1
|
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. Transcriptional regulators with broad expression in the zebrafish spinal cord. Dev Dyn 2024; 253:1036-1055. [PMID: 38850245 DOI: 10.1002/dvdy.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. RESULTS We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. CONCLUSIONS Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, New York, USA
| | - Richard L Bates
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | | | | |
Collapse
|
2
|
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. Transcriptional Regulators with Broad Expression in the Zebrafish Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580357. [PMID: 38405913 PMCID: PMC10888778 DOI: 10.1101/2024.02.14.580357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. Results We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. Conclusions Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.
Collapse
Affiliation(s)
- Samantha J. England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Paul C. Campbell
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY 13045, USA
| | - Richard L. Bates
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - William F. Fancher
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Katharine E. Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
4
|
Faraj R, Irizarry-Alfonzo A, Puri P. Molecular characterization of nephron progenitors and their early epithelial derivative structures in the nephrogenic zone of the canine fetal kidney. Eur J Histochem 2019; 63. [PMID: 31544449 PMCID: PMC6763752 DOI: 10.4081/ejh.2019.3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nephron progenitors (NPs) and nephrogenesis have been extensively studied in mice and humans and have provided insights into the mechanisms of renal development, disease and possibility of NP-based therapies. However, molecular features of NPs and their derivatives in the canine fetal kidney (CFK) remain unknown. This study was focused to characterize the expression of potential markers of canine NPs and their derivatives by immuno-fluorescence and western blot analysis. Transcription factors (TFs) SIX1 and SIX2, well-characterized human NP markers, were expressed in NPs surrounding the ureteric bud in the CFK. Canine NPs also expressed ITGA8 and NCAM1, surface markers previously used to isolate NPs from the mouse and human fetal kidneys. TF, PAX2 was detected in the ureteric bud, NPs and their derivative structures such as renal vesicle and S-shaped body. This study highlights the similarities in dog, mouse and human renal development and characterizes markers to identify canine NPs and their derivatives. These results will facilitate the isolation of canine NPs and their functional characterization to develop NP-based therapies for canine renal diseases.
Collapse
Affiliation(s)
- Rawah Faraj
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee.
| | | | | |
Collapse
|
5
|
Zhang L, Zhai SB, Zhao LY, Zhang Y, Sun BC, Ma QS. New PAX2 heterozygous mutation in a child with chronic kidney disease: a case report and review of the literature. BMC Nephrol 2018; 19:245. [PMID: 30241513 PMCID: PMC6151052 DOI: 10.1186/s12882-018-1044-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We herein report a 3-year-old boy presented with chronic kidney disease (CKD) due to PAX2 missense mutation (C to G transversion at position 418 in exon 4). CASE PRESENTATION He attended our clinic with a 3-month history of foamy urine. Upon examination, he had reduced estimated glomerular filtration rate (GFR) and renal atrophy. Genetic investigations revealed that he has inherited a mutated PAX2 gene from his father, who had renal failure at the age of 20. We searched the literature and confirmed that this mutation site has not been reported by any other group before. CONCLUSIONS Although renal coloboma syndrome (RCS) with simultaneous kidney and eye involvement is the most common phenotype of PAX2 mutations, current literature supports that such mutations may have profuse clinical manifestations and renal hypoplasia is one distinct entity in the spectrum.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| | - Shu-bo Zhai
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| | - Leng-yue Zhao
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| | - Yan Zhang
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| | - Bai-chao Sun
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| | - Qing-shan Ma
- Department of Pediatrics Nephrology, First Hospital, Jilin University, Changchun, Jilin, 130021 China
