1
|
白 钰, 刚 保, 张 梦, 万 子, 刘 国, 顾 玮. [Protective effect of FAK inhibitor PF-562271 against human umbilical vein endothelial cell injury induced by aging platelets]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:252-259. [PMID: 38501410 PMCID: PMC10954518 DOI: 10.12122/j.issn.1673-4254.2024.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the protective effect of PF-562271, a FAK inhibitor, against aging platelet-induced injury in human umbilical vein endothelial cells (HUVECs). METHODS Cultured HUVECs were treated with vehicle, lipopolysaccharide (LPS), LPS+aging platelets, or LPS+aging platelets+PF-562271. The changes in protein expressions of FAK, pFAK and PECAM-1 in the treated cells were detected using Western blotting and immunofluorescence assay, and the level of reactive oxygen species (ROS) was detected with flow cytometry. The changes of barrier function of the cells were assessed with cell permeability test and transendothelial cell resistance test. RT-qPCR was used to analyze mRNA expressions of inflammatory factors, and pro-inflammatory cytokine levels in the culture supernatants was determined with enzyme-linked immunosorbent assay. Immunofluorescence assay was used to examine the effect of the ROS inhibitor vitamin C on PECAM-1 expression in the cells with different treatments. RESULTS Treatment of HUVECs with LPS and aging platelets significantly increased cellular protein expressions of FAK, pFAK and PECAM-1, which were effectively lowered by addition of PF-562271 (P < 0.05). LPS and aged platelets obviously enhanced ROS production in the cells, which was inhibited by the addition of PF-562271 (P < 0.001). PF-562271 significantly alleviated the damage of endothelial cell barrier function of the cells caused by LPS and aging platelets (P < 0.01). The expressions of TNF-α, IL-6 and IL-8 in HUVECs increased significantly after exposure to LPS and aging platelets, and were obviously lowered after treatment with PF-562271 (P < 0.05). Treatment with vitamin C significantly decreased the expression of PECAM-1 protein in the cells (P < 0.01). CONCLUSION The FAK inhibitor PF-562271 alleviates endothelial cell damage induced by LPS and aging platelets by lowering cellular oxidative stress levels and reducing inflammatory responses.
Collapse
Affiliation(s)
- 钰婷 白
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 保才 刚
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 梦洁 张
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 子雨 万
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 国权 刘
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学检验医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 玮 顾
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学检验医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
2
|
Abernethie AJ, Gastaldello A, Maltese G, Morgan RA, McInnes