1
|
Broekhuizen M, de Vries R, Smits MAW, Dik WA, Schoenmakers S, Koch BCP, Merkus D, Reiss IKM, Danser AHJ, Simons SHP, Hitzerd E. Pentoxifylline as a therapeutic option for pre-eclampsia: a study on its placental effects. Br J Pharmacol 2022; 179:5074-5088. [PMID: 35861684 PMCID: PMC9804511 DOI: 10.1111/bph.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently pentoxifylline, a non-selective phosphodiesterase inhibitor and adenosine receptor antagonist, has attracted much interest for the treatment of the increased vascular resistance and endothelial dysfunction in pre-eclampsia. We therefore investigated the placental transfer, vascular effects and anti-inflammatory actions of pentoxifylline in healthy and pre-eclamptic human placentas. EXPERIMENTAL APPROACH The placental transfer and metabolism of pentoxifylline were studied using ex vivo placenta perfusion experiments. In wire myography experiments with chorionic plate arteries, pentoxifyllines vasodilator properties were investigated, focusing on the cGMP and cAMP pathways and adenosine receptors. Its effects on inflammatory factors were also studied in placental explants. KEY RESULTS Pentoxifylline transferred from the maternal to foetal circulation, reaching identical concentrations. The placenta metabolized pentoxifylline into its active metabolite lisofylline (M1), which was released into both circulations. In healthy placentas, pentoxifylline potentiated cAMP- and cGMP-induced vasodilation, as well as causing vasodilation by adenosine A1 antagonism and via NO synthase and PKG. Pentoxifylline also reduced inflammatory factors secretion. In pre-eclamptic placentas, we observed that its vasodilator capacity was preserved, however not via NO-PKG but likely through adenosine signalling. Pentoxifylline neither potentiated vasodilation through cAMP and cGMP, nor suppressed the release of inflammatory factors from these placentas. CONCLUSION AND IMPLICATIONS Pentoxifylline is transferred across and metabolized by the placenta. Its beneficial effects on the NO pathway and inflammation are not retained in pre-eclampsia, limiting its application in this disease, although it could be useful for other placenta-related disorders. Future studies might focus on selective A1 receptor antagonists as a new treatment for pre-eclampsia.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Neonatology, Department of PaediatricsErasmus MC University Medical CenterRotterdamThe Netherlands,Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands,Division of Experimental Cardiology, Department of CardiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Rene de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Marja A. W. Smits
- Laboratory Medical Immunology, Department of ImmunologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of ImmunologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and GynaecologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Birgit C. P. Koch
- Department of PharmacyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of CardiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Irwin K. M. Reiss
- Division of Neonatology, Department of PaediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Sinno H. P. Simons
- Division of Neonatology, Department of PaediatricsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Emilie Hitzerd
- Division of Neonatology, Department of PaediatricsErasmus MC University Medical CenterRotterdamThe Netherlands,Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
2
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|
3
|
Salsoso R, Mate A, Toledo F, Vázquez CM, Sobrevia L. Insulin requires A 2B adenosine receptors to modulate the L-arginine/nitric oxide signalling in the human fetoplacental vascular endothelium from late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165993. [PMID: 33096224 DOI: 10.1016/j.bbadis.2020.165993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Late-onset preeclampsia (LOPE) associates with reduced umbilical vein reactivity and endothelial nitric oxide synthase (eNOS) activity but increased human cationic amino acid (hCAT-1)-mediated L-arginine transport involving A2A adenosine receptor in the fetoplacental unit. This study addresses the A2B adenosine receptor (A2BAR)-mediated response to insulin in the fetoplacental vasculature from LOPE. Umbilical veins and HUVECs were obtained from women with normal (n = 37) or LOPE (n = 35) pregnancies. Umbilical vein rings reactivity to insulin was assayed in the absence or presence of adenosine and MRS-1754 (A2BAR antagonist) in a wire myograph. HUVECs were exposed to insulin, MRS-1754, BAY60-6583 (A2BAR agonist), NECA (general adenosine receptors agonist) or NG-nitro-L-arginine methyl ester (NOS inhibitor). A2BAR, hCAT-1, total and phosphorylated eNOS, Akt and p44/42mapk protein abundance were determined by Western blotting. Insulin receptors A (IR-A) and B (IR-B), eNOS and hCAT-1 mRNA were determined by qPCR. Firefly/Renilla luciferase assay was used to determine -1606 bp SLC7A1 (hCAT-1) promoter activity. L-Citrulline content was measured by HPLC, L-[3H]citrulline formation from L-[3H]arginine by the Citrulline assay, and intracellular cGMP by radioimmunoassay. LOPE-reduced dilation of vein rings to insulin was restored by MRS-1754. HUVECs from LOPE showed higher A2BAR, hCAT-1, and IR-A expression, Akt and p44/42mapk activation, and lower NOS activity. MRS-1754 reversed the LOPE effect on A2BAR, hCAT-1, Akt, and eNOS inhibitory phosphorylation. Insulin reversed the LOPE effect on A2BAR, IR-A and eNOS, but increased hCAT-1-mediated transport. Thus, LOPE alters endothelial function, causing an imbalance in the L-arginine/NO signalling pathway to reduce the umbilical vein dilation to insulin requiring A2BAR activation in HUVECs.