| |
Collapse
|
6
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
7
|
Congenital anomalies of the optic disc: insights from optical coherence tomography imaging. Curr Opin Ophthalmol 2017; 28:579-586. [PMID: 28817389 DOI: 10.1097/icu.0000000000000425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Congenital anomalies of the optic nerve are rare but significant causes of visual dysfunction in children and adults. Accurate diagnosis is dependent on a thorough funduscopic examination, but can be enhanced by imaging information garnered from optical coherence tomography (OCT). We review common congenital optic nerve anomalies, including optic disc pit, optic nerve coloboma, morning glory disc anomaly, and hypoplasia of the optic nerve, review their systemic associations, and discuss insights from OCT imaging. RECENT FINDINGS Optic disc pits are a result of a defect in the lamina cribrosa and abnormal vitreomacular adhesions have been shown to cause maculopathy. In patients with optic nerve colobomas, OCT can be instrumental in diagnosing choroidal neovascularization, a rare but visually devastating complication. The pathogenesis of morning glory disc anomaly has been more clearly elucidated by OCT as occurring from a secondary postnatal mesenchymal abnormality rather than only the initial neuroectodermal dysgenesis of the terminal optic stalk in isolation. OCT studies of optic nerve hypoplasia have demonstrated significant thinning of the inner and outer retinal layers of the perifoveal region and thicker layers in the fovea itself, resulting in a foveal hypoplasia-like pathology, that is, significantly correlated to poorer visual outcomes. SUMMARY OCT provides detailed in-vivo analysis of these anatomic anomalies and their resulting pathologies, shedding new insights on the pathogenesis, diagnosis, and potential visual outcomes of these conditions in children. Further study employing OCT to elucidate structure-function relationships of congenital optic nerve anomalies will help expand the role of OCT in clinical practice related to diagnosis, prognosis, and management of these entities.
Collapse
|
8
|
Xu J, Liu H, Chai OH, Lan Y, Jiang R. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis. PLoS One 2016; 11:e0159597. [PMID: 27442016 PMCID: PMC4956120 DOI: 10.1371/journal.pone.0159597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Renal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however. In this study, by using the recently developed CRISPR genome editing technology, we genetically labeled the endogenous Osr1 protein and show that Osr1 interacts with Wt1 in the developing kidney. Whereas mice heterozygous for either an Osr1 or Wt1 null allele have normal kidneys at birth, most mice heterozygous for both Osr1 and Wt1 exhibit defects in metanephric kidney development, including unilateral or bilateral kidney agenesis or hypoplasia. The developmental defects in the Osr1+/-Wt1+/- mouse embryos were detected as early as E10.5, during specification of the metanephric mesenchyme, with the Osr1+/-Wt1+/- mouse embryos exhibiting significantly reduced Pax2-positive and Six2-positive nephron progenitor cells. Moreover, expression of Gdnf, the major nephrogenic signal for inducing ureteric bud outgrowth, was significantly reduced in the metanephric mesenchyme in Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- littermates. By E11.5, as the ureteric buds invade the metanephric mesenchyme and initiate branching morphogenesis, kidney morphogenesis was significantly impaired in the Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- embryos. These results indicate that Osr1 and Wt1 act synergistically to regulate nephron endowment by controlling metanephric mesenchyme specification during early nephrogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Ok Hee Chai
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Department of Anatomy, Chonbuk National University Medical School and Institute for Medical Sciences, Deokjin-gu, Jeonju 561–756, Republic of Korea
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- * E-mail:
| |
Collapse
|
9
|
Prabhudesai S, Bensabeur FZ, Abdullah R, Basak I, Baez S, Alves G, Holtzman NG, Larsen JP, Møller SG. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res 2016; 94:717-35. [PMID: 27265751 DOI: 10.1002/jnr.23754] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/30/2022]
Abstract
