1
|
Lee JH, Reischl S, Walter RL, Vieregge V, Weber MC, Xu R, Chen H, Cira K, Kasajima A, Friess H, Neumann PA, Kamaly N. Orally delivered biodegradable targeted inflammation resolving pectin-coated nanoparticles induce anastomotic healing post intestinal surgery. Sci Rep 2024; 14:29253. [PMID: 39587209 PMCID: PMC11589105 DOI: 10.1038/s41598-024-80886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Targeted perioperative therapeutics supporting anastomotic healing during colitis are an urgent medical need. This study aimed to develop and evaluate a novel nanoparticle (NP)-based drug delivery system for improving anastomotic healing in Inflammatory bowel disease (IBD) patients following surgery. We developed pectin-coated polymeric NPs encapsulating the inflammation-resolving peptide Ac2-26. These NPs are designed to survive gastric passage, facilitate localized release in the colon via microbial pectinase degradation, and bind to the intestinal wound through collagen IV targeting. We investigated these NPs in a murine surgical model combining intestinal anastomosis with preoperative colitis induction. Perioperative administration of pectin-chitosan coated NPs containing Ac2-26 (P-C-Col IV-Ac2-26-NP) reduced colitis activity postoperatively. Macroscopic wound closure improved, as evaluated by endoscopy and intraabdominal adhesion scoring. Microscopic analysis revealed an improved semiquantitative healing score in the treatment group. This proof-of-concept study demonstrates that novel P-C-Col IV-Ac2-26-NP could be a promising and clinically feasible perioperative treatment strategy for IBD patients undergoing intestinal surgery. The targeted delivery system shows potential for enhancing anastomotic healing and reducing postoperative complications in this IBD patient population.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stefan Reischl
- School of Medicine, Department of Surgery, Technical University of Munich, Munich, Germany
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Robert Leon Walter
- School of Medicine, Department of Surgery, Technical University of Munich, Munich, Germany
| | - Vincent Vieregge
- School of Medicine, Department of Surgery, Technical University of Munich, Munich, Germany
| | - Marie-Christin Weber
- School of Medicine, Department of Surgery, Technical University of Munich, Munich, Germany
| | - Runxin Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Hao Chen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Kamacay Cira
- School of Medicine, Department of Surgery, Technical University of Munich, Munich, Germany
| | - Atsuko Kasajima
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
2
|
Zhang LL, Jia BW, Zhuo ZP, Wang HY, Yang Q, Gao W, Ju YN. Ac2-26 Reduced Lung Injury After Cardiopulmonary Bypass via the AKT1/GSK3β/eNOS Pathway. J Surg Res 2024; 301:324-335. [PMID: 39013279 DOI: 10.1016/j.jss.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) leads to severe inflammation and lung injury. Our previous study showed that Ac2-26 (an active n-terminal peptide of Annexin A1) can reduce acute lung injury. The aim of this study was to evaluate the effect of Ac2-26 on lung injury in CPB rats. METHODS Forty rats were randomly divided into the sham, CPB, Ac, Ac/serine/threonine kinase 1 (AKT1), and Ac/ glycogen synthase kinase (GSK)-3β groups. The rats in the sham group only received anesthesia, intubation, and cannulation. The rats in the other 4 groups received the standard CPB procedure. The rats in the CPB, Ac, Ac/AKT1, and Ac/GSK3β groups were immediately injected with saline, Ac2-26 (1 mg/kg), Ac2-26 combined with short hairpin RNA (AKT1), or Ac2-26 combined with a GSK3β inhibitor after CPB. At 12 h after the end of CPB, the PaO2/ fraction of inspired oxygen ratio, wet/dry weight ratio and protein content in the bronchoalveolar lavage fluid (BALF) were recorded. The numbers of macrophages and neutrophils in the BALF and blood were determined. Cytokine levels in the blood and BALF were investigated. Lung tissue histology and apoptosis were estimated. The expression of nuclear factor kappa- B, AKT1, GSK3β, endothelial nitric oxide synthase and apoptosis-related proteins was analyzed. The survival of all the rats was recorded. RESULTS Compared with the rats in the sham group, all the parameters examined worsened in the rats that received CPB. Compared with those in the CPB group, Ac2-26 significantly improved pulmonary capillary permeability, reduced cytokine levels, and decreased histological scores and apoptosis. The protective effect of Ac2-26 on lung injury was significantly reversed by AKT1 short hairpin RNA or a GSK3β inhibitor. CONCLUSIONS Ac2-26 significantly reduced lung injury and inflammation after CPB. The protective effect of Ac2-26 mainly depended on the AKT1/GSK3β/endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-Wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zi-Peng Zhuo
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ying Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qing Yang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Silva JMD, Silva HALD, Sarmento ALC, Hueb M, Damazo AS. Analysis of clinical cure outcome, macrophages number, cytokines levels and expression of annexin-A1 in the cutaneous infection in patients with Leishmania braziliensis. Rev Soc Bras Med Trop 2024; 57:e00412. [PMID: 39082522 PMCID: PMC11290842 DOI: 10.1590/0037-8682-0036-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Leishmania braziliensis, a protozoan prevalent in Brazil, is the known causative agent of cutaneous leishmaniasis (CL). The activation of M1 macrophages is a pivotal factor in the host's ability to eliminate the parasite, whereas M2 macrophages may facilitate parasite proliferation. This study analyzed the clinical outcomes of CL and the patients' immunological profiles, focusing on the prevalence of M1 and M2 macrophages, cytokine production, and annexin-A1 (ANXA1) expression in the lesion. METHODS Data were obtained by polymerase chain reaction (PCR) and histopathological, immunofluorescence, and cytokine analyses. RESULTS Patients with exudative and cellular reaction-type (ECR)-type lesions that healed within 90 days showed a significant increase in M1. Conversely, patients with ECR and exudative and granulomatous reaction (EGR)types, who healed within 180 days, showed an elevated number of M2. Cytokines interferon (IFN)-γ and tumor necrosis factor (TNF)-α were higher in ECR lesions that resolved within 90 days (P<0.05). In contrast, IL-9 and IL-10 levels significantly increased in both ECR and EGR lesions that healed after 180 days (P<0.001). The production of IL-21, IL-23 and TGF-β was increased in patients with ECR or EGR lesions that healed after 180 days (P<0.05). The expression of ANXA1 was higher in M2 within ECR-type lesions in patients who healed after 180 days (P<0.05). CONCLUSIONS These findings suggest that the infectious microenvironment induced by L. braziliensis affects the differentiation of M1 and M2 macrophages, cytokine release, and ANXA1 expression, thereby influencing the healing capacity of patients. Therefore, histopathological and immunological investigations may improve the selection of CL therapy.
Collapse
Affiliation(s)
- Joselina Maria da Silva
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Helen Aguiar Lemes da Silva
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | | | - Marcia Hueb
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Amílcar Sabino Damazo
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-graduação em Ciências da Saúde, Cuiabá, MT, Brasil
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
4
|
Chen J, Austin-Williams S, O'Riordan CE, Claria-Ribas P, Sugimoto MA, Norling LV, Thiemermann C, Perretti M. Formyl Peptide Receptor Type 2 Deficiency in Myeloid Cells Amplifies Sepsis-Induced Cardiac Dysfunction. J Innate Immun 2023; 15:548-561. [PMID: 37068475 PMCID: PMC10315071 DOI: 10.1159/000530284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
Using a global formyl peptide receptor (Fpr) 2 knockout mouse colony, we have reported the modulatory properties of this pro-resolving receptor in polymicrobial sepsis. Herein, we have used a humanized FPR2 (hFPR2) mouse colony, bearing an intact or a selective receptor deficiency in myeloid cells to dwell on the cellular mechanisms. hFPR2 mice and myeloid cell-specific hFPR2 KO (KO) mice were subjected to cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Compared with hFPR2 mice, CLP caused exacerbated cardiac dysfunction (assessed by echocardiography), worsened clinical outcome, and impaired bacterial clearance in KO mice. This pathological scenario was paralleled by increased recruitment of pro-inflammatory monocytes and reduced M2-like macrophages within the KO hearts. In peritoneal exudates of KO mice, we quantified increased neutrophil and MHC II+ macrophage numbers but decreased monocyte/macrophage and MHC II- macrophage recruitment. hFPR2 upregulation was absent in myeloid cells, and local production of lipoxin A4 was reduced in septic KO mice. Administration of the FPR2 agonist annexin A1 (AnxA1) improved cardiac function in hFPR2 septic mice but had limited beneficial effects in KO mice, in which the FPR2 ligand failed to polarize macrophages toward an MHC II- phenotype. In conclusion, FPR2 deficiency in myeloid cells exacerbates cardiac dysfunction and worsens clinical outcome in polymicrobial sepsis. The improvement of cardiac function and the host immune response by AnxA1 is more effective in hFPR2-competent septic mice.