Collapse
Affiliation(s)
- Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, Herston, QLD, 4029, Australia.
| |
Collapse
|
4
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Razak AA, Leach L, Ralevic V. Impaired vasocontractile responses to adenosine in chorionic vessels of human term placenta from pregnant women with pre-existing and gestational diabetes. Diab Vasc Dis Res 2018; 15:528-540. [PMID: 30130976 DOI: 10.1177/1479164118790904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND There is clinical and experimental evidence for altered adenosine signalling in the fetoplacental circulation in pregnancies complicated by diabetes, leading to adenosine accumulation in the placenta. However, the consequence for fetoplacental vasocontractility is unclear. This study examined contractility to adenosine of chorionic vessels from type 1 diabetes mellitus, gestational diabetes mellitus and normal pregnancies. METHODS Chorionic arteries and veins were isolated from human placenta from normal, gestational diabetes mellitus and type 1 diabetes mellitus pregnancies. Isometric tension recording measured responses to adenosine and the thromboxane A2 analogue U46619 (thromboxane A2 mediates fetoplacental vasoconstriction to adenosine). Adenosine and thromboxane prostanoid receptor protein expression was determined by immunoblotting. RESULTS Adenosine elicited contractions in chorionic arteries and veins which were impaired in both gestational diabetes mellitus and type 1 diabetes mellitus. Contractions to potassium chloride were unchanged. Adenosine A2A and A2B receptor protein levels were not different in gestational diabetes mellitus and normal pregnancies. Contractions to U46619 were unaltered in gestational diabetes mellitus arteries and increased in type 1 diabetes mellitus arteries. Overnight storage of vessels restored contractility to adenosine in gestational diabetes mellitus arteries and normalized contraction to U46619 in type 1 diabetes mellitus arteries. CONCLUSION These data are consistent with the concept of aberrant adenosine signalling in diabetes; they show for the first time that this involves impaired adenosine contractility of the fetoplacental vasculature.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenosine/pharmacology
- Arteries/drug effects
- Arteries/metabolism
- Arteries/physiopathology
- Case-Control Studies
- Chorion/blood supply
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes, Gestational/diagnosis
- Diabetes, Gestational/metabolism
- Diabetes, Gestational/physiopathology
- Female
- Humans
- Pregnancy
- Pregnancy in Diabetics/diagnosis
- Pregnancy in Diabetics/metabolism
- Pregnancy in Diabetics/physiopathology
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/metabolism
- Receptor, Adenosine A3/metabolism
- Signal Transduction/drug effects
- Term Birth
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Veins/drug effects
- Veins/metabolism
- Veins/physiopathology
Collapse
Affiliation(s)
- Azlina A Razak
- 1 School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- 2 Faculty of Medicine & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lopa Leach
- 1 School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Vera Ralevic
- 1 School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
6
|
Chiarello DI, Marín R, Proverbio F, Coronado P, Toledo F, Salsoso R, Gutiérrez J, Sobrevia L. Mechanisms of the effect of magnesium salts in preeclampsia. Placenta 2018; 69:134-139. [PMID: 29716747 DOI: 10.1016/j.placenta.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/18/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
Preeclampsia is a heterogeneous pregnancy-specific syndrome associated with abnormal trophoblast invasion and endothelial dysfunction. Magnesium (Mg2+) level may be normal or decreased in women with preeclampsia. However, the use of Mg2+ salts, such as Mg2+ sulphate, are useful in reducing the pathophysiological consequences of preeclampsia with severe features and eclampsia. Although the mechanism of action of this Mg2+ salt is not well understood, the available evidence suggests a beneficial effect of Mg2+ for the mother and foetus. The mechanisms include a lower level of soluble fms-like tyrosine kinase 1 and endoglin, blockage of brain N-methyl-D-aspartate receptors, decreased inflammation mediators, activation of nitric oxide synthases, blockage of arginases, and reduced free radicals level. The maintenance of Mg2+ homeostasis in pregnancy is crucial for an appropriate pregnancy progression. Oral Mg2+ salts can be used for this purpose which could result in mitigating the deleterious consequences of this syndrome to the mother, foetus, and newborn.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), AP 21827, Caracas 1020A, Venezuela
| | - Fulgencio Proverbio
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), AP 21827, Caracas 1020A, Venezuela
| | - Paula Coronado
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Rocio Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia.
| |
Collapse
|
7
|
Badillo P, Salgado P, Bravo P, Guevara K, Acurio J, Gonzalez MA, Oyarzun C, San Martin R, Escudero C. High plasma adenosine levels in overweight/obese pregnant women. Purinergic Signal 2017; 13:479-488. [PMID: 28721552 PMCID: PMC5714837 DOI: 10.1007/s11302-017-9574-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022] Open
Abstract
We aim to investigate whether overweight/obese pregnant women have elevated plasma levels of adenosine associated with increased consumption of high-calorie food. Sixty women were included. They were divided into lean (n = 23 and n = 12) or overweight/obese (n = 7 and n = 18) non-pregnant and pregnant women, respectively. Clinical records and maternal blood samples were collected after informed consent. A self-reported dietary questionnaire was also completed. Plasma adenosine levels were determined with high-performance liquid chromatography. Biochemical parameters, including glucose, total protein, and lipid profile, were determined using standard colorimetric assays. Adenosine levels were higher in pregnant women than in non-pregnant women (18.7 ± 1.6 vs 10.8 ± 1.3 nM/μg protein, respectively, p < 0.0001). Overweight/obese pregnant women (21.9 ± 2.5 nM/μg protein) exhibited higher adenosine levels than lean pregnant (14.5 ± 1.0 nM/μg protein, p = 0.04) or non-pregnant women (11.7 ± 1.5 nM/μg protein, p = 0.0005). Also, pregnant women with elevated weight gain exhibited higher (26.2 ± 3.7 nM/μg protein) adenosine levels than those with adequate weight gain (14.9 ± 1.4 nM/μg protein, p = 0.03). These differences were not statistically significant compared with those of pregnant women with reduced weight gain (17.4 ± 2.1 nM/μg protein, p = 0.053). Body mass index and adenosine only in pregnant women were positively correlated (r = 0.39, p = 0.02). While, polyunsaturated fatty acid (PUFA) consumption was negatively correlated with plasma adenosine levels only in non-pregnant women (r = -0.33, p = 0.03). Pregnancy is associated with high plasma adenosine levels, which are further elevated in pregnant women who are overweight/obese. High PUFA intake might reduce plasma adenosine levels in non-pregnant women.