Although mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of genetic Parkinson's disease, their function is largely unknown. LRRK2 is pleiotropic in nature, shown to be involved in neurodegeneration and in more peripheral processes, including kidney functions, in rats and mice. Recent studies in zebrafish have shown conflicting evidence that removal of the LRRK2 WD40 domain may or may not affect dopaminergic neurons and/or locomotion. This study shows that ∼50% LRRK2 knockdown in zebrafish causes not only neuronal loss but also developmental perturbations such as axis curvature defects, ocular abnormalities, and edema in the eyes, lens, and otic vesicles. We further show that LRRK2 knockdown results in significant neuronal loss, including a reduction of dopaminergic neurons. Immunofluorescence demonstrates that endogenous LRRK2 is expressed in the lens, brain, heart, spinal cord, and kidney (pronephros), which mirror the LRRK2 morphant phenotypes observed. LRRK2 knockdown results further in the concomitant upregulation of β-synuclein, PARK13, and SOD1 and causes β-synuclein aggregation in the diencephalon, midbrain, hindbrain, and postoptic commissure. LRRK2 knockdown causes mislocalization of the Na(+) /K(+) ATPase protein in the pronephric ducts, suggesting that the edema might be linked to renal malfunction and that LRRK2 might be associated with pronephric duct epithelial cell differentiation. Combined, our study shows that LRRK2 has multifaceted roles in zebrafish and that zebrafish represent a complementary model to further our understanding of this central protein. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Rashed Abdullah
- Department of Biological Sciences, St. John's University, Queens, New York
| | - Indranil Basak
- Department of Biological Sciences, St. John's University, Queens, New York
| | - Solange Baez
- Department of Biological Sciences, St. John's University, Queens, New York
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Nathalia G Holtzman
- Department of Biology, Queens College and The Graduate Center, CUNY, Queens, New York
| | - Jan Petter Larsen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Simon Geir Møller
- Department of Biological Sciences, St. John's University, Queens, New York.,The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
10
|
Schimmenti LA. Genetic and developmental basis of renal coloboma (papillorenal) syndrome. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Zhou TB. Signaling pathways of PAX2 and its role in renal interstitial fibrosis and glomerulosclerosis. J Recept Signal Transduct Res 2012; 32:298-303. [PMID: 23137159 DOI: 10.3109/10799893.2012.738231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, Binenbaum G, Jensen UB, Cochat P, DeCramer S, Dixon J, Drouin R, Falk MJ, Feret H, Gise R, Hunter A, Johnson K, Kumar R, Lavocat MP, Martin L, Morinière V, Mowat D, Murer L, Nguyen HT, Peretz-Amit G, Pierce E, Place E, Rodig N, Salerno A, Sastry S, Sato T, Sayer JA, Schaafsma GCP, Shoemaker L, Stockton DW, Tan WH, Tenconi R, Vanhille P, Vats A, Wang X, Warman B, Weleber RG, White SM, Wilson-Brackett C, Zand DJ, Eccles M, Schimmenti LA, Heidet L. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat 2012; 33:457-66. [PMID: 22213154 DOI: 10.1002/humu.22020] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/12/2011] [Indexed: 11/06/2022]
Abstract
Renal coloboma syndrome, also known as papillorenal syndrome is an autosomal-dominant disorder characterized by ocular and renal malformations. Mutations in the paired-box gene, PAX2, have been identified in approximately half of individuals with classic findings of renal hypoplasia/dysplasia and abnormalities of the optic nerve. Prior to 2011, there was no actively maintained locus-specific database (LSDB) cataloguing the extent of genetic variation in the PAX2 gene and phenotypic variation in individuals with renal coloboma syndrome. Review of published cases and the collective diagnostic experience of three laboratories in the United States, France, and New Zealand identified 55 unique mutations in 173 individuals from 86 families. The three clinical laboratories participating in this collaboration contributed 28 novel variations in 68 individuals in 33 families, which represent a 50% increase in the number of variations, patients, and families published in the medical literature. An LSDB was created using the Leiden Open Variation Database platform: www.lovd.nl/PAX2. The most common findings reported in this series were abnormal renal structure or function (92% of individuals), ophthalmological abnormalities (77% of individuals), and hearing loss (7% of individuals). Additional clinical findings and genetic counseling implications are discussed.