Collapse
Affiliation(s)
- Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Shani Austin-Williams
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Pol Claria-Ribas
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Michelle A. Sugimoto
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Lucy V. Norling
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
5
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
6
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
8
|
Costa VV, Sugimoto MA, Hubner J, Bonilha CS, Queiroz-Junior CM, Gonçalves-Pereira MH, Chen J, Gobbetti T, Libanio Rodrigues GO, Bambirra JL, Passos IB, Machado Lopes CE, Moreira TP, Bonjour K, Melo RCN, Oliveira MAP, Andrade MVM, Sousa LP, Souza DG, Santiago HDC, Perretti M, Teixeira MM. Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife 2022; 11:73853. [PMID: 35293862 PMCID: PMC8959599 DOI: 10.7554/elife.73853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Josy Hubner
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio S Bonilha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gisele Olinto Libanio Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana L Bambirra
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingredy B Passos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Elizabeth Machado Lopes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiane P Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kennedy Bonjour
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Milton A P Oliveira
- Tropical Pathology and Public Health Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Gloria Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
da Silva SF, da Silva Cavalcante LR, Fonseca Junior EA, da Silva JM, Lopes JC, Damazo AS. Analysis of the myeloid-derived suppressor cells and annexin A1 in multibacillary leprosy and reactional episodes. BMC Infect Dis 2021; 21:1050. [PMID: 34627197 PMCID: PMC8502368 DOI: 10.1186/s12879-021-06744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae. Patients have distinct clinical forms, and the host´s immunological response regulate those manifestations. In this work, the presence of the myeloid-derived suppressor cell and the regulatory protein annexin A1 is described in patients with multibacillary leprosy and with type 1 and 2 reactions.
Methods Patients were submitted to skin biopsy for histopathological analysis to obtain a bacilloscopic index. Immunofluorescence was used to detect myeloid-derived suppressor cells and annexin A1. Results The data demonstrated that the presence of granulocytic and monocytic myeloid-derived suppressor cells in leprosy patients. A high number of monocytic myeloid-derived suppressor cells were observed in lepromatous leprosy and type 2 reactional patients. The presence of annexin A1 was observed in all myeloid-derived suppressor cells. In particular, the monocytic myeloid-derived suppressor cell in the lepromatous patients has higher levels of this protein when compared to the reactional patients. This data suggest that the higher expression of this protein may be related to regulatory response against a severe infection, contributing to anergic response. In type 1 reactional patients, the expression of annexin A1 was reduced. Conclusions Myeloid-derived suppressor cell are present in leprosy patients and annexin A1 might be regulated the host response against Mycobacterium leprae. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06744-x.
Collapse
Affiliation(s)
- Stephanni Figueiredo da Silva
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Universidade Federal de Mato Grosso (UFMT), 2367 Fernando Correa da Costa Avenue, Cuiabá, MT, 78060-900, Brazil.,Coordenator of the Laboratory of Clinical Analysis in Jangada, Jangada, MT, 78490-000, Brazil
| | - Leticia Rossetto da Silva Cavalcante
- Ambulatory of Leprosy, University Hospital Julio Müller, Luis Philippe Pereira Leite Street, Cuiabá, MT, 78048-902, Brazil.,Post-Graduate Program in Professional Master in Science Applied at Hospital Attention, University Hospital Julio Müller, Luis Philippe Pereira Leite Street, Cuiabá, MT, 78048-902, Brazil
| | - Ezequiel Angelo Fonseca Junior
- Ambulatory of Leprosy, University Hospital Julio Müller, Luis Philippe Pereira Leite Street, Cuiabá, MT, 78048-902, Brazil
| | - Joselina Maria da Silva
- Department of Basic Sciences in Health, Faculty of Medicine (FM), School of Medicine, Universidade Federal de Mato Grosso (UFMT), 2367 Fernando Correa da Costa Avenue, MT, 78060-900, Cuiabá, Brazil
| | - José Cabral Lopes
- Ambulatory of Leprosy, University Hospital Julio Müller, Luis Philippe Pereira Leite Street, Cuiabá, MT, 78048-902, Brazil
| | - Amilcar Sabino Damazo
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Universidade Federal de Mato Grosso (UFMT), 2367 Fernando Correa da Costa Avenue, Cuiabá, MT, 78060-900, Brazil. .,Post-Graduate Program in Professional Master in Science Applied at Hospital Attention, University Hospital Julio Müller, Luis Philippe Pereira Leite Street, Cuiabá, MT, 78048-902, Brazil. .,Department of Basic Sciences in Health, Faculty of Medicine (FM), School of Medicine, Universidade Federal de Mato Grosso (UFMT), 2367 Fernando Correa da Costa Avenue, MT, 78060-900, Cuiabá, Brazil.
| |
Collapse
|
11
|
Wang G, Liang XS, He CJ, Zhou YF, Chen SH. Ability of serum annexin A1 to predict 6-month poor clinical outcome following aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2021; 519:142-147. [PMID: 33932407 DOI: 10.1016/j.cca.2021.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Annexin A1 might be neuroprotective and serum annexin A1 concentrations were markedly declined after severe traumatic brain injury. We determine dthe ability of serum annexin A1 to assess severity and predict prognosis after aneurysmal subarachnoid hemorrhage (aSAH). METHODS We included 157 aSAH patients and 157 healthy subjects. Serum annexin A1 measurements were measured. A poor outcome was designated as Glasgow outcome scale score of 1-3. Multivariate logistic regression analysis was applied to identify predictors of a poor 6-month outcome. RESULTS Serum annexin A1 concentrations were significantly lower in patients than in controls. Annexin A1 concentrations were strongly correlated with the World Federation of Neurological Surgeons scale (WFNS) score, Hunt-Hess score, Glasgow coma scale score and modified Fisher score. A total of 59 patients (37.6%) experienced a poor outcome. Serum annexin A1, WFNS score and modified Fisher score emerged as the 3 independent predictors for a poor outcome after aSAH. Under ROC curve analysis, serum annexin A1 had a fair accuracy to predict a poor outcome, AUC of serum annexin A1 concentration was equivalent to those of WFNS score and modified Fisher score and AUC of combination of the 3 factors significantly exceeded that of each one alone. CONCLUSIONS Annexin A1 may be involved in the occurrence and progression of secondary brain injury after aSAH. Detection of serum annexin A1 may have certain ability for assessment of severity and prediction of long-term prognosis following aSAH.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 North Zhongxing Road, Shaoxing 312000, Zhejiang Province, PR China
| | - Xiao-Song Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), 999 South Zhongxing Road, Shaoxing 312000, Zhejiang Province, PR China.
| | - Chen-Jun He
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), 999 South Zhongxing Road, Shaoxing 312000, Zhejiang Province, PR China
| | - Yi-Fu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), 999 South Zhongxing Road, Shaoxing 312000, Zhejiang Province, PR China
| | - Si-Hua Chen
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), 999 South Zhongxing Road, Shaoxing 312000, Zhejiang Province, PR China
| |
Collapse
|
12
|
Silva DNPB, Adriana F, Martins DTDO, Borges QI, Lindote MVN, Zoratti MTR, Oliveira RGD, Torquato HFV, Gazoni VF, Costa LAMAD, Souza ECAD, Silva FMAD, Arunachalam K, Damazo AS. Methanolic extract of Cariniana rubra Gardner ex Miers stem bark negatively regulate the leukocyte migration and TNF-α and up-regulate the annexin-A1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113778. [PMID: 33421601 DOI: 10.1016/j.jep.2021.113778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cariniana rubra Gardner ex Miers (Lecythidaceae), is a native and endemic tree in Brazil, whose inner stem bark decoction preparation is used in folk medicine to treat various inflammatory disorders. Previous scientific reports confirmed its popular use as an anti-inflammatory, without, however, evaluating its action mechanisms. AIM The objective of this study was to determine the cytotoxicity and anti-inflammatory mechanism of action of the methanolic extract of Cariniana rubra (MECr), using experimental models in vivo and in vitro, as well as to identify secondary metabolites present in the extract. MATERIAL AND METHODS The MECr was prepared by maceration of inner stem bark powder in methanol (1:10 w/v). The in vitro cytotoxicity effect was evaluated in CHO-k1 cells. The Hippocratic screening test was conducted to evaluate the acute toxicity of MECr in mice. The actions of MECr on leukocyte migration, cytokine levels (IL-1β and TNF-α) and annexin-A1 (AnxA1) expression, were carried out on lambda-type carrageenan air pouch inflammation model in Swiss mice. Additionally, the phytochemical analysis of MECr was carried out by thin-layer chromatography (TLC) and spectrometric mass analysis with electrospray ionization ESI(-)/MS and gas chromatography-mass spectrometry (GC-MS). RESULTS Treatment of CHO-k1 cells for 24 h with MECr did not cause cytotoxicity (IC50 > 200 μg/mL), however, the MECr was shown to be cytotoxic after 72 h of cell exposure (IC50 = 19.90 ± 3.51 μg/mL). In the Hippocratic test, oral treatment of mice with 750, 1500, or 3000 mg/kg of MECr did not show any histopathological changes and mortality during the 14 days of observation. In the carrageenan air pouch inflammation model, MECr reduced (p < 0.001) polymorphonuclear migration (57.7% and 57.8%), leukocyte monocyte migration (74.5% and 61.8%) in the air pouch cavity and in the skin tissue, respectively. MECr also inhibited TNF-α concentration in the air cavity wash (3.2%, p < 0.01) and increased expression of the AnxA1 protein (26.9%, p < 0.01) in the skin tissue, particularly in neutrophils. β-sitosterol (1.95%), gallic acid (1.24%), β-amyrin (0.87%) and stigmasterol (0.66%) were identified as the major constituents in methanolic extract. CONCLUSION MECr exhibits significant anti-inflammatory action at least by increasing AnxA1 expression and by inhibiting the release of TNF-α pro-inflammatory cytokine and leukocyte migration, which is probably linked to the presence of identified biologically active compounds, especially gallic acid and terpenes. We believe that the results of this study provide a pharmacological basis for the MECr to be considered as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Donata Norman Paulino Brandão Silva
