly lipophilic or undergoes extensive hepatic metabolism. The quest for a predictive biomarker to replace alanine aminotransferase is ongoing. Markers of necrosis and apoptosis such as microRNA-122 and keratin 18 may prove useful in identifying patients at risk for severe injury when they initially present with a suspected acetaminophen overdose. Although a number of drugs causing idiosyncratic DILI have HLA associations that may allow for pre-prescription testing to prevent hepatotoxicity, the cost and relatively low frequency of injury among affected patients limit the current usefulness of such genome-wide association studies. Alanine aminotransferase monitoring is often recommended but has rarely been shown to be an effective method to prevent serious DILI. Guidelines on the diagnosis and management of DILI have recently been published, although specific therapies remain limited. The LiverTox Web site has been introduced as an interactive online virtual textbook that makes the latest information on more than 650 agents available to clinicians, regulators, and drug developers alike.
Collapse
Affiliation(s)
- James H Lewis
- Hepatology Section, Division of Gastroenterology, Georgetown University Hospital, Washington, District of Columbia.
| |
Collapse
|
34
|
Sharapova T, Devanarayan V, LeRoy B, Liguori MJ, Blomme E, Buck W, Maher J. Evaluation of miR-122 as a Serum Biomarker for Hepatotoxicity in Investigative Rat Toxicology Studies. Vet Pathol 2015; 53:211-21. [DOI: 10.1177/0300985815591076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs are short noncoding RNAs involved in regulation of gene expression. Certain microRNAs, including miR-122, seem to have ideal properties as biomarkers due to good stability, high tissue specificity, and ease of detection across multiple species. Recent reports have indicated that miR-122 is a highly liver-specific marker detectable in serum after liver injury. The purpose of the current study was to assess the performance of miR-122 as a serum biomarker for hepatotoxicity in short-term (5–28 days) repeat-dose rat toxicology studies when benchmarked against routine clinical chemistry and histopathology. A total of 23 studies with multiple dose levels of experimental compounds were examined, and they included animals with or without liver injury and with various hepatic histopathologic changes. Serum miR-122 levels were quantified by reverse transcription quantitative polymerase chain reaction. Increases in circulating miR-122 levels highly correlated with serum elevations of liver enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH). Statistical analysis showed that miR-122 outperformed ALT as a biomarker for histopathologically confirmed liver toxicity and was equivalent in performance to AST and GLDH. Additionally, an increase of 4% in predictive accuracy was obtained using a multiparameter approach incorporating miR-122 with ALT, AST, and GLDH. In conclusion, serum miR-122 levels can be utilized as a biomarker of hepatotoxicity in acute and subacute rat toxicology studies, and its performance can rival or exceed those of standard enzyme biomarkers such as the liver transaminases.
Collapse
Affiliation(s)
- T. Sharapova
- Investigative Toxicology and Pathology, Abbvie, North Chicago, IL, USA
| | | | - B. LeRoy
- Investigative Toxicology and Pathology, Abbvie, North Chicago, IL, USA
| | - M. J. Liguori
- Cell, Molecular, and Exploratory Toxicology, Abbvie, North Chicago, IL, USA
| | - E. Blomme
- Investigative Toxicology and Pathology, Abbvie, North Chicago, IL, USA
| | - W. Buck
- Cell, Molecular, and Exploratory Toxicology, Abbvie, North Chicago, IL, USA
| | - J. Maher
- Investigative Toxicology and Pathology, Abbvie, North Chicago, IL, USA
| |
Collapse
|
35
|
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92:73-89. [PMID: 25083916 PMCID: PMC4212005 DOI: 10.1016/j.bcp.2014.07.018] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Xin Liu
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | | | - Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | | |
Collapse
|
36
|