Collapse
Affiliation(s)
- Priscila Badillo
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile
| | - Paola Salgado
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile
| | - Patricia Bravo
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile
| | - Katherine Guevara
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), University of Bío-Bío, Chillán, Chile
- Department of Basic Sciences, University of Bío-Bío, Chillán, Chile
| | - Maria Angelica Gonzalez
- Department of Nutrition, Health and Food Sciences Faculty, University of Bío-Bío, Chillán, Chile
| | - Carlos Oyarzun
- Laboratorio de Patologia Molecular, Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, P.O. Box 567, Valdivia, Chile
| | - Rody San Martin
- Laboratorio de Patologia Molecular, Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, P.O. Box 567, Valdivia, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (LFV-GIANT), University of Bío-Bío, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), University of Bío-Bío, Chillán, Chile.
- Department of Basic Sciences, University of Bío-Bío, Chillán, Chile.
- Department of Nutrition, Health and Food Sciences Faculty, University of Bío-Bío, Chillán, Chile.
| |
Collapse
|
8
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
9
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|
10
|
Bellieni CV, Vannuccini S, Petraglia F. Is fetal analgesia necessary during prenatal surgery? J Matern Fetal Neonatal Med 2017; 31:1241-1245. [PMID: 28337942 DOI: 10.1080/14767058.2017.1311860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fetal pain and fetal anesthesia are still matter of debate: some authors hypothesize that several intrauterine endocrine neuroinhibitors (ENIn) anesthetize the fetus, keeping it in a constant state of sleep, and making pharmacological fetal anesthesia useless for fetal surgery, while others argue fetal pain is possible and shoud be prevented with fetal anesthesy. AIM To retrieve evidences about fetal pain, fetal arousability and about the level of sedation induced by the ENIn, in order to assess the necessity of direct fetal anesthesia during prenatal fetal surgery. METHODS We performed a careful literature review (1990-2016) on fetal arousability, and on the possibility that ENIn at the average fetal blood levels induce actual anesthesia. We retrieved the papers that fulfilled the research criteria, with particular attention to the second half of pregnancy, the period when most fetal surgery is performed. RESULTS Fetuses are awake about 10% of the total time in the last gestational weeks, and they can be aroused by external stimuli. ENIn have not an anesthetic effect at normal fetal values, but only when they areartificialy injected at high doses; their blood levels in the last trimester of average pregnancies are not dissimilar either in the fetus or in the mother. CONCLUSIONS During the second half of the pregnancy, external stimuli can awake the fetuses, although they spend most of the time in sleeping state; the presence of ENIn is absolutely not enough to guarantee an effective anesthesia during surgery. Thus, direct fetal analgesia/anesthesia is mandatory, though further studies on its possible drawbacks are necessary.
Collapse
Affiliation(s)
- Carlo V Bellieni
- a Neonatal Intensive Care Unit , University Hospital of Siena , Siena , Italy
| | - Silvia Vannuccini
- b Department of Molecular and Developmental Medicine, Division of Obstetrics and Gynecology , University of Siena , Siena , Italy
| | - Felice Petraglia
- b Department of Molecular and Developmental Medicine, Division of Obstetrics and Gynecology , University of Siena , Siena , Italy
| |
Collapse
|
11
|
Acurio J, Herlitz K, Troncoso F, Aguayo C, Bertoglia P, Escudero C. Adenosine A 2A receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies. Purinergic Signal 2016; 13:51-60. [PMID: 27696086 DOI: 10.1007/s11302-016-9538-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10-9.2 M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (∼1.5-fold) and pre-eclamptic pregnancies (∼1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10-5 M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (∼1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (∼30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.
Collapse
Affiliation(s)
- Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Kurt Herlitz
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Patricio Bertoglia
- Obstetric and Gynecology Department, Hospital Clinico Herminda Martin, Chillán, Chile, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
12
|
Insulin restores l-arginine transport requiring adenosine receptors activation in umbilical vein endothelium from late-onset preeclampsia. Placenta 2015; 36:287-96. [DOI: 10.1016/j.placenta.2014.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
13
|
Wareing M. Oxygen sensitivity, potassium channels, and regulation of placental vascular tone. Microcirculation 2014; 21:58-66. [PMID: 23710683 DOI: 10.1111/micc.12069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/21/2013] [Indexed: 12/17/2022]
Abstract
The human fetoplacental vasculature is a low-resistance circulation with deoxygenated arterial relative to venous blood. The placenta lacks neuronal innervation suggesting that local physical (e.g., oxygenation; flow rate), paracrine (e.g., endothelial cell nitric oxide), and circulating (e.g., angiotensin II) factors will contribute to blood flow regulation in small fetoplacental vessels. Oxygenation (specifically hypoxia) has received particular attention. At the macro-level, hypoxic challenge increases vascular resistance, but the data's physiological relevance remains questionable. K(+) channels are a diverse family of proteins known to play important roles in the normal physiological functions of endothelial and smooth muscle cells of a variety of vascular beds. K(+) channels are categorized by their predicted transmembrane structure or gating properties. A small number of perfused placental cotyledon and isolated blood vessels studies have assessed K(+) channel activity. Specific activator/inhibitor application suggests functional voltage-gated channels, whereas toxin inhibitor studies have documented KCa channel activity. Pharmacological KATP channel activation significantly dilates preconstricted placental arteries and veins. There is a paucity of cell subtype-specific expression studies of placental K(+) channels. This review focuses on the roles of K(+) channels and oxygenation in controlling reactivity of small fetoplacental blood vessels.