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Department of Pharmacy, University Center of Várzea Grande (UNIVAG), Cuiabá, Brazil
| | - Flach Adriana
- Department of Chemistry, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | | | - Quessi Irias Borges
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Marcus Vitor Nunes Lindote
- Graduate Course in Medicine, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Ruberlei Godinho de Oliveira
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Heron Fernandes Vieira Torquato
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Vanessa Fátima Gazoni
- Post-Graduate Course in Health Science, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | | | | | | | - Karuppusamy Arunachalam
- Area of Pharmacology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PRChina
| | - Amilcar Sabino Damazo
- Area of Histology, Department of Basic Science in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
13
|
Vago JP, Tavares LP, Riccardi C, Teixeira MM, Sousa LP. Exploiting the pro-resolving actions of glucocorticoid-induced proteins Annexin A1 and GILZ in infectious diseases. Biomed Pharmacother 2020; 133:111033. [PMID: 33378946 DOI: 10.1016/j.biopha.2020.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023] Open
Abstract
For decades, glucocorticoids (GC) have been used to treat several inflammatory conditions, including chronic and autoimmune diseases, due to their potent anti-inflammatory properties. In the context of infectious diseases, the use of GCs may be effective as adjuvant to antibiotic therapy by controlling excessive inflammatory responses resulting in better outcome in some cases. However, the use of GCs has been associated with a vast number of side effects, including increased probability of immunosuppression and consequent risk of opportunistic infection. Glucocorticoid-induced leucine zipper (GILZ) and Annexin A1 (AnxA1) are GC-induced proteins intrinsically involved with the anti-inflammatory functions of GCs without the associated adverse metabolic effects. Recent studies have shown that these GC-proteins exhibit pro-resolving effects. An essential characteristic of pro-resolving molecules is their ability to coordinate the resolution of inflammation and promote host defense in most experimental models of infection. Although the role of GILZ and AnxA1 in the context of infectious diseases remain to be better explored, herein we provide an overview of the emerging functions of these GC-proteins obtained from pre-clinical models of infectious diseases.
Collapse
Affiliation(s)
- Juliana P Vago
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlo Riccardi
- Departament of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Ribeiro AB, Caloi CM, Pimenta STS, Seshayyan S, Govindarajulu S, Souto FJD, Damazo AS. Expression of annexin-A1 in blood and tissue leukocytes of leprosy patients. Rev Soc Bras Med Trop 2020; 53:e20200277. [PMID: 33263684 PMCID: PMC7723367 DOI: 10.1590/0037-8682-0277-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION In leprosy, immune system mediators that regulate the infectious process act in a complex manner and can lead to several clinical outcomes. To understand the behavior of these mediators we quantified the expression of annexin-A1 (ANXA1) in the peripheral blood and plasma as well as tissue leukocytes in all clinical forms of leprosy and compared with healthy controls. METHODS Seventy healthy controls and 70 patients with leprosy, tuberculoid (TT) (n = 13), borderline tuberculoid (BT) (n = 15), borderline borderline (BB) (n = 13), borderline lepromatous (BL) (n = 15), and lepromatous leprosy (LL) (n = 14), were selected. Phenotyping of the lymphocyte cells and the intracellular expression of ANXA1 in leukocytes was performed by immunofluorescence. Plasma protein levels were determined by enzyme-linked immunosorbent assay. RESULTS Histiocytes and CD4+ and CD8+ T cells in the skin of BL and LL patients had higher ANXA1 expression. ANXA1 expression was also high in circulating polymorphonuclear, monocytes, and CD4+ and CD8+ T cells in the blood of LL patients compared to those of TT, BT, BB, and BL patients, and these levels were similar to those in healthy controls. Plasma ANXA1 levels indicate an increase in paracrine release in patients with LL. CONCLUSIONS The data indicate that ANXA1 expression is enhanced in the leukocytes and plasma of patients with LL, and may contribute to the inhibition of leukocyte action, leading to inadequate functioning of the immune system and thus contributing to the spread of M. leprae infection.
Collapse
Affiliation(s)
- Afonso Bezerra Ribeiro
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Caroline Marques Caloi
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | | | - Sudha Seshayyan
- The Tamil Nadu Dr. MGR Medical University, Guindy, Chennai, India
| | - Srinivas Govindarajulu
- The Tamil Nadu Dr. MGR Medical University, Department of Epidemiology, Guindy, Chennai, India
| | - Francisco José Dutra Souto
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Amílcar Sabino Damazo
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Ciências Básicas em Saúde, Cuiabá, MT, Brazil
| |
Collapse
|
15
|
Leucine-rich alpha-2 glycoprotein 1, high mobility group box 1, matrix metalloproteinase 3 and annexin A1 as biomarkers of ulcerative colitis endoscopic and histological activity. Eur J Gastroenterol Hepatol 2020; 32:1106-1115. [PMID: 32483088 DOI: 10.1097/meg.0000000000001783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The LRG, HMGB1, MMP3 and ANXA1 proteins have been implicated in different inflammatory pathways in ulcerative colitis (UC), but their role as specific biomarkers of both endoscopic and histological activity has yet to be elucidated. In the present study, we aimed to evaluate the LRG1, HMGB1, MMP3 and ANXA1 as potential serum biomarkers for UC endoscopic and histological activity. METHODS This cross-sectional study included UC patients under 5-ASA, and healthy controls (HC) undergoing colonoscopy. Blood and biopsy samples were obtained and endoscopic Mayo sub-score (Ms) was recorded for the UC patients. Intramucosal calprotectin as a marker of histologic activity was evaluated in all biopsy samples and serum LRG1, HMGB1, MMP3 and ANXA1 levels were measured in the blood samples. RESULTS The HCs ANXA1 level was lower compared to that of the UC group [P = 0.00, area under the curve (AUC) = 0.881] and so was the HCs MMP3 level compared to that of patients (P = 0.00, AUC = 0.835). The HCs ANXA1 levels were also lower compared to these of the independent Ms groups, even to the Ms = 0 (P = 0.00, AUC = 0.913). UC endoscopic activity was associated with MMP3 levels (r = 0.54, P = 0.000) but not with ANXA1, LRG1 and HMGB1 levels CONCLUSION: Serum ANXA1 is a potential diagnostic biomarker of UC and serum MMP3 is a potential biomarker of UC endoscopic and histological activity.
Collapse
|
16
|
Sanches JM, Branco LM, Duarte GHB, Oliani SM, Bortoluci KR, Moreira V, Gil CD. Annexin A1 Regulates NLRP3 Inflammasome Activation and Modifies Lipid Release Profile in Isolated Peritoneal Macrophages. Cells 2020; 9:cells9040926. [PMID: 32283822 PMCID: PMC7226734 DOI: 10.3390/cells9040926] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Annexin A1 (AnxA1) is a potent anti-inflammatory protein that downregulates proinflammatory cytokine release. This study evaluated the role of AnxA1 in the regulation of NLRP3 inflammasome activation and lipid release by starch-elicited murine peritoneal macrophages. C57bl/6 wild-type (WT) and AnxA1-null (AnxA1-/-) mice received an intraperitoneal injection of 1.5% starch solution for macrophage recruitment. NLRP3 was activated by priming cells with lipopolysaccharide for 3 h, followed by nigericin (1 h) or ATP (30 min) incubation. As expected, nigericin and ATP administration decreased elicited peritoneal macrophage viability and induced IL-1β release, more pronounced in the AnxA1-/- cells than in the control peritoneal macrophages. In addition, nigericin-activated AnxA1-/- macrophages showed increased levels of NLRP3, while points of co-localization of the AnxA1 protein and NLRP3 inflammasome were detected in WT cells, as demonstrated by ultrastructural analysis. The lipidomic analysis showed a pronounced release of prostaglandins in nigericin-stimulated WT peritoneal macrophages, while ceramides were detected in AnxA1-/- cell supernatants. Different eicosanoid profiles were detected for both genotypes, and our results suggest that endogenous AnxA1 regulates the NLRP3-derived IL-1β and lipid mediator release in macrophages.