Collapse
Affiliation(s)
- Matthew Bower
- Division of Genetics and Metabolism, University of Minnesota Medical Center, Fairview, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A novel interstitial deletion of 10q24.2q24.32 in a patient with renal coloboma syndrome. Eur J Med Genet 2012; 55:211-5. [PMID: 22361651 DOI: 10.1016/j.ejmg.2012.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/21/2012] [Indexed: 11/21/2022]
Abstract
Renal coloboma syndrome (RCS) is considered to be a rare autosomal dominant inherited disorder characterized by renal malformations and optic disc coloboma. Ocular anomalies range from asymptomatic abnormalities in retinal blood vessel patterning to large excavations of the optic nerve associated with reduced visual acuity. Commonly observed manifestations of the kidney are renal hypoplasia and vesicoureteric reflux leading to end-stage renal disease. Mutations in the PAX2 gene on chromosome 10 have been identified in patients with RCS. Up to date, nucleotide substitutions, insertions, small deletions, one de novo translocation, and one 240 kb deletion of the coding region of the PAX2 gene have been described to be responsible for RCS. We report here a new case of a patient with RCS due to a deletion of 3.8 Mb on chromosome 10q. Deletions on the long arm of chromosome 10 harboring the PAX2 gene seem to be a rare cause for RCS. Nevertheless, array-CGH testing should represent an important and valuable addition to PAX2 gene sequencing in diagnostic of RCS.
Collapse
|
14
|
Abstract
Renal coloboma syndrome (RCS), also called papillorenal syndrome, is an autosomal dominant condition characterized by optic nerve dysplasia and renal hypodysplasia. The eye anomalies consist of a wide and sometimes excavated dysplastic optic disc with the emergence of the retinal vessels from the periphery of the disc, frequently called optic nerve coloboma or morning glory anomaly. Associated findings may include a small corneal diameter, retinal coloboma, scleral staphyloma, optic nerve cyst and pigmentary macular dysplasia. The kidney abnormalities consist of small and abnormally formed kidneys known as renal hypodysplasia. Histologically, kidneys exhibit fewer than the normal number of glomeruli and these glomeruli are enlarged, a finding called oligomeganephronia. Consequences of the ocular malformations include decreased visual acuity and retinal detachment. Consequences of the renal hypodysplasia include hypertension, proteinuria and renal insufficiency that frequently progresses to end-stage kidney disease. High frequency hearing loss has been reported. Autosomal dominant mutations in PAX2 can be identified in nearly half of all patients with clinical findings suggestive of RCS, however, the majority of published cases have mutations in PAX2, thus biasing the known information about the phenotype.
Collapse
|
15
|
Cain JE, Di Giovanni V, Smeeton J, Rosenblum ND. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr Res 2010; 68:91-8. [PMID: 20421843 DOI: 10.1203/pdr.0b013e3181e35a88] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.
Collapse
Affiliation(s)
- Jason E Cain
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | |
Collapse
|
16
|
Alur RP, Vijayasarathy C, Brown JD, Mehtani M, Onojafe IF, Sergeev YV, Boobalan E, Jones M, Tang K, Liu H, Xia CH, Gong X, Brooks BP. Papillorenal syndrome-causing missense mutations in PAX2/Pax2 result in hypomorphic alleles in mouse and human. PLoS Genet 2010; 6:e1000870. [PMID: 20221250 PMCID: PMC2832668 DOI: 10.1371/journal.pgen.1000870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/02/2010] [Indexed: 11/21/2022] Open
Abstract
Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice. Congenital ocular malformations affecting the optic nerve are an important cause of childhood blindness. The papillorenal syndrome (PRS) is an autosomal dominant disorder that causes congenital optic nerve and kidney abnormalities, which may result in legal blindness and renal failure, respectively. Many cases of PRS are caused by mutations in the paired-box transcription factor PAX2. In this paper, we describe a novel mouse model of this human disease caused by a missense mutation in the Pax2 gene at the same position of one of the few disease-causing missense mutations in humans. We characterize the ocular and non-ocular phenotypes of this mouse and model the effect that murine and human Pax2/PAX2 mutations have on protein structure. We also experimentally test the effect these missense mutations have on protein localization, transactivation, and DNA binding, concluding that all three reduce steady-state levels of protein in vitro and (in p.T74A) in vivo by reducing protein stability. This work will help us better understand the pathophysiology of PRS and to dissect the molecular interactions important in normal PAX2 function.