Collapse
Affiliation(s)
- Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, UK; Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
14
|
Escudero C, Roberts JM, Myatt L, Feoktistov I. Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming. Front Pharmacol 2014; 5:134. [PMID: 24926270 PMCID: PMC4046493 DOI: 10.3389/fphar.2014.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/24/2023] Open
Abstract
Preeclampsia is a pregnancy-specific syndrome, defined by such clinical hallmarks as the onset of maternal hypertension and proteinuria after 20 weeks of gestation. The syndrome is also characterized by impaired blood flow through the utero-placental circulation and relative placental ischemia, which in turn, may generate feto-placental endothelial dysfunction. Endothelial dysfunction in offspring born from preeclamptic pregnancies has been associated with an increased risk of cardiovascular disease, including hypertension, later in life. Interestingly, diminished endothelial function, manifested by low angiogenic capacity, leads to hypertension in animal studies. Recently, we have shown that the adenosine receptor A2A/nitric oxide/vascular endothelial growth factor axis is reduced in human umbilical vein endothelial cells derived from preeclamptic pregnancies, an effect correlated with gestational age at onset of preeclampsia. We and others suggested that impaired vascular function might be associated with high cardiovascular risk in offspring exposed to pregnancy diseases. However, we are not aware of any studies that examine impaired adenosine-mediated angiogenesis as a possible link to hypertension in offspring born from preeclamptic pregnancies. In this review, we present evidence supporting the hypothesis that reduced adenosine-mediated angiogenesis during preeclamptic pregnancies might be associated with development of hypertension in the offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Epidemiology and Clinical and Translational Science Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center San Antonio, TX, USA
| | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Nashville, TN, USA ; Department of Pharmacology, School of Medicine, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
15
|
Acurio J, Troncoso F, Bertoglia P, Salomon C, Aguayo C, Sobrevia L, Escudero C. Potential role of A2B adenosine receptors on proliferation/migration of fetal endothelium derived from preeclamptic pregnancies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:274507. [PMID: 24877077 PMCID: PMC4024414 DOI: 10.1155/2014/274507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/01/2014] [Indexed: 01/10/2023]
Abstract
To investigate the functionality of A2B adenosine receptor (A2BAR) and the nitric oxide (NO) and vascular endothelial growth factor (VEGF) signaling pathway in the endothelial cell proliferation/migration during preeclampsia, we used human umbilical vein endothelial cells (HUVECs) isolated from normal pregnancies (n = 15) or pregnancies with preeclampsia (n = 15). Experiments were performed in presence or absence of the nonselective adenosine receptor agonist NECA, the A2BAR selective antagonist MRS-1754, and the nitric oxide synthase (NOS) inhibitor L-NAME. Results indicated that cells from preeclampsia exhibited a significant higher protein level of A2BAR and logEC50 for NECA-mediated proliferation than normotensive pregnancies. The stimulatory effect of NECA (10 μM, 24 h) on cell proliferation was prevented by MRS-1754 (5 nM) coincubation only in cells from normotensive pregnancies. Nevertheless, L-NAME (100 μM, 24 h) reduced the NECA-induced cell proliferation/migration in HUVEC from normal pregnancy; however in preeclampsia only NECA-induced cell proliferation was reduced by L-NAME. Moreover, NECA increased protein nitration and abundance of VEGF in cells from normal pregnancy and effect prevented by MRS-1754 coincubation. Nevertheless, in preeclampsia NECA did not affect the protein level of VEGF. In conclusion HUVECs from preeclampsia exhibit elevated protein level of A2BAR and impairment of A2BAR-mediated NO/VEGF signaling pathway.
Collapse
Affiliation(s)
- Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Patricio Bertoglia
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
- Obstetrics and Gynecology Department, Herminda Martin Clinical Hospital, Chillan, Chile
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4006, Australia
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Chile
| | - Luis Sobrevia
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4006, Australia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Group of Research and Innovation in Vascular Health (GRIVAS Health), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
16
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
17
|
Impaired A2A adenosine receptor/nitric oxide/VEGF signaling pathway in fetal endothelium during late- and early-onset preeclampsia. Purinergic Signal 2012. [PMID: 23179048 DOI: 10.1007/s11302-012-9341-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
To investigate whether fetal endothelial cell proliferation and migration are modulated by the A2A adenosine receptor (A2AAR), nitric oxide (NO) and the vascular endothelial growth factor (VEGF) signaling pathway, we isolated human umbilical vein endothelial cells from normal pregnancy (n = 23), preterm delivery (n = 4), and late-onset (LOPE, n = 10) and early-onset preeclampsia (EOPE, n = 8). We used the non-selective adenosine receptor agonist (NECA) and the selective agonist (CGS-21680) and/or selective antagonist (ZM-241385) for A2AAR. Also, the nitric oxide synthase (NOS) inhibitor, L-NAME, was used in co-incubation with CGS-21680. Compared to normal pregnancy, EOPE exhibited low cell proliferation and migration associated with reduced expressions of A2AAR and VEGF and NO synthesis (i.e., total and phosphorylated serine(1177) endothelial NOS and nitrite formation). In contrast, LOPE exhibited the opposite behavior in all these markers compared to normal pregnancy or EOPE. Cell proliferation and migration were increased by CGS-21680 (or NECA) in all analyzed groups (EOPE>LOPE>normal pregnancy) compared to their respective basal conditions, an effect that was associated with high NO and VEGF synthesis and blocked by ZM-241385 with significantly different IC50 for each group (EOPE>LOPE>normal pregnancy). The differences seem independent of gestational age. L-NAME blocked the CGS-21680-mediated cell proliferation and migration in normal pregnancy and LOPE (IC50 = 36.2 ± 2.5 and 8.6 ± 2.2 nM, respectively) as well as the VEGF expression in normal pregnancy. Therefore, the A2AAR/NO/VEGF signaling pathway exhibits a pro-angiogenic effect in normal pregnancies and LOPE, whereas impairment in this pathway seems related to the reduced angiogenic capacity of the fetal endothelium in EOPE.