Collapse
Affiliation(s)
- José Marcos Sanches
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
- Faculdade de Medicina, Universidade do Oeste Paulista, Guarujá, São Paulo 11410-980, Brazil
| | - Laura Migliari Branco
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil; (L.M.B.); (K.R.B.)
| | | | - Sonia Maria Oliani
- Programa de Pós-Graduação em Biociências, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil;
| | - Karina Ramalho Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil; (L.M.B.); (K.R.B.)
| | - Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil;
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
- Programa de Pós-Graduação em Biociências, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil;
- Correspondence: ; Tel.: +55-011-5576-4268
| |
Collapse
|
17
|
Galvão I, de Carvalho RVH, Vago JP, Silva ALN, Carvalho TG, Antunes MM, Ribeiro FM, Menezes GB, Zamboni DS, Sousa LP, Teixeira MM. The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology 2020; 160:78-89. [PMID: 32107769 DOI: 10.1111/imm.13184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1β release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1β release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1β, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Toniana G Carvalho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maísa M Antunes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Jelinic M, Kahlberg N, Leo CH, Ng HH, Rosli S, Deo M, Li M, Finlayson S, Walsh J, Parry LJ, Ritchie RH, Qin CX. Annexin-A1 deficiency exacerbates pathological remodelling of the mesenteric vasculature in insulin-resistant, but not insulin-deficient, mice. Br J Pharmacol 2020; 177:1677-1691. [PMID: 31724161 DOI: 10.1111/bph.14927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Arterial stiffness, a characteristic feature of diabetes, increases the risk of cardiovascular complications. Potential mechanisms that promote arterial stiffness in diabetes include oxidative stress, glycation and inflammation. The anti-inflammatory protein annexin-A1 has cardioprotective properties, particularly in the context of ischaemia. However, the role of endogenous annexin-A1 in the vasculature in both normal physiology and pathophysiology remains largely unknown. Hence, this study investigated the role of endogenous annexin-A1 in diabetes-induced remodelling of mouse mesenteric vasculature. EXPERIMENTAL APPROACH Insulin-resistance was induced in male mice (AnxA1+/+ and AnxA1-/- ) with the combination of streptozotocin (55mg/kg i.p. x 3 days) with high fat diet (42% energy from fat) or citrate vehicle with normal chow diet (20-weeks). Insulin-deficiency was induced in a separate cohort of mice using a higher total streptozocin dose (55mg/kg i.p. x 5 days) on chow diet (16-weeks). At study endpoint, mesenteric artery passive mechanics were assessed by pressure myography. KEY RESULTS Insulin-resistance induced significant outward remodelling but had no impact on passive stiffness. Interestingly, vascular stiffness was significantly increased in AnxA1-/- mice when subjected to insulin-resistance. In contrast, insulin-deficiency induced outward remodelling and increased volume compliance in mesenteric arteries, regardless of genotype. In addition, the annexin-A1 / formyl peptide receptor axis is upregulated in both insulin-resistant and insulin-deficient mice. CONCLUSION AND IMPLICATIONS Our study provided the first evidence that endogenous AnxA1 may play an important vasoprotective role in the context of insulin-resistance. AnxA1-based therapies may provide additional benefits over traditional anti-inflammatory strategies for reducing vascular injury in diabetes.
Collapse
Affiliation(s)
- Maria Jelinic
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Nicola Kahlberg
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Science, Math and Technology, Singapore University of Technology and Design, Singapore
| | - Hooi Hooi Ng
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Sarah Rosli
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Siobhan Finlayson
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Laura J Parry
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Machado MG, Tavares LP, Souza GVS, Queiroz-Junior CM, Ascenção FR, Lopes ME, Garcia CC, Menezes GB, Perretti M, Russo RC, Teixeira MM, Sousa LP. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J 2019; 34:2749-2764. [PMID: 31908042 DOI: 10.1096/fj.201902172r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Pádua Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanna V Santos Souza
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Roque Ascenção
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Eustáquio Lopes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Couto Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Gong J, Ju YN, Wang XT, Zhu JL, Jin ZH, Gao W. Ac2-26 ameliorates lung ischemia-reperfusion injury via the eNOS pathway. Biomed Pharmacother 2019; 117:109194. [PMID: 31387174 DOI: 10.1016/j.biopha.2019.109194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a major complication after lung transplantation. Annexin A1 (AnxA1) ameliorates inflammation in various injured organs. This study aimed to determine the effects and mechanism of AnxA1 on LIRI after lung transplantation. METHODS Thirty-two rats were randomized into sham, saline, Ac2-26 and Ac2-26/L groups. Rats in the saline, Ac2-26 and Ac2-26/L groups underwent left lung transplantation and received saline, Ac2-26, and Ac2-26/L-NIO, respectively. After 24 h of reperfusion, serum and transplanted lung tissues were examined. RESULTS The partial pressure of oxygen (PaO2) was increased in the Ac2-26 group compared to that in the saline group but was decreased by L-NIO treatment. In the Ac2-26 group, the wet-to-dry (W/D) weight ratios, total protein concentrations, proinflammatory factors and inducible nitric oxide synthase levels were notably decreased, but the concentrations of anti-inflammatory factors and endothelial nitric oxide synthase levels were significantly increased. Ac2-26 attenuated histological injury and cell apoptosis, and this improvement was reversed by L-NIO. CONCLUSIONS Ac2-26 reduced LIRI and improved alveoli-capillary permeability by inhibiting oxygen stress, inflammation and apoptosis. The protective effect of Ac2-26 on LIRI largely depended on the endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Jing Gong
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Ying-Nan Ju
- Department of ICU, The Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin 150081, China.
| | - Xue-Ting Wang
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Jing-Li Zhu
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Zhe-Hao Jin
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Wei Gao
- Anesthesiology Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| |
Collapse
|
21
|
Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther 2019; 12:3245-3254. [PMID: 31118675 PMCID: PMC6500875 DOI: 10.2147/ott.s202271] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Annexin A1 is a Ca2+-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
Collapse
Affiliation(s)
- Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311201, People's Republic of China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
22
|
Cardin LT, Prates J, da Cunha BR, Tajara EH, Oliani SM, Rodrigues‐Lisoni FC. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019; 9:668-681. [PMID: 30984541 PMCID: PMC6443877 DOI: 10.1002/2211-5463.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide, and its tumorigenesis can be influenced by the microenvironment. The anti-inflammatory protein annexin A1 (ANXA1) has been reported to be associated with cancer progression and metastasis, suggesting that it plays a role in regulating tumour cell proliferation. Here, we examined the effect of the N-terminal peptide Ac2-26 of ANXA1 on the HaCaT cell line (normal) and HeLa cell line (cervical cancer) co-cultured with endothelium cell-conditioned medium (HMC). Treatment with Ac2-26 decreased proliferation and increased motility of cervical cancer cells, but did not affect cellular morphology or viability. Combined HMC stimulus and Ac2-26 treatment resulted in an increase in apoptotic HeLa cells, upregulated expression of MMP2, and downregulated expression of COX2,EP3 and EP4. In conclusion, Ac2-26 treatment may modulate cellular and molecular mechanisms underlying cervical carcinogenesis.
Collapse
Affiliation(s)
- Laila Toniol Cardin
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Janesly Prates
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Eloiza Helena Tajara
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Sonia Maria Oliani
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | | |
Collapse
|
23
|
Criscuolo F, Sorci G, Behaim-Delarbre M, Zahn S, Faivre B, Bertile F. Age-related response to an acute innate immune challenge in mice: proteomics reveals a telomere maintenance-related cost. Proc Biol Sci 2018; 285:rspb.2018.1877. [PMID: 30518572 DOI: 10.1098/rspb.2018.1877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Ageing is characterized by the impairment of the acute innate immune response and the upregulation of low-grade inflammation, i.e. inflammaging. At the cellular level, telomeres are considered as a marker of biological ageing as their length is progressively eroded in the absence of repair mechanisms. However, the link between telomeres and inflammaging remains underexplored. We aimed to identify proteins that are differentially expressed between age classes in response to an acute inflammatory challenge. We challenged young (two months) and old (12 months) C57BL/6 mice using bacterial lipopolysaccharide (LPS) and measured telomere length and proteomic profiles in splenocytes. In total, 233 out of the 1966 proteins we quantified differed among experimental groups. A hierarchical clustering analysis revealed that nine of those 233 proteins were differently expressed among the experimental groups. Young mice responded to LPS by increasing the expression of proteins involved in the innate immune response, and interestingly, in telomere length maintenance. However, this regulation was impaired at older ages. These results are in agreement with the assumption that the strength of selection declines with age, potentially explaining the maintenance of costly, dysregulated, immune responses at old age. We suggest that the immune response is competing with the telomere maintenance process, highlighting how telomeres reflect the ageing trade-off even in a species where telomere length is not related to lifespan.