Collapse
Affiliation(s)
- Ramakrishna P. Alur
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Jacob D. Brown
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Mohit Mehtani
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ighovie F. Onojafe
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Elangovan Boobalan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - MaryPat Jones
- National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ke Tang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Haiquan Liu
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Chun-hong Xia
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Brian P. Brooks
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
17
|
Cho HK, Jee DH. Congenital Optic Disc Coloboma Associated With Right Seventh and Eighth Cranial Nerve Palsy. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2009. [DOI: 10.3341/jkos.2009.50.10.1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyun Kyung Cho
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Dong Hyun Jee
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
18
|
Cheong HI, Cho HY, Kim JH, Yu YS, Ha IS, Choi Y. A clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol 2007; 22:1283-9. [PMID: 17541647 DOI: 10.1007/s00467-007-0525-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 04/29/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Renal coloboma syndrome (RCS) is an autosomal dominant disorder caused by PAX2 gene mutations and characterized by renal hypoplasia and optic disc coloboma. The clinical findings were retrospectively reviewed, and all coding regions of the PAX2 gene were sequenced, in six children with RCS. A c.619_620insG mutation was detected in five patients, including two siblings, and a novel p.Arg104X mutation was detected in one patient. All the patients had progressive renal dysfunction and bilateral hypoplastic kidneys without vesicoureteral reflux (VUR), but the rate of progression to end-stage renal disease showed some diversity. The ocular manifestations showed wide variability, ranging from subtle optic disc anomalies to microphthalmia. In one family with two affected siblings, maternal germline mosaicism was suggested by an intragenic microsatellite marker study. In conclusion, there are variable renal and ocular manifestations in RCS without significant phenotype-genotype correlations. VUR is not a cardinal renal manifestation of RCS. The possibility of germline mosaicism should be considered during molecular diagnosis and genetic counseling for PAX2 mutations.
Collapse
Affiliation(s)
- Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, 28 Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The morphology of optic disc dysplasia is the most consistent finding in the papillorenal syndrome, an autosomal-dominant syndrome of eye and kidney maldevelopment often associated with the PAX2 mutation. In the absence of a recognized family history, the diagnosis is typically not made until renal disease is evident. We report an infant whose characteristic fundus findings led to the early diagnosis of the papillorenal syndrome before the potential development of renal dysfunction.
Collapse
Affiliation(s)
- Arif O Khan
- Department of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.
| | | |
Collapse
|
20
|
Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M, Jüppner H, Alexander SI. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 2005; 16:2754-61. [PMID: 16049068 DOI: 10.1681/asn.2005030239] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The renal coloboma syndrome (OMIM 120330) is caused by mutations in the PAX2 gene. Typical findings in these patients include renal hypoplasia, renal insufficiency, vesicoureteric reflux, and optic disc coloboma. A family with a novel heterozygous 10-bp deletion in exon 2 of the PAX2 gene leading to a truncating mutation and variable phenotype across three generations is reported. The first presentation of multicystic dysplastic kidney in this syndrome is reported. The possibility that abnormal PAX2 protein in this case may cause a dominant negative effect also is discussed. The finding of multicystic dysplastic kidney in renal coloboma syndrome could suggest that PAX2 may play a role in early ureteric obstruction and subsequent renal maldevelopment.
Collapse
Affiliation(s)
- Jeffery Fletcher
- Centre for Kidney Research, Department of Nephrology, The Children's Hospital at Westmead, Westmead, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The principal congenital abnormalities of the optic disc that can significantly impair visual function are excavation of the optic disc and optic nerve hypoplasia. The excavated optic disc abnormalities comprise optic disc coloboma, morning glory syndrome, and peripapillary staphyloma. Optic nerve hypoplasia manifests as a small optic nerve, which may or may not be accompanied by a peripapillary ring (the double ring sign). In addition, the optic disc cupping, which occurs as a sequel to some cases of periventricular leucomalacia, can arguably be classified as a type of optic nerve hypoplasia. All of these conditions can be unilateral or bilateral and can impair visual function mildly or severely. It is essential that children with poor vision due to any of these conditions are managed by treating refractive errors, giving occlusion therapy in selected cases, and optimising the conditions at home and at school in an attempt to ensure that impaired vision does not impede development or education.
Collapse
Affiliation(s)
- G N Dutton
- Tennent Institute of Ophthalmology, Gartnavel, General Hospital, Glasgow, UK.
| |
Collapse
|