Profiling cumulative proportional reporting ratios of drug-induced liver injury in the FDA Adverse Event Reporting System (FAERS) database. Drug Saf 2014; 36:1169-78. [PMID: 24178291 DOI: 10.1007/s40264-013-0116-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early prediction and accurate characterization of risk for serious liver injury associated with newly marketed drugs remains an important challenge for clinicians, the pharmaceutical industry, and regulators. To date, a biomarker that specifically indicates exposure to a drug as the etiologic cause of liver injury has not been identified. OBJECTIVES Using cumulative proportional reporting ratios (PRRs), we investigated 'real-time' profiles of a set of pharmaceuticals, over the first 3 years of US marketing, for the signaling of clinically serious drug-induced liver injury (DILI) in a large spontaneous-reporting database. METHODS Using report counts of hepatic failure or clinically serious liver injury obtained from the FDA Adverse Events Reporting System (FAERS) database, PRRs of adverse drug event terms were calculated by division of counts of domestic reports of these events by counts of all serious adverse events for each of 13 selected drugs associated with a broad range of hepatotoxic risk (including three linked to only rare instances of clinically apparent liver injury) with reference to all other drugs in the database. Drug-specific cumulative PRRs were measured at successive intervals (calendar quarters) using cumulative tallies of FAERS reports to generate time-based profiles over the initial 3 years of US marketing. RESULTS In the set of drugs analyzed, those with no known hepatotoxic risk demonstrated time-based cumulative PRR profiles that approximate the background rates of hepatic failure and serious liver injury reported in the entire FAERS database. In contrast, those that were removed from marketing or subjected to marketing restrictions due to their potential to cause liver injury were associated with profiles of rapidly rising cumulative PRRs that were greater than 5 within the first 10 million domestic prescriptions or the first four quarters of US marketing. The systematic tracking and identification of rising PRRs for DILI associated with newly marketed pharmaceutical and biological agents is a valuable tool for identification of safety signals within the FAERS database. LIMITATIONS Disproportionality profiling of spontaneous reports in FAERS (e.g., cumulative PRR measurements), which signals an association between a recently marketed drug and liver injury, is not a method to quantitatively measure drug-related risk. Regulatory actions in response to emerging drug safety concerns often depend on an accurate assessment of risks using multiple sources of data and the consideration of overall benefits and risks of the agent. Causality must be determined through analysis of individual cases to exclude other etiologies of liver injury. CONCLUSION The FAERS database can be used to advance empiric hepatotoxicity time-trending reporting levels for newly marketed agents in order to rapidly identify recently launched potential hepatotoxic agents and initiate further evaluation.
Collapse
|
37
|
Evans SJW, Leufkens HGM. Regulatory decision-making: are we getting it right? Pharmacoepidemiol Drug Saf 2014; 23:1012-6. [PMID: 25111962 DOI: 10.1002/pds.3695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen J W Evans
- Department of Medical Statistics, The London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
38
|
Affiliation(s)
- James H. Lewis
- Division of Gastroenterology and HepatologyGeorgetown University HospitalWashingtonDC
| |
Collapse
|
39
|
de Lima Toccafondo Vieira M, Tagliati CA. Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools. Expert Opin Drug Metab Toxicol 2014; 10:581-97. [PMID: 24588537 DOI: 10.1517/17425255.2014.884069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Impaired bile formation leads to the accumulation of cytotoxic bile salts in hepatocytes and, consequently, cholestasis and severe liver disease. Knowledge of the role of hepatobiliary transporters, especially the bile salt export pump (BSEP), in the pathogenesis of cholestasis is continuously increasing. AREAS COVERED This review provides an introduction into the role of these transport proteins in bile formation. It addresses the clinical relevance and pathophysiologic consequences of altered functions of these transporters by genetic mutations and drugs. In particular, the current practical aspects of identification and mitigation of drug candidates with liver liabilities employed during drug development, with an emphasis on preclinical screening for BSEP interaction, are discussed. EXPERT OPINION Within the potential pathogenetic mechanisms of acquired cholestasis, the inhibition of BSEP by drugs is well established. Interference of a new compound with BSEP transport activity should raise a warning sign to conduct follow-up experiments and to monitor liver function during clinical development. A combination of in vitro screening for transport interaction, in silico predicting models, and consideration of physicochemical and metabolic properties should lead to a more efficient screening of potential liver liability.