Collapse
Affiliation(s)
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Sandrine Zahn
- CNRS, Université de Strasbourg, IPHC UMR 7178, 67000 Strasbourg, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabrice Bertile
- CNRS, Université de Strasbourg, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
24
|
Marmorato MP, Gimenes AD, Andrade FEC, Oliani SM, Gil CD. Involvement of the annexin A1-Fpr anti-inflammatory system in the ocular allergy. Eur J Pharmacol 2018; 842:298-305. [PMID: 30419240 DOI: 10.1016/j.ejphar.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023]
Abstract
Annexin A1 (ANXA1)-formyl peptide receptor (Fpr) system is potent effective mediators in the control of the inflammatory response. In this study, we evaluate the potential involvement of the Fpr family in the protective effect of the mimetic peptide of ANXA1 (ANXA12-26) using an experimental allergic conjunctivitis (AC) model in mice. Ovalbumin (OVA)/Alum-immunized wild-type (WT) and ANXA1-null (ANXA1-/-) Balb/c mice (days 0 and 7) were challenged by eye drops containing OVA on days 14-16, and two groups received ANXA12-26 alone or with Fpr antagonist Boc2 intraperitoneally during challenged days. As expected, plasma IgE anti-OVA levels increased significantly in the OVA-immunized WT and ANXA1-/- mice, supporting the efficacy of AC model. AC increased Fpr1 and Fpr2 levels in the conjunctiva and the lack of endogenous ANXA1 exacerbated Fpr2 expression only. In contrast, administering ANXA12-26 in the WT mice diminished Fpr2 levels in the conjunctiva, and the effect was reverted by Boc2. Ultrastructural analysis showed the co-localization of Fpr2 and ANXA1 in the plasma membrane of mast cells (MCs), eosinophils and neutrophils, supporting this system as being operative in the AC. Boc2 abrogated the ANXA12-26 effect by increasing the MC degranulation and the eosinophil influx in the conjunctiva, and these findings were supported by peroxidase eosinophil, eotaxin and MC protease levels. Additionally, the ANXA12-26-Fpr system in the AC was associated with the activation of ERK and JNK. Collectively, the data provided in vivo supports the anti-allergic effects of the ANXA1-Fpr system and may serve as a therapeutic target in this ocular disorder.
Collapse
Affiliation(s)
- Mariana Prado Marmorato
- UNIFESP - Universidade Federal de São Paulo, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Alexandre Dantas Gimenes
- UNIFESP - Universidade Federal de São Paulo, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Frans Eberth Costa Andrade
- UNIFESP - Universidade Federal de São Paulo, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Sonia Maria Oliani
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São José do Rio Preto, SP, Brazil
| | - Cristiane Damas Gil
- UNIFESP - Universidade Federal de São Paulo, Departamento de Morfologia e Genética, São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
26
|
Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int Immunopharmacol 2018; 61:140-149. [PMID: 29879657 DOI: 10.1016/j.intimp.2018.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
The effects of formyl peptide receptors (FPRs) on effector T cells and inflammation-causing tissue-resident cells are not well known. Here, we explored the effect of FPR activation on efferent T cell responses in models of rheumatoid arthritis (RA) and on the expansion of fibroblast-like synoviocytes (FLS). Compound 43 (Cpd43; FPR1/2 agonist) was administered to mice with collagen-induced arthritis (CIA) or antigen-induced arthritis (AIA) after disease onset. Joint inflammation/damage and immunity were assessed. FLS were cultured with Cpd43 to test its effects on cell apoptosis and proliferation. To explore the effects of endogenous FPR2 ligands on FLS proliferation, FLS FPR2 was blocked or Annexin A1 (AnxA1) expression silenced. Cpd43 reduced arthritis severity in both models. In CIA, Cpd43 decreased CD4 T cell proliferation and survival and increased the production of the protective cytokine, IFNγ, in lymph nodes. In AIA, Cpd43 increased CD4 apoptosis and production of the anti-inflammatory IL-4, while augmenting the proportion of splenic regulatory T cells and their expression of IL-2Rα. In both models, Cpd43 increased CD4 IL-17A production, without affecting humoral immunity. FPR2 inhibitors reversed Cpd43-mediated effects on AIA and T cell immunity. Cpd43 decreased TNF-induced FLS proliferation and augmented FLS apoptosis in association with intracellular FPR2 accumulation, while endogenous AnxA1 and FPR2 reduced FLS proliferation via the ERK and NFκB pathways. Overall, FPR activation inhibits the expansion of arthritogenic effector CD4 T cells and FLS, and reduces joint injury in experimental arthritis. This suggests the therapeutic potential of FPR ligation for the treatment of RA.
Collapse
|
27
|
Hebeda CB, Machado ID, Reif-Silva I, Moreli JB, Oliani SM, Nadkarni S, Perretti M, Bevilacqua E, Farsky SHP. Endogenous annexin A1 (AnxA1) modulates early-phase gestation and offspring sex-ratio skewing. J Cell Physiol 2018; 233:6591-6603. [PMID: 29115663 DOI: 10.1002/jcp.26258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated anti-inflammatory protein secreted by phagocytes and other specialised cells. In the endocrine system, AnxA1 controls secretion of steroid hormones and it is abundantly expressed in the testis, ovaries, placenta and seminal fluid, yet its potential modulation of fertility has not been described. Here, we observed that AnxA1 knockout (KO) mice delivered a higher number of pups, with a higher percentage of female offsprings. This profile was not dependent on the male features, as sperm from KO male mice did not present functional alterations, and had an equal proportion of Y and X chromosomes, comparable to wild type (WT) male mice. Furthermore, mismatched matings of male WT mice with female KO yielded a higher percentage of female pups per litter, a phenomenon which was not observed when male KO mice mated with female WT animals. Indeed, AnxA1 KO female mice displayed several differences in parameters related to gestation including (i) an arrested estrous cycle at proestrus phase; (ii) increased sites of implantation; (iii) reduced pre- and post-implantation losses; (iv) exacerbated features of the inflammatory reaction in the uterine fluid during implantation phase; and (v) enhanced plasma progesterone in the beginning of pregnancy. In summary, herein we highlight that AnxA1 pathway as a novel determinant of fundamental non-redundant regulatory functions during early pregnancy.
Collapse
Affiliation(s)
- Cristina B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel D Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isadora Reif-Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Jusciele B Moreli
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil
| | - Sonia M Oliani
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil.,Department of Biology, IBILCE, University of São Paulo State (UNESP), São Paulo, Brazil
| | - Suchita Nadkarni
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Drago F, Lombardi M, Prada I, Gabrielli M, Joshi P, Cojoc D, Franck J, Fournier I, Vizioli J, Verderio C. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front Pharmacol 2017; 8:910. [PMID: 29321741 PMCID: PMC5733563 DOI: 10.3389/fphar.2017.00910] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs), which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs) propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012). However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.
Collapse
Affiliation(s)
- Francesco Drago
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.,Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | - Pooja Joshi
- Institute of Neuroscience (CNR), Milan, Italy
| | - Dan Cojoc
- Institute of Materials (CNR), Trieste, Italy
| | - Julien Franck
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Jacopo Vizioli
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Claudia Verderio
- IRCCS Humanitas, Rozzano, Italy.,Institute of Neuroscience (CNR), Milan, Italy
| |
Collapse
|
29
|
Bostanci N, Belibasakis GN. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontol 2000 2017; 76:68-84. [DOI: 10.1111/prd.12154] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
|
30
|
Sinniah A, Yazid S, Flower RJ. The Anti-allergic Cromones: Past, Present, and Future. Front Pharmacol 2017; 8:827. [PMID: 29184504 PMCID: PMC5694476 DOI: 10.3389/fphar.2017.00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-allergic cromones were originally synthesized in the 1960s by Fisons Plc, and the first drug to emerge from this program, disodium cromoglycate was subsequently marketed for the treatment of asthma and other allergic conditions. Whilst early studies demonstrated that the ability of the cromones to prevent allergic reactions was due to their 'mast cell stabilizing' properties, the exact pharmacological mechanism by which this occurred, remained a mystery. Here, we briefly review the history of these drugs, recount some aspects of their pharmacology, and discuss two new explanations for their unique actions. We further suggest how these findings could be used to predict further uses for the cromones.
Collapse
Affiliation(s)
- Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Samia Yazid
- Trio Medicines Ltd., Hammersmith Medicines Research, London, United Kingdom
| | - Roderick J Flower
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St Barts and the Royal London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
32
|
Zhang H, Lu Y, Sun G, Teng F, Luo N, Jiang J, Wen A. The common promoter polymorphism rs11666254 downregulates FPR2/ALX expression and increases risk of sepsis in patients with severe trauma. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:171. [PMID: 28679406 PMCID: PMC5499024 DOI: 10.1186/s13054-017-1757-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Background Formyl peptide receptor 2-lipoxin receptor (FPR2/ALX) modulates the anti-inflammatory response and therefore may be a target for treating sepsis. The purpose of this study was to investigate the association between genetic variants of the FPR2/ALX gene and sepsis after severe trauma as well as to further analyze the functions of sepsis-related genetic polymorphisms. Methods Three tag single-nucleotide polymorphisms (tag SNPs) that captured all common alleles across the FPR2/ALX genomic region were genotyped using pyrosequencing in an initial sample consisting of 275 patients with severe trauma. The rs11666254 polymorphism, which had statistical significance, was genotyped in an additional 371 patients, and logistic regression analysis was performed to determine associations between the FPR2/ALX gene polymorphism and sepsis susceptibility after severe trauma. The messenger RNA (mRNA) and protein levels of FPR2/ALX in the lipopolysaccharide-stimulated white blood cells of trauma patients were determined by performing quantitative polymerase chain reactions and Western blot analysis. Tumor necrosis factor (TNF)-α production was measured by enzyme-linked immunosorbent assay. The effects of the promoter polymorphism rs11666254 on the transcription activity of FPR2/ALX were analyzed using a luciferase reporter assay. Results Among the three tag SNPs, only the rs11666254 polymorphism was found to be significantly associated with sepsis in trauma patients, and this association persisted after a pooled analysis of all 646 trauma patients, which showed that patients who carried the A allele of rs11666254 had a significantly higher risk of developing sepsis than individuals who carried the G allele. This SNP was also significantly associated with lower FPR2/ALX mRNA and protein expression as well as higher TNF-α production from the peripheral blood leukocyte response to bacterial lipoprotein stimulation. In addition, the rs11666254 polymorphism could significantly decrease the promoter activity of the FPR2/ALX gene. Conclusions The rs11666254 polymorphism in the FPR2/ALX gene is a functional SNP that increases sepsis susceptibility in patients after traumatic injury. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1757-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yao Lu
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Guixiang Sun
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Fang Teng
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Nian Luo
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Jianxin Jiang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China.