Collapse
|
18
|
Escudero A, Carreño B, Retamal N, Celis C, Castro L, Aguayo C, Acurio J, Escudero C. Elevated concentrations of plasma adenosine in obese children. Biofactors 2012; 38:422-8. [PMID: 22890589 DOI: 10.1002/biof.1039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/01/2012] [Accepted: 07/18/2012] [Indexed: 01/19/2023]
Abstract
There are no data regarding adenosine levels in obese children, even though is a ubiquitous molecule implicated in the regulation of lipid metabolism in humans. To determinate whether adenosine plasma levels are related with anthropometric and biochemical markers in children, we studied 51 students belong to Ramon Belmar School in Linares, Chile. Review of clinical data and frequent food questionnaire were taken in order to collect the information. Plasma adenosine levels were measured by high-performance liquid chromatography and biochemical parameters including insulin, glucose, total proteins, and lipid profile by using standard colorimetric assays. Children with detectable (above 0.1 μM) adenosine plasma levels (n = 30; BMI, 22.3 ± 0.7) had higher total cholesterol (P < 0.05); triglycerides (P < 0.01) and LDL-cholesterol (P < 0.05) concentrations than children with undetectable adenosine levels (n = 21; BMI, 23.9 ± 0.61). Among the analyzed variables, only BMI and BMI standard deviation score (BMI-SDS) were positively correlated with adenosine levels. Besides, obese children (n = 10) showed significantly high adenosine levels compared to controls (n = 11; 1.8 ± 0.2 vs. 1.2 ± 0.1 μM/mg protein, respectively. P < 0.05), but not compared to overweight children (n = 9). In conclusion, obesity in children is associated to high adenosine plasma levels. This study opens a new perspective to investigate the role of adenosine in the regulation of lipid metabolism in obese children.
Collapse
Affiliation(s)
- Andrea Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, University of Bío-Bío, Chillán, Chile
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Momoi N, Tinney JP, Keller BB, Tobita K. Maternal hypoxia and caffeine exposure depress fetal cardiovascular function during primary organogenesis. J Obstet Gynaecol Res 2012; 38:1343-51. [PMID: 22612345 DOI: 10.1111/j.1447-0756.2012.01880.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Hypoxia is known to influence cardiovascular (CV) function, in part, through adenosine receptor activation. We have shown in a mouse model that during primary cardiac morphogenesis, acute maternal hypoxia negatively affects fetal heart rate, and recurrent maternal caffeine exposure reduces fetal cardiac output (CO) and downregulates fetal adenosine A(2A) receptor gene expression. In the present study, we investigated whether maternal caffeine dosing exacerbates the fetal CV response to acute maternal hypoxia during the primary morphogenesis period. MATERIAL AND METHODS Gestational-day-11.5 pregnant mice were exposed to hypoxia (45 s duration followed by 10 min of recovery and repeated 3 times) while simultaneously monitoring maternal and fetal CO using high-resolution echocardiography. RESULTS Following maternal hypoxia exposure, maternal CO transiently decreased and then returned to pre-hypoxia baseline values. In contrast to a uniform maternal cardiac response to each exposure to hypoxia, the fetal CO recovery time to the baseline decreased, and CO rebounded above baseline following the second and third episodes of maternal hypoxia. Maternal caffeine treatment inhibited the fetal CO recovery to maternal hypoxia by lengthening the time to CO recovery and eliminating the CO rebound post-recovery. Selective treatment with an adenosine A(2A) receptor antagonist, but not an adenosine A(1) receptor antagonist, reproduced the altered fetal CO response to maternal hypoxia created by caffeine exposure. CONCLUSIONS Results suggest an additive negative effect of maternal caffeine on the fetal CV response to acute maternal hypoxia, potentially mediated via adenosine A(2A) receptor inhibition during primary cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Nobuo Momoi
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
20
|
Abstract
UNLABELLED Due to the progress in fetal surgery, it is important to acquire data about fetal pain. MATERIAL AND METHODS We performed a Medline research from 1995, matching the following key words: "pain" and "fetus", with the following: "subplate", "thalamocortical", "myelination", "analgesia", "anesthesia", "brain", "behavioral states", "substance p". We focused on: (a) fetal development of nociceptive pathways; (b) fetal electrophysiological, endocrinological and behavioral reactions to stimuli and pain. RESULTS We retrieved 217 papers of which 157 were highly informative; some reported similar data or were only case-reports, and were not quoted. Most endocrinological, behavioral and electrophysiological studies of fetal pain are performed in the third trimester, and they seem to agree that the fetus in the 3rd trimester can experience pain. But the presence of fetal pain in the 2nd trimester is less evident. In favor of a 2nd trimester perception of pain is the early development of spino-thalamic pathways (approximately from the 20th week), and the connections of the thalamus with the subplate (approximately from the 23rd week). Against this possibility, some authors report the immaturity of the cortex with the consequent lack of awareness, and the almost continuous state of sleep of the fetus. CONCLUSIONS Most studies disclose the possibility of fetal pain in the third trimester of gestation. This evidence becomes weaker before this date, though we cannot exclude its increasing presence since the beginning of the second half of the gestation.
Collapse
Affiliation(s)
- Carlo Valerio Bellieni
- Department of Pediatrics, Obstetrics and Reproduction Medicine, University of Siena, Siena, Italy.
| | | |
Collapse
|
21
|
Nishimura T, Chishu T, Tomi M, Nakamura R, Sato K, Kose N, Sai Y, Nakashima E. Mechanism of Nucleoside Uptake in Rat Placenta and Induction of Placental CNT2 in Experimental Diabetes. Drug Metab Pharmacokinet 2012; 27:439-46. [DOI: 10.2133/dmpk.dmpk-11-rg-103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
High fetal plasma adenosine concentration: a role for the fetus in preeclampsia? Am J Obstet Gynecol 2011; 205:485.e24-7. [PMID: 21855848 DOI: 10.1016/j.ajog.2011.06.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 ± 0.09 μmol/L) than in normal pregnancies (0.52 ± 0.06 μmol/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 ± 0.15 μmol/L), but not with normal UADV (0.58 ± 0.14 μmol/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.