Collapse
Affiliation(s)
- Manuela de Lima Toccafondo Vieira
- Faculdade de Farmácia - UFMG, Departamento de Análises Clínicas e Toxicológicas, Av. Antônio Carlos, 6.627 - Pampulha, 31270-901 - Belo Horizonte - MG , Brazil +55 31 3547 3462 ;
| | | |
Collapse
|
40
|
Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf 2014; 36:491-503. [PMID: 23620168 DOI: 10.1007/s40264-013-0048-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of small-molecule tyrosine kinase inhibitors (TKIs) in clinical oncology has transformed the treatment of certain forms of cancers. As of 31 March 2013, 18 such agents have been approved by the US Food and Drug Administration (FDA), 15 of these also by the European Medicines Agency (EMA), and a large number of others are in development or under regulatory review. Unexpectedly, however, their use has been found to be associated with serious toxic effects on a number of vital organs including the liver. Drug-induced hepatotoxicity has resulted in withdrawal from the market of many widely used drugs and is a major public health issue that continues to concern all the stakeholders. This review focuses on hepatotoxic potential of TKIs. The majority of TKIs approved to date are reported to induce hepatic injury. Five of these (lapatinib, pazopanib, ponatinib, regorafenib and sunitinib) are sufficiently potent in this respect as to require a boxed label warning. Onset of TKI-induced hepatotoxicity is usually within the first 2 months of initiating treatment, but may be delayed, and is usually reversible. Fatality from TKI-induced hepatotoxicity is uncommon compared to hepatotoxic drugs in other classes but may lead to long-term consequences such as cirrhosis. Patients should be carefully monitored for TKI-induced hepatotoxicity, the management of which requires individually tailored reappraisal of the risk/benefit. The risk is usually manageable by dose adjustment or a switch to a suitable alternative TKI. Confirmation of TKI-induced hepatotoxicity can present challenges in the presence of hepatic metastasis and potential drug interactions. Its diagnosis in a patient with TKI-sensitive cancer requires great care if therapy with the TKI suspected to be causal is to be modified or interrupted as a result. Post-marketing experience with drugs such as imatinib, lapatinib and sorafenib suggests that the hepatotoxic safety of all the TKIs requires diligent surveillance.
Collapse
Affiliation(s)
- Rashmi R Shah
- Rashmi Shah Consultancy Ltd, 8 Birchdale, Gerrards Cross, Buckinghamshire, SL9 7JA, UK.
| | | | | |
Collapse
|
41
|
Hussaini SH, Farrington EA. Idiosyncratic drug-induced liver injury: an update on the 2007 overview. Expert Opin Drug Saf 2013; 13:67-81. [PMID: 24073714 DOI: 10.1517/14740338.2013.828032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Idiosyncratic drug induced liver injury (DILI) is rare, with an incidence of approximately 19 per 100,000 treated individuals. AREAS COVERED An update on the epidemiology, pathogenic mechanisms, diagnosis, outcome, risk factors for idiosyncratic drug-induced hepatotoxicity, specific classes of drug hepatotoxicity and biomarkers to predict DILI are covered. Cumulative drug exposure and HLA phenotypes play an important role in the pathogenesis of DILI. Patients who present with suspected DILI and jaundice should have biliary obstruction and acute viral hepatitis, including hepatitis E excluded. Immune-mediated DILI will respond to steroid therapy. Patients with an elevated bilirubin and a hepatocellular pattern of liver function tests have severe liver injury with a mortality of greater than 10% and a risk of acute liver failure. Women have an increased risk of hepatocellular DILI. Antibiotics, anticonvulsants, and antidepressant therapy remain the commonest causes of DILI in the Western Hemisphere. Statin therapy rarely causes severe liver injury. EXPERT OPINION The establishment of prospective registries for DILI has provided valuable data on the pathogenesis and outcome of DILI. Drug-specific computerised causality assessment tools should improve the diagnosis of DILI. The clinical utility of genetic polymorphisms associated with drug-specific DILI is limited.