| |
Collapse
|
33
|
Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem 2017; 397:981-93. [PMID: 27447237 DOI: 10.1515/hsz-2016-0200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
Inflammation is essential to protect the host from exogenous and endogenous dangers that ultimately lead to tissue injury. The consequent tissue repair is intimately associated with the fate of the inflammatory response. Restoration of tissue homeostasis is achieved through a balance between pro-inflammatory and anti-inflammatory/pro-resolving mediators. In chronic inflammatory diseases such balance is compromised, resulting in persistent inflammation and impaired healing. During the last two decades the glucocorticoid-regulated protein Annexin A1 (AnxA1) has emerged as a potent pro-resolving mediator acting on several facets of the innate immune system. Here, we review the therapeutic effects of AnxA1 on tissue healing and repairing together with the molecular targets responsible for these complex biological properties.
Collapse
|
34
|
Hughes EL, Becker F, Flower RJ, Buckingham JC, Gavins FNE. Mast cells mediate early neutrophil recruitment and exhibit anti-inflammatory properties via the formyl peptide receptor 2/lipoxin A 4 receptor. Br J Pharmacol 2017; 174:2393-2408. [PMID: 28471519 DOI: 10.1111/bph.13847] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In recent years, studies have focused on the resolution of inflammation, which can be achieved by endogenous anti-inflammatory agonists such as Annexin A1 (AnxA1). Here, we investigated the effects of mast cells (MCs) on early LPS-induced neutrophil recruitment and the involvement of the AnxA1-formyl peptide receptor 2/ALX (FPR2/ALX or lipoxin A4 receptor) pathway. EXPERIMENTAL APPROACH Intravital microscopy (IVM) was used to visualize and quantify the effects of LPS (10 μg per mouse i.p.) on murine mesenteric cellular interactions. Furthermore, the role that MCs play in these inflammatory responses was determined in vivo and in vitro, and effects of AnxA1 mimetic peptide Ac2-26 were assessed. KEY RESULTS LPS increased both neutrophil endothelial cell interactions within the mesenteric microcirculation and MC activation (determined by IVM and ruthenium red dye uptake), which in turn lead to the early stages of neutrophil recruitment. MC recruitment of neutrophils could be blocked by preventing the pro-inflammatory activation (using cromolyn sodium) or enhancing an anti-inflammatory phenotype (using Ac2-26) in MCs. Furthermore, MCs induced neutrophil migration in vitro, and MC stabilization enhanced the release of AnxA1 from neutrophils. Pharmacological approaches (such as the administration of FPR pan-antagonist Boc2, or the FPR2/ALX antagonist WRW4) revealed neutrophil FPR2/ALX to be important in this process. CONCLUSIONS AND IMPLICATIONS Data presented here provide evidence for a role of MCs, which are ideally positioned in close proximity to the vasculature, to act as sentinel cells in neutrophil extravasation and resolution of inflammation via the AnxA1-FPR2/ALX pathway.
Collapse
Affiliation(s)
- Ellen L Hughes
- Centre for Brain Sciences, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Felix Becker
- Department for General and Visceral Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Roderick J Flower
- Centre of Biochemical Pharmacology, Queen Mary University, London, EC1V 3AJ, UK
| | | | - Felicity N E Gavins
- Centre for Brain Sciences, Department of Medicine, Imperial College London, London, W12 0NN, UK.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Centre Shreveport, Shreveport, LA, 71130, USA
| |
Collapse
|
35
|
Oliveira LG, Souza-Testasicca MC, Vago JP, Figueiredo AB, Canavaci AMC, Perucci LO, Ferreira TPT, Coelho EAF, Gonçalves DU, Rocha MOC, E Silva PMR, Ferreira CN, Queiroz-Junior C, Sousa LP, Fernandes AP. Annexin A1 Is Involved in the Resolution of Inflammatory Responses during Leishmania braziliensis Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3227-3236. [PMID: 28289158 DOI: 10.4049/jimmunol.1602028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Leishmaniases are diseases caused by several Leishmania species. Leishmania (Viannia) braziliensis can cause localized cutaneous leishmaniasis (LCL), which heals spontaneously, or mucosal leishmaniasis (ML), characterized by chronic and intense inflammation and scanty parasitism. Annexin A1 (AnxA1) is a protein involved in modulation and resolution of inflammation through multiple mechanisms. In the present study, the role of AnxA1 was investigated in L. braziliensis-infected BALB/c mice. AnxA1 levels increased at the peak of tissue lesion and parasitism in infected mice. AnxA1 increased also after L. braziliensis infection of BALB/c (wild-type [WT]) bone marrow derived macrophages. Despite a lower parasite intake, parasite burden in bone marrow-derived macrophages from AnxA1-/- mice was similar to WT and associated with an early increase of TNF-α and, later, of IL-10. AnxA1-/- mice controlled tissue parasitism similarly to WT animals, but they developed significantly larger lesions at later stages of infection, with a more pronounced inflammatory infiltrate and increased specific production of IFN-γ, IL-4, and IL-10. AnxA1-/- mice also presented higher phosphorylation levels of ERK-1/2 and p65/RelA (NF-κB) and inducible NO synthase expression, suggesting that AnxA1 may be involved in modulation of inflammation in this model of experimental leishmaniasis. Finally, assessment of AnxA1 levels in sera from patients with LCL or ML revealed that ML patients had higher levels of serum AnxA1 than did LCL patients or control subjects. Collectively, these data indicate that AnxA1 is actively expressed during L. braziliensis infection. In the absence of AnxA1, mice are fully able to control parasite replication, but they present more intense inflammatory responses and delayed ability to resolve their lesion size.
Collapse
Affiliation(s)
- Leandro G Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Míriam C Souza-Testasicca
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Adriana M C Canavaci
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiza Oliveira Perucci
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Denise Utsch Gonçalves
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Manoel Otávio C Rocha
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Cláudia N Ferreira
- Setor de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Celso Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| |
Collapse
|
36
|
Galvão I, Vago JP, Barroso LC, Tavares LP, Queiroz-Junior CM, Costa VV, Carneiro FS, Ferreira TP, Silva PMR, Amaral FA, Sousa LP, Teixeira MM. Annexin A1 promotes timely resolution of inflammation in murine gout. Eur J Immunol 2017; 47:585-596. [PMID: 27995621 DOI: 10.1002/eji.201646551] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1-/- ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1β, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1β, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.
Collapse
Affiliation(s)
- Izabela Galvão
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Livia C Barroso
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda S Carneiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana P Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia M R Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Flávio A Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Demonbreun AR, Allen MV, Warner JL, Barefield DY, Krishnan S, Swanson KE, Earley JU, McNally EM. Enhanced Muscular Dystrophy from Loss of Dysferlin Is Accompanied by Impaired Annexin A6 Translocation after Sarcolemmal Disruption. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1610-22. [PMID: 27070822 DOI: 10.1016/j.ajpath.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/03/2023]
Abstract
Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evan's Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.
Collapse
Affiliation(s)
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - James L Warner
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - Swathi Krishnan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlin E Swanson
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Judy U Earley
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
38
|
Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ 2016; 23:1243-56. [PMID: 26943321 PMCID: PMC4946891 DOI: 10.1038/cdd.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/29/2015] [Accepted: 02/02/2016] [Indexed: 01/17/2023] Open
Abstract
The influenza virus infects millions of people each year and can result in severe complications. Understanding virus recognition and host responses to influenza infection will enable future development of more effective anti-viral therapies. Previous research has revealed diverse yet important roles for the annexin family of proteins in modulating the course of influenza A virus (IAV) infection. However, the role of Annexin-A1 (ANXA1) in IAV infection has not been addressed. Here, we show that ANXA1 deficient mice exhibit a survival advantage, and lower viral titers after infection. This was accompanied with enhanced inflammatory cell infiltration during IAV infection. ANXA1 expression is increased during influenza infection clinically, in vivo and in vitro. The presence of ANXA1 enhances viral replication, influences virus binding, and enhances endosomal trafficking of the virus to the nucleus. ANXA1 colocalizes with early and late endosomes near the nucleus, and enhances nuclear accumulation of viral nucleoprotein. In addition, ANXA1 enhances IAV-mediated apoptosis. Overall, our study demonstrates that ANXA1 plays an important role in influenza virus replication and propagation through various mechanisms and that we predict that the regulation of ANXA1 expression during IAV infection may be a viral strategy to enhance its infectivity.