Collapse
|
23
|
Mazzanti L, Cecati M, Vignini A, D'Eusanio S, Emanuelli M, Giannubilo SR, Saccucci F, Tranquilli AL. Placental expression of endothelial and inducible nitric oxide synthase and nitric oxide levels in patients with HELLP syndrome. Am J Obstet Gynecol 2011; 205:236.e1-7. [PMID: 21700268 DOI: 10.1016/j.ajog.2011.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine placental gene expression of endothelial and inducible nitric oxide synthases and measure nitric oxide levels in patients with hemolysis, elevated liver enzyme levels, and low platelet count syndrome. STUDY DESIGN Preterm placentas were obtained from 15 patients with hemolysis, elevated liver enzyme levels, and low platelet count syndrome and 30 controls matched for age, parity, and gestational age. mRNA levels were evaluated by real-time polymerase chain reaction, whereas nitric oxide and peroxynitrite production was measured by a commercially available kit. RESULTS Placental gene expression of inducible nitric oxide and endothelial nitric oxide synthases were significantly lower in the hemolysis, elevated liver enzyme levels, and low platelet count syndrome group than in controls, whereas nitric oxide and peroxynitrite production were significantly higher in hemolysis, elevated liver enzyme levels, and low platelet count syndrome compared with controls. CONCLUSION The reduced endothelial nitric oxide and inducible nitric oxide synthases gene expression in women with hemolysis, elevated liver enzyme levels, and low platelet count syndrome may indicate extreme placental dysfunction that is unable to compensate the endothelial derangement and the related hypertension. The higher nitric oxide formation found in hemolysis, elevated liver enzyme levels, and low platelet count syndrome placentas could be explained as a counteraction to the impaired fetoplacental perfusion, typical of the syndrome.
Collapse
Affiliation(s)
- Laura Mazzanti
- Department of Biochemistry, Biology and Genetics, Università Politecnica Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
25
|
Wareing M, Greenwood SL. Review: Potassium channels in the human fetoplacental vasculature. Placenta 2011; 32 Suppl 2:S203-6. [PMID: 21227507 DOI: 10.1016/j.placenta.2010.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Despite their fundamental importance for normal cellular function, potassium (K) channels have been poorly studied in placental vascular tissues. This lack of experimental focus may relate to the fact that, as yet, no pregnancy complications have been directly attributable to a specific "channelopathy". K channel activity is central to normal cellular function. Vascular smooth muscle and endothelial cells within the fetoplacental circulation would be expected to be heavily influenced by the behaviour of K channels, as has been well-documented in other vascular beds. In this review, we summarise current understanding of K channel expression and activity in fetoplacental vasculature in normal and complicated pregnancies.
Collapse
Affiliation(s)
- M Wareing
- Maternal and Fetal Health Research Centre, School of Biomedicine, The University of Manchester, St. Mary's Hospital, Manchester, UK.
| | | |
Collapse
|
26
|
George EM, Cockrell K, Adair TH, Granger JP. Regulation of sFlt-1 and VEGF secretion by adenosine under hypoxic conditions in rat placental villous explants. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1629-33. [PMID: 20962204 DOI: 10.1152/ajpregu.00330.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role of adenosine in the regulation of cardiovascular function has long been acknowledged, but only recently has its importance in angiogenesis been appreciated, most notably, through its direct regulation of the proangiogenic growth factor, VEGF. Recent work has established that proangiogenic and antiangiogenic factors, specifically VEGF and and the soluble VEGF receptor fms-like tyrosine kinase-1 (sFlt-1), are directly influenced by hypoxia in placental ischemia. While adenosine has been reported to be an important regulator of VEGF in vascular tissue, the importance of adenosine in regulating VEGF and sFlt-1 in placental tissue is unclear. Here, we have investigated the role of adenosine in the secretion of VEGF and the antiangiogenic protein sFlt-1 in placental villous explants. Under normoxic conditions (6% oxygen), the nonspecific adenosine receptor antagonist, 8-sulphophenyltheophylline (8-SPT) had no effect on either VEGF (P = 0.38) or sFlt-1 (P = 0.56) secretion. However, under hypoxic conditions (1% oxygen), 8-SPT attenuated the increase in the secretion of both VEGF and sFlt-1 (P < 0.05 and P < 0.005, respectively). Exogenous and the adenosine transporter inhibitor dipyridamole (which increases extracellular levels of adenosine) showed differential effects under normoxic conditions: sFlt-1 levels in media increased significantly (P < 0.05), whereas VEGF was unaffected (P = 0.67 and P = 0.19, respectively). These data indicate that extracellular adenosine can regulate VEGF and sFlt-1 secretion in the hypoxic placenta and could, therefore, control the balance of these competing angiogenic factors in diseases characterized by placental ischemia.
Collapse
Affiliation(s)
- Eric M George
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
27
|
Espinoza J, Uckele JE, Starr RA, Seubert DE, Espinoza AF, Berry SM. Angiogenic imbalances: the obstetric perspective. Am J Obstet Gynecol 2010; 203:17.e1-8. [PMID: 20231008 DOI: 10.1016/j.ajog.2009.10.891] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/06/2009] [Accepted: 10/29/2009] [Indexed: 12/11/2022]
Abstract
Clinical and experimental evidence indicates that angiogenic imbalances may participate in the mechanisms of disease of several pregnancy complications, some of which may be life threatening. This article reviews current evidence in support of this view and the possibility that the fetus may play a central role in these imbalances; it also reviews recent experimental observations that modulation of angiogenic imbalances during pregnancy may have prophylactic and/or therapeutic value.
Collapse
Affiliation(s)
- Jimmy Espinoza
- Department of Obstetrics and Gynecology, William Beaumont Hospital, 3601 West Thirteen Mile Rd., Royal Oak, MI 48073, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Ginosar Y, Nadjari M, Hoffman A, Firman N, Davidson E, Weiniger C, Rosen L, Weissman C, Elchalal U. Antepartum continuous epidural ropivacaine therapy reduces uterine artery vascular resistance in pre-eclampsia: a randomized, dose-ranging, placebo-controlled study †. Br J Anaesth 2009; 102:369-78. [DOI: 10.1093/bja/aen402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Human Equilibrative Nucleoside Transporters 1 and 2 may be Differentially Modulated by A2B Adenosine Receptors in Placenta Microvascular Endothelial Cells from Pre-eclampsia. Placenta 2008; 29:816-25. [DOI: 10.1016/j.placenta.2008.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/25/2008] [Accepted: 06/27/2008] [Indexed: 11/24/2022]
|
30
|
Momoi N, Tinney JP, Liu LJ, Elshershari H, Hoffmann PJ, Ralphe JC, Keller BB, Tobita K. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 2008; 294:H2248-56. [PMID: 18359892 DOI: 10.1152/ajpheart.91469.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.
Collapse
Affiliation(s)
- Nobuo Momoi
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. THE JOURNAL OF IMMUNOLOGY 2006; 177:1956-66. [PMID: 16849509 PMCID: PMC2881468 DOI: 10.4049/jimmunol.177.3.1956] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human newborns are susceptible to microbial infection and mount poor vaccine responses, yet the mechanisms underlying their susceptibility are incompletely defined. We have previously reported that despite normal basal expression of TLRs and associated signaling intermediates, human neonatal cord blood monocytes demonstrate severe impairment in TNF-alpha production in response to triacylated (TLR 2/1) and diacylated (TLR 2/6) bacterial lipopeptides (BLPs). We now demonstrate that in marked contrast, BLP-induced synthesis of IL-6, a cytokine with anti-inflammatory and Th2-polarizing properties, is actually greater in neonates than adults. Remarkably, newborn blood plasma confers substantially reduced BLP-induced monocyte synthesis of TNF-alpha, while preserving IL-6 synthesis, reflecting the presence in neonatal blood plasma of a soluble, low molecular mass inhibitory factor (<10 kDa) that we identify as adenosine, an endogenous purine metabolite with immunomodulatory properties. The neonatal adenosine system also inhibits TNF-alpha production in response to whole microbial particles known to express TLR2 agonist activity, including Listeria monocytogenes, Escherichia coli (that express BLPs), and zymosan particles. Selective inhibition of neonatal TNF-alpha production is due to the distinct neonatal adenosine system, including relatively high adenosine concentrations in neonatal blood plasma and heightened sensitivity of neonatal mononuclear cells to adenosine A3 receptor-mediated accumulation of cAMP, a second messenger that inhibits TLR-mediated TNF-alpha synthesis but preserves IL-6 production. We conclude that the distinct adenosine system of newborns polarizes TLR-mediated cytokine production during the perinatal period and may thereby modulate their innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ofer Levy
- Infectious Diseases, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Mellor DJ, Diesch TJ, Gunn AJ, Bennet L. The importance of ‘awareness’ for understanding fetal pain. ACTA ACUST UNITED AC 2005; 49:455-71. [PMID: 16269314 DOI: 10.1016/j.brainresrev.2005.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/17/2004] [Accepted: 01/12/2005] [Indexed: 11/29/2022]
Abstract
Our understanding of when the fetus can experience pain has been largely shaped by neuroanatomy. However, completion of the cortical nociceptive connections just after mid-gestation is only one part of the story. In addition to critically reviewing evidence for whether the fetus is ever awake or aware, and thus able to truly experience pain, we examine the role of endogenous neuro-inhibitors, such as adenosine and pregnanolone, produced within the feto-placental unit that contribute to fetal sleep states, and thus mediate suppression of fetal awareness. The uncritical view that the nature of presumed fetal pain perception can be assessed by reference to the prematurely born infant is challenged. Rigorously controlled studies of invasive procedures and analgesia in the fetus are required to clarify the impact of fetal nociception on postnatal pain sensitivity and neural development, and the potential benefits or harm of using analgesia in this unique setting.
Collapse
Affiliation(s)
- David J Mellor
- Riddet Centre and Institute of Food, Nutrition and Human Health, College of Sciences, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
33
|
Yum MK, Kim CR, Park EY, Kim JH. Instability and frequency-domain variability of heart rates in fetuses with or without growth restriction affected by severe preeclampsia. Physiol Meas 2004; 25:1105-13. [PMID: 15535177 DOI: 10.1088/0967-3334/25/5/002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated how the instability and frequency-domain variability in heart rates differ between fetuses affected only by severe preeclampsia and fetuses affected by both severe preeclampsia and growth restriction. From their antepartum fetal heart rates and those of control fetuses, the very short-term intermittency (C1alpha) and the spectral powers were calculated to evaluate the instability and frequency-domain variability, respectively. The fetuses affected only by severe preeclampsia showed abnormally high C1alpha and low- and high-frequency power. The fetuses affected by severe preeclampsia and growth restriction showed even higher C1alpha than that of the fetuses affected by severe preeclampsia and abnormally reduced low-frequency power. Conclusively, when compared to the heart rates of fetuses affected only by severe preeclampsia, the heart rates of fetuses affected by severe preeclampsia and growth restriction showed a greater abnormal instability and an abnormally reduced variability at low-frequency range.
Collapse
Affiliation(s)
- Myung-Kul Yum
- Department of Pediatrics, College of Medicine, Hanyang University, Sungdong-Ku, Seoul 133-792, Korea
| | | | | | | |
Collapse
|
34
|
Mellembakken JR, Aukrust P, Hestdal K, Ueland T, Abyholm T, Videm V. Chemokines and leukocyte activation in the fetal circulation during preeclampsia. Hypertension 2001; 38:394-8. [PMID: 11566911 DOI: 10.1161/01.hyp.38.3.394] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preeclampsia is a potentially life-threatening disease for both mother and fetus. Endothelial dysfunction is pivotal in the pathogenesis of this disorder, possibly reflecting a state of persistent inflammation. In the present study, we examined whether signs of inflammation with production of chemokines and leukocyte activation were present in the fetal circulation during preeclampsia. Venous cord blood was sampled during cesarean sections from 36 neonates born after uncomplicated pregnancies and from 35 born after severe preeclamptic pregnancies with premature newborns. The expression of adhesion molecules on neutrophils and monocytes was analyzed by flow cytometry, and plasma levels of chemokines and soluble adhesion molecules were analyzed by enzyme immunoassay. Newborns of preeclamptic mothers had increased expression of CD15s (P=0.003), CD49d/CD29 (P=0.01/0.005), and CD31 (P=0.007) on neutrophils and CD15s (P<0.001), CD11c (P=0.009), and CD54 (P=0.001) on monocytes. This activation of neutrophils and monocytes was accompanied by raised plasma levels of the CXC chemokines interleukin-8 (P=0.007) and growth-related oncogene-alpha (P=0.01) and decreased plasma levels of soluble E-selectin (P=0.001) and L-selectin (P=0.002). Although raised levels of adhesion molecules on leukocytes or decreased levels of soluble adhesion molecules in plasma were not related to prematurity or the degree of preeclampsia, raised interleukin-8 levels were found only in neonates of preeclamptic mothers with the highest blood pressures. Our findings suggest the activation of neutrophils and monocytes in the fetus during preeclampsia involving enhanced chemokine activation, possibly contributing to the fetal morbidity of this disorder.
Collapse
Affiliation(s)
- J R Mellembakken
- Departments of Pediatric Research and Obstetrics and Gynecology, The National Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Relation Between Serum Uric Acid and Plasma Adenosine Levels in Twin Pregnancies. Obstet Gynecol 2000. [DOI: 10.1097/00006250-200010000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yoneyama Y, Suzuki S, Sawa R, Otsubo Y, Power GG, Araki T. Plasma adenosine levels increase in women with normal pregnancies. Am J Obstet Gynecol 2000; 182:1200-3. [PMID: 10819858 DOI: 10.1067/mob.2000.104832] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate plasma adenosine levels during normal pregnancy and to evaluate the possible roles of platelet activation and 5'-nucleotidase as causes of changes in adenosine levels. STUDY DESIGN We measured plasma adenosine levels, the platelet activation markers beta-thromboglobulin and platelet factor 4, and 5'-nucleotidase activity, which catalyzes dephosphorylation from adenosine monophosphate to adenosine, in 34 nonpregnant women and 34 women with normal pregnancies in the third trimester. RESULTS The mean plasma adenosine level in pregnant women was 0.59 +/- 0.08 micromol/L (mean +/- SEM), which was significantly higher than that found in nonpregnant women (0.18 +/- 0.04 micromol/L; P <.01). In pregnant women plasma beta-thromboglobulin levels, platelet factor 4 levels, and 5'-nucleotidase activity were significantly higher than in nonpregnant women (P <.05). CONCLUSION The increase of plasma adenosine may be attributed at least in part to platelet activation and an increase of 5'-nucleotidase activity during normal pregnancy. This increase may be an endogenous compensatory mechanism that diminishes platelet activation and maintains vessel integrity during normal pregnancy.
Collapse
Affiliation(s)
- Y Yoneyama
- Department of Obstetrics and Gynecology, Nippon Medical School, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Suzuki S, Yoneyama Y, Sawa R, Takeuchi T, Power GG, Araki T. Maternal plasma adenosine levels in pregnancies complicated by toxemia. Placenta 1999. [DOI: 10.1016/s0143-4004(99)80030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
|
41
|
Kubonoya K, Power GG. Plasma adenosine responses during repeated episodes of umbilical cord occlusion. Am J Obstet Gynecol 1997; 177:395-401. [PMID: 9290457 DOI: 10.1016/s0002-9378(97)70204-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to measure changes in adenosine concentration in fetal arterial blood with use of an animal model of intermittent cord occlusion. Adenosine has been shown to be a potent vasodilator and inhibitor of metabolic processes in the adult, actions that help maintain a balance between oxygen supply and oxygen use. STUDY DESIGN After a 30-minute control period, five chronically instrumented fetal sheep (125 +/- 2.2 days' gestation) were subjected to a 1-minute cord occlusion, followed by a 2-minute recovery. The occlusion-release cycle was repeated 20 times. Then, after a 1-hour interim, the same 20 cycles of occlusion were repeated. Fetal blood was collected during cord occlusion and 30 seconds after release. RESULTS The plasma adenosine concentration averaged 0.82 +/- 0.19 mumol/L during the initial control period. The plasma adenosine concentration increased significantly to 1.06 +/- 0.23 mumol/L and 1.19 +/- 0.20 mumol/L during and after the fifth occlusion (p < 0.05 and 0.01, respectively). The plasma adenosine concentration reached a maximal level of 1.31 +/- 0.28 mumol/L after the twentieth cord occlusion. The concentration during the second group of occlusions was also higher than that during the control period (p < 0.05) but not higher than that during the first recovery period. By the conclusion of the study the plasma adenosine concentration had returned to 0.70 +/- 0.16 mumol/L. CONCLUSIONS Plasma adenosine increases cyclically with intermittent cord occlusion in the near-term fetal sheep, but the response is attenuated or lost after 2 hours. These results together with those of earlier studies are consistent with a hypoxic protective action of adenosine that is largely restricted to early time periods of continuing intermittent hypoxia.
Collapse
Affiliation(s)
- K Kubonoya
- Center for Perinatal Biology, Loma Linda University School of Medicine, CA 92350, USA
| | | |
Collapse
|