Collapse
Affiliation(s)
- S Hyder Hussaini
- Department of Gastroenterology, Hepatology Unit, Royal Cornwall Hospital , Truro, Cornwall , UK
| | | |
Collapse
|
42
|
Li Y, Ma H, Zhang Y, Kuang H, Ng EHY, Hou L, Wu X. Effect of berberine on insulin resistance in women with polycystic ovary syndrome: study protocol for a randomized multicenter controlled trial. Trials 2013; 14:226. [PMID: 23866924 PMCID: PMC3722087 DOI: 10.1186/1745-6215-14-226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/28/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Insulin resistance and hyperinsulinemia play a key role in the pathogenesis of polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, ovulatory dysfunction, and presence of polycystic ovaries on pelvic scanning. Insulin resistance is significantly associated with the long-term risks of metabolic syndrome and cardiovascular disease. Berberine has effects on insulin resistance but its use in women with PCOS has not been fully investigated. In this paper, we present a research design evaluating the effects of berberine on insulin resistance in women with PCOS. METHODS/DESIGN This is a multicenter, randomized, placebo-controlled and double-blind trial. A total of 120 patients will be enrolled in this study and will be randomized into two groups. Berberine or placebo will be taken orally for 12 weeks. The primary outcome is the whole body insulin action assessed with the hyperinsulinemic-euglycemic clamp. DISCUSSION We postulate that women with PCOS will have improved insulin resistance following berberine administration. TRIAL REGISTRATION This study is registered at ClinicalTrials.gov, NCT01138930.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Shah RR. Drug-induced QT interval prolongation: does ethnicity of the thorough QT study population matter? Br J Clin Pharmacol 2013; 75:347-58. [PMID: 22882246 DOI: 10.1111/j.1365-2125.2012.04415.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023] Open
Abstract
Inter-ethnic differences in drug responses have been well documented. Drug-induced QT interval prolongation is a major safety concern and therefore, regulatory authorities recommend a clinical thorough QT study (TQT) to investigate new drugs for their QT-prolonging potential. A positive study, determined by breach of a preset regulatory threshold, significantly influences late phase clinical trials by requiring intense ECG monitoring. A few studies that are currently available, although not statistically conclusive at present, question the assumption that ethnicity of the study population may not influence the outcome of a TQT study. Collective consideration of available pharmacogenetic and clinical information suggests that there may be inter-ethnic differences in QT-prolonging effects of drugs and that Caucasians may be more sensitive than other populations. The information also suggest s that (a) these differences may depend on the QT-prolonging potency of the drug and (b) exposure-response (E-R) analysis may be more sensitive than simple changes in QT(c) interval in unmasking this difference. If the QT response in Caucasians is generally found to be more intense than in non-Caucasians, there may be significant regulatory implications for domestic acceptance of data from a TQT study conducted in foreign populations. However, each drug will warrant an individual consideration when extrapolating the results of a TQT study from one ethnic population to another and the ultimate clinical relevance of any difference. Further adequately designed and powered studies, investigating the pharmacologic properties and E-R relationships of additional drugs with different potencies, are needed in Caucasians, Oriental/Asian and African populations before firm conclusions can be drawn.
Collapse
|
44
|
Chang JH, Plise E, Cheong J, Ho Q, Lin M. Evaluating the In Vitro Inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in Predicting Drug-Induced Hyperbilirubinemia. Mol Pharm 2013; 10:3067-75. [DOI: 10.1021/mp4001348] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jae H. Chang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Emile Plise
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Jonathan Cheong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Quynh Ho
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| | - Molly Lin
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080,
United States
| |
Collapse
|
45
|
Lee YH, Goh WWB, Ng CK, Raida M, Wong L, Lin Q, Boelsterli UA, Chung MCM. Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone. J Proteome Res 2013; 12:2933-45. [PMID: 23659346 PMCID: PMC3805328 DOI: 10.1021/pr400219s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Troglitazone,
a first-generation thiazolidinedione of antihyperglycaemic
properties, was withdrawn from the market due to unacceptable idiosyncratic
hepatotoxicity. Despite intensive research, the underlying mechanism
of troglitazone-induced liver toxicity remains unknown. Here we report
the use of the Sod2+/– mouse model of silent mitochondrial oxidative-stress-based
and quantitative mass spectrometry-based proteomics to track the mitochondrial
proteome changes induced by physiologically relevant troglitazone
doses. By quantitative untargeted proteomics, we first globally profiled
the Sod2+/– hepatic
mitochondria proteome and found perturbations including GSH metabolism
that enhanced the toxicity of the normally nontoxic troglitazone.
Short- and long-term troglitazone administration in Sod2+/– mouse led to a mitochondrial
proteome shift from an early compensatory response to an eventual
phase of intolerable oxidative stress, due to decreased mitochondrial
glutathione (mGSH) import protein, decreased dicarboxylate ion carrier
(DIC), and the specific activation of ASK1-JNK and FOXO3a with prolonged
troglitazone exposure. Furthermore, mapping of the detected proteins
onto mouse specific protein-centered networks revealed lipid-associated
proteins as contributors to overt mitochondrial and liver injury when
under prolonged exposure to the lipid-normalizing troglitazone. By
integrative toxicoproteomics, we demonstrated a powerful systems approach
in identifying the collapse of specific fragile nodes and activation
of crucial proteome reconfiguration regulators when targeted by an
exogenous toxicant.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Drug-Induced Liver Injury Throughout the Drug Development Life Cycle: Where We Have Been, Where We are Now, and Where We are Headed. Perspectives of a Clinical Hepatologist. Pharmaceut Med 2013. [DOI: 10.1007/s40290-013-0015-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Goel A, Parihar A, Mishra P, Varshney S, Nag P, Beg M, Gaikwad A, Rath SK. Design and synthesis of novel pyranone-based insulin sensitizers exhibiting in vivo hepatoprotective activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00178d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Validation of Multivariate Outlier Detection Analyses Used to Identify Potential Drug-Induced Liver Injury in Clinical Trial Populations. Drug Saf 2012; 35:865-75. [DOI: 10.1007/bf03261982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L, Neuzil J. Mitochondrial complex II, a novel target for anti-cancer agents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:552-64. [PMID: 23142170 DOI: 10.1016/j.bbabio.2012.10.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
With the arrival of the third millennium, in spite of unprecedented progress in molecular medicine, cancer remains as untamed as ever. The complexity of tumours, dictating the potential response of cancer cells to anti-cancer agents, has been recently highlighted in a landmark paper by Weinberg and Hanahan on hallmarks of cancer [1]. Together with the recently published papers on the complexity of tumours in patients and even within the same tumour (see below), the cure for this pathology seems to be an elusive goal. Indisputably, the strategy ought to be changed, searching for targets that are generally invariant across the landscape of neoplastic diseases. One such target appears to be the mitochondrial complex II (CII) of the electron transfer chain, a recent focus of research. We document and highlight this particularly intriguing target in this review paper and give examples of drugs that use CII as their molecular target. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Rahmioglu N, Heaton J, Clement G, Gill R, Surdulescu G, Zlobecka K, Hodgkiss D, Smith NW, Ahmadi KR. Genome-wide association study reveals a complex genetic architecture underpinning-induced CYP3A4 enzyme activity. Eur J Drug Metab Pharmacokinet 2012; 38:63-7. [PMID: 22945461 DOI: 10.1007/s13318-012-0103-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
Abstract
Atypical cytochrome P450 3A4 (CYP3A4) enzyme activity-induced and inhibited-is thought to be the driver of numerous poor or adverse therapeutic responses to up to 50 % of all commonly prescribed drugs. We carried out a genome-wide association study to identify common genetic variants associated with variation in induced CYP3A4 activity. A total of 310 twins were included in this study. Each participant had already completed a 14 days course of St John's Wort to induce CYP3A4, which was quantified through the metabolic ratio of exogenous 3-hydroxyquinine to quinine. We failed to detect any genome-wide significant associations (P < 1 × 10(-8)) with variation in induced CYP3A4 activity although several genomic regions were highlighted which may play minor roles. We report the first GWAS of variation in induced CYP3A4 activity and our preliminary results indicate a complex genetic architecture underpinning induced CYP3A4 enzyme activity.
Collapse
Affiliation(s)
- Nilufer Rahmioglu
- Department of Twin Research and Genetic Epidemiology, St. Thomas' Hospital, King's College London, Lambeth Palace Rd, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|