Collapse
|
39
|
Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res 2016; 2016:8239258. [PMID: 26885535 PMCID: PMC4738713 DOI: 10.1155/2016/8239258] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Collapse
|
40
|
Prates J, Franco-Salla GB, Dinarte Dos Santos AR, da Silva WA, da Cunha BR, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. ANXA1Ac₂₋₂₆ peptide reduces ID1 expression in cervical carcinoma cultures. Gene 2015; 570:248-54. [PMID: 26072160 DOI: 10.1016/j.gene.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the second most frequent cancer in women worldwide and is associated with genetic alterations, infection with human papilloma virus (HPV), angiogenesis and inflammatory processes. The idea that inflammation is involved in tumorigenesis is supported by the frequent appearance of cancer in areas of chronic inflammation. On the other hand, the inflammatory response is controlled by the action of anti-inflammatory mediators, among these mediators, annexin A1 (ANXA1), a 37 kDa protein was detected as a modulator of inflammatory processes and is expressed by tumor cells. The study was carried out on the epithelial cancer cell line (SiHa) treated with the peptide of annexin A1 (ANXA1Ac2-26). We combined subtraction hybridization approach, Ingenuity Systems software and quantitative PCR, in order to evaluate gene expression influenced by ANXA1. We observed that ANXA1Ac2-26 inhibited proliferation in SiHa cells after 72h. In these cells, 55 genes exhibited changes in expression levels in response to peptide treatment. Six genes were selected and the expression results of 5 up-regulated genes (TPT1, LDHA, NCOA3, HIF1A, RAB13) and one down-regulated gene (ID1) were research by real time quantitative PCR. Four more genes (BMP4, BMPR1B, SMAD1 and SMAD4) of the ID1 pathway were investigated and only one (BMPR1B) shows the same down regulation. The data indicate the involvement of ANXA1Ac2-26 in the altered expression of genes involved in tumorigenic processes, which could potentially be applied as a therapeutic indicator of cervical cancer.
Collapse
Affiliation(s)
- Janesly Prates
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Gabriela Bueno Franco-Salla
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo da Silva
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular, Biology Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Eloiza Helena Tajara
- Department of Molecular, Biology Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
41
|
Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun Rev 2015; 14:692-702. [PMID: 25888464 DOI: 10.1016/j.autrev.2015.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
Abstract
Research on autoimmune processes involved in glomerulonephritis has been for years based on experimental models. Recent progress in proteomics has radically modified perspectives: laser microdissection and proteomics were crucial for an in vivo analysis of autoantibodies eluted from human biopsies. Lupus nephritis has been the subject of recent independent researches. Main topics have been the definition of renal autoimmune components in human lupus biopsies; methods were laser capture of glomeruli and/or of single cells (CD38+ or Ki-67+) from tubulointerstitial areas as starting step followed by elution and characterization of renal antibodies by proteomics. The innovative approach highlighted different panels of autoantibodies deposited in glomeruli and in tubulo-interstitial areas that actually represented the unique autoimmune components in these patients. IgG2 was the major isotype; new podocyte proteins (αenolase, annexin AI) and already known implanted molecules (DNA, histone 3, C1q) were their target antigens in glomeruli. Vimentin was the antigen in tubulo-interstitial areas. Matching renal autoantibodies with serum allowed the definition of a typical autoantibody serum map that included the same anti-αenolase, anti-annexin AI, anti-DNA, and anti-histone 3 IgG2 already detected in renal tissue. Serum levels of specific autoantibodies were tenfold increased in patients with lupus nephritis allowing a clear differentiation from both rheumatoid arthritis and other glomerulonephritis. In all cases, targeted antigens were characterized as components of lupus NETosis. Matching renal/serum autoantibody composition in vivo furnishes new insights on human lupus nephritis and allows to refine composition of circulating antibodies in patients with lupus. A thoughtful passage from bench to bedside of new knowledge would expand our clinical and therapeutic opportunities.
Collapse
|
42
|
Buss NAPS, Gavins FNE, Cover PO, Terron A, Buckingham JC. Targeting the annexin 1-formyl peptide receptor 2/ALX pathway affords protection against bacterial LPS-induced pathologic changes in the murine adrenal cortex. FASEB J 2015; 29:2930-42. [PMID: 25818588 DOI: 10.1096/fj.14-268375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Hypothalamo-pituitary-adrenocortical dysfunction contributes to morbidity and mortality in a high proportion of patients with sepsis. Here, we provide new insights into the underlying adrenal pathology. Using a murine model of endotoxemia (LPS injection), we demonstrate that adrenal insufficiency is triggered early in the disease. LPS induced a local inflammatory response in the adrenal gland within 4 hours of administration, coupled with increased expression of mRNAs for annexin A1 (AnxA1) and the formyl peptide receptors [(Fprs) 1, 2, and 3], a loss of lipid droplets in cortical cells (index of availability of cholesterol, the substrate for steroidogenesis), and a failure to mount a steroidogenic response to ACTH. Deletion of AnxA1 or Fpr2/3 in mice prevented lipid droplet loss, but not leukocyte infiltration. LPS increased adrenal myeloid differentiation primary response gene 88 and TLR2 mRNA expression, but not lymphocyte antigen 96 or TLR4. By contrast, neutrophil depletion prevented leukocyte infiltration and increased AnxA1, Fpr1, and Fpr3 mRNAs but had no impact on lipid droplet loss. Our novel data demonstrate that AnxA1 and Fpr2 have a critical role in the manifestation of adrenal insufficiency in this model, through regulation of cholesterol ester storage, suggesting that pharmacologic interventions targeting the AnxA1/FPR/ALX pathway may provide a new approach for the maintenance of adrenal steroidogenesis in sepsis.
Collapse
Affiliation(s)
- Nicholas A P S Buss
- *Division of Diabetes, Endocrinology and Metabolism and Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA; Safety Assessment, GlaxoSmithKline, Ware, United Kingdom; and Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- *Division of Diabetes, Endocrinology and Metabolism and Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA; Safety Assessment, GlaxoSmithKline, Ware, United Kingdom; and Brunel University London, Uxbridge, United Kingdom
| | - Patricia O Cover
- *Division of Diabetes, Endocrinology and Metabolism and Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA; Safety Assessment, GlaxoSmithKline, Ware, United Kingdom; and Brunel University London, Uxbridge, United Kingdom
| | - Andrea Terron
- *Division of Diabetes, Endocrinology and Metabolism and Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA; Safety Assessment, GlaxoSmithKline, Ware, United Kingdom; and Brunel University London, Uxbridge, United Kingdom
| | - Julia C Buckingham
- *Division of Diabetes, Endocrinology and Metabolism and Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA; Safety Assessment, GlaxoSmithKline, Ware, United Kingdom; and Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
43
|
Gimenes AD, Andrade TRM, Mello CB, Ramos L, Gil CD, Oliani SM. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Exp Eye Res 2015; 134:24-32. [PMID: 25795053 DOI: 10.1016/j.exer.2015.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023]
Abstract
Annexin A1 (ANXA1), a 37 kDa glucocorticoid-regulated protein, is a potent anti-inflammatory mediator effective in terminating acute inflammatory response, and its role in allergic settings has been poorly studied. The aim of this investigation was to evaluate the mechanism of action of ANXA1 in intraocular inflammation using a classical model of ovalbumin (OVA)-induced allergic conjunctivitis (AC). OVA-immunised Balb/c mice, wild-type (WT) and ANXA1-deficient (AnxA1(-/-)), were challenged with eye drops containing OVA on days 14-16 with a subset of WT animals pretreated intraperitoneally with the peptide Ac2-26 (N-terminal region of ANXA1) or dexamethasone (DEX). After 24 h of the last ocular challenge, WT mice treated with Ac2-26 and DEX had significantly reduced clinical signs of conjunctivitis (chemosis, conjunctival hyperaemia, lid oedema and tearing), plasma IgE levels, leukocyte (eosinophil and neutrophil) influx and mast cell degranulation in the conjunctiva compared to WT controls. These anti-inflammatory effects of DEX were associated with high endogenous levels of ANXA1 in the ocular tissues as detected by immunohistochemistry. Additionally, Ac2-26 administration was effective to reduce IL-2, IL-4, IL-10, IL-13, eotaxin and RANTES in the eye and lymph nodes compared to untreated WT animals. The lack of ANXA1 produced an exacerbated allergic response as detected by the density of the inflammatory cell influx to the conjunctiva and the cytokine/chemokine release. These different effects observed for Ac2-26 were correlated with diminished level of activated ERK at 24 h in the ocular tissues compared to untreated OVA group. Our findings demonstrate the protective effect of ANXA1 during the inflammatory allergic response suggesting this protein as a potential target for new ocular inflammation therapies.
Collapse
Affiliation(s)
- Alexandre D Gimenes
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Teresa Raquel M Andrade
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Cláudia B Mello
- UNESP - Universidade Estadual Paulista, Laboratório de Imunomorfologia, Departamento de Biologia, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Lisandra Ramos
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Sonia M Oliani
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil; UNESP - Universidade Estadual Paulista, Laboratório de Imunomorfologia, Departamento de Biologia, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
44
|
Pniewska E, Sokolowska M, Kupryś-Lipińska I, Kacprzak D, Kuna P, Pawliczak R. Exacerbating factors induce different gene expression profiles in peripheral blood mononuclear cells from asthmatics, patients with chronic obstructive pulmonary disease and healthy subjects. Int Arch Allergy Immunol 2015; 165:229-43. [PMID: 25634111 DOI: 10.1159/000370067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite several common phenotypic features, chronic obstructive pulmonary disease (COPD) and severe asthma differ with regard to their causative factors and pathophysiology. Both diseases may be exacerbated by environmental factors, however, the molecular profiles of disease episodes have not been comprehensively studied. We identified differences in gene and protein expression profiles expressed by peripheral blood mononuclear cells (PBMC) of COPD patients, patients with atopic asthma and healthy subjects when challenged with exacerbating factors in vitro: lipopolysaccharide (LPS), house dust mite (HDM) and cat allergen. METHODS PBMC isolated from patients with severe atopic asthma and COPD, as well as healthy subjects were stimulated with rDer p 1 DG, rFel d 1 DG and LPS. The changes in the expression of 47 genes belonging to five groups (phospholipase A2, eicosanoids, transcription factors, cytokines and airway remodeling) were studied using TaqMan low density array cards. Immunoblotting was used to study relative protein expression. RESULTS rDer p 1 significantly up-regulated the expression of PLA2G4A, PLA2G6, PLA2G15, CYSLTR1, LB4R2, PTGS1, PTGS2, FOXP1, GATA3, HDAC2, IREB2, PPARG, STAT4, TSLP and CHI3L1 genes in asthmatics in comparison to healthy subjects. LPS induced significant expression of ANXA1 and LTA4H in asthmatics when compared to COPD patients and healthy subjects. SOX6,STAT4 and IL1RL1 were induced in COPD after LPS stimulation. Analysis of protein expression revealed a pattern similar to mRNA expression. CONCLUSIONS LPS-induced exacerbation of asthma and COPD is characterized by differential expression of selected genes in PBMC. HDM allergen changed the expression profile of inflammatory genes between patients with asthma of atopic origin and healthy controls.
Collapse
Affiliation(s)
- Ewa Pniewska
- Division of Allergology, Immunology and Dermatology, Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. Proc Natl Acad Sci U S A 2014; 111:18685-90. [PMID: 25512512 DOI: 10.1073/pnas.1410938111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.
Collapse
|
46
|
Vanessa KHQ, Julia MG, Wenwei L, Michelle ALT, Zarina ZRS, Lina LHK, Sylvie A. Absence of Annexin A1 impairs host adaptive immunity against Mycobacterium tuberculosis in vivo. Immunobiology 2014; 220:614-23. [PMID: 25533809 DOI: 10.1016/j.imbio.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
The role of Annexin A1 (ANXA1) in counter-regulating the activities of innate immune cells, such as the migration of neutrophils and monocytes, and the generation of pro-inflammatory mediators in various models of inflammatory and autoimmune diseases is well documented. However, while ANXA1 has been proposed as an important mediator of the adaptive immune response, its involvement in this respect has been less studied. Furthermore, while there have been numerous studies on the role of ANXA1 in inflammatory diseases, less has been reported on its influence in immunity against infection. A recent study reported a link between ANXA1 and tuberculosis, and proposed a model in which Mycobacterium tuberculosis exerts its virulence by manipulating the ANXA1-mediated host apoptotic response. This has prompted us to further investigate the role of ANXA1 in the pathogenesis of tuberculosis in vivo. Here, we show that ANXA1(-/-) mice are more susceptible to M. tuberculosis infection, as evidenced by a transient increase in the pulmonary bacterial burden, and exacerbated and disorganized granulomatous inflammation. These pathological manifestations correlated with an impaired ability of ANXA1(-/-) dendritic cells to activate naïve T cells, thereby supporting a role for ANXA1 in shaping the adaptive immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Koh Hui Qi Vanessa
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Martínez Gómez Julia
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lin Wenwei
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Ang Lay Teng Michelle
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Zainul Rahim Siti Zarina
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lim Hsiu Kim Lina
- Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Alonso Sylvie
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
47
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
48
|
The landscape of protein biomarkers proposed for periodontal disease: markers with functional meaning. BIOMED RESEARCH INTERNATIONAL 2014; 2014:569632. [PMID: 25057495 PMCID: PMC4099050 DOI: 10.1155/2014/569632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022]
Abstract
Periodontal disease (PD) is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.
Collapse
|
49
|
Recombinant human annexin A5 inhibits proinflammatory response and improves cardiac function and survival in mice with endotoxemia. Crit Care Med 2014; 42:e32-41. [PMID: 24145837 DOI: 10.1097/ccm.0b013e3182a63e01] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Annexin A5 is a 35-kDa protein with high affinity binding to negatively charged phospholipids. However, its effects on sepsis are not known. Our aim was to study the effects of annexin A5 on myocardial tumor necrosis factor-α expression, cardiac function, and animal survival in endotoxemia. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Adult male C57BL/6 mice. INTERVENTIONS Mice were challenged with lipopolysaccharide (4 or 20 mg/kg, i.p.) to induce endotoxemia with and without recombinant human annexin A5 treatment (5 or 10 μg/kg, i.v.). Cytokine expression and cardiac function were assessed, and animal survival was monitored. MEASUREMENTS AND MAIN RESULTS Treatment with annexin A5 inhibited myocardial mitogen-activated protein kinase, and nuclear factor-κB activation in mice with endotoxemia. Furthermore, annexin A5-treated animals showed significant reductions in myocardial and plasma levels of tumor necrosis factor-α and interleukin-1β while cardiac function was significantly improved during endotoxemia. Additionally, 5-day animal survival was significantly improved by either an immediate or a 4-hour delayed annexin A5 treatment after lipopolysaccharide challenge. Importantly, annexin A5 dose-dependently inhibited lipopolysaccharide binding to a toll-like receptor-4/myeloid differentiation factor 2 fusion protein. CONCLUSIONS Annexin A5 treatment decreases cytokine expression and improves cardiac function and survival during endotoxemia. These effects of annexin A5 are mediated by its ability to inhibit lipopolysaccharide binding to toll-like receptor-4, leading to reductions in mitogen-activated protein kinase and Akt signaling. Our study suggests that annexin A5 may have therapeutic potential in the treatment of sepsis.
Collapse
|
50
|
Sena A, Grishina I, Thai A, Goulart L, Macal M, Fenton A, Li J, Prindiville T, Oliani SM, Dandekar S, Goulart L, Sankaran-Walters S. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns Disease. PLoS One 2013; 8:e76969. [PMID: 24130820 PMCID: PMC3794972 DOI: 10.1371/journal.pone.0076969] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Background Development of inflammatory bowel disease (IBD) involves the interplay of environmental and genetic factors with the host immune system. Mechanisms contributing to immune dysregulation in IBD are not fully defined. Development of novel therapeutic strategies is focused on controlling aberrant immune response in IBD. Current IBD therapy utilizes a combination of immunomodulators and biologics to suppress pro-inflammatory effectors of IBD. However, the role of immunomodulatory factors such as annexin A1 (ANXA1) is not well understood. The goal of this study was to examine the association between ANXA1 and IBD, and the effects of anti-TNF-α, Infliximab (IFX), therapy on ANXA1 expression. Methods ANXA1 and TNF-α transcript levels in PBMC were measured by RT PCR. Clinical follow up included the administration of serial ibdQs. ANXA1 expression in the gut mucosa was measured by IHC. Plasma ANXA1 levels were measured by ELISA. Results We found that the reduction in ANXA1 protein levels in plasma coincided with a decrease in the ANXA1 mRNA expression in peripheral blood of IBD patients. ANXA1 expression is upregulated during IFX therapy in patients with a successful intervention but not in clinical non-responders. The IFX therapy also modified the cellular immune activation in the peripheral blood of IBD patients. Decreased expression of ANXA1 was detected in the colonic mucosa of IBD patients with incomplete resolution of inflammation during continuous therapy, which correlated with increased levels of TNF-α transcripts. Gut mucosal epithelial barrier disruption was evident by increased plasma bacterial 16S levels. Conclusion Loss of ANXA1 expression may support inflammation during IBD and can serve as a biomarker of disease progression. Changes in ANXA1 levels may be predictive of therapeutic efficacy.
Collapse
Affiliation(s)
- Angela Sena
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Thai
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Larissa Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Monica Macal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Fenton
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Jay Li
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Thomas Prindiville
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Sonia Maria Oliani
- Department of Biology, Sao Paulo State University, UNESP, Sao José do Rio Preto, SP, Brazil
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Luiz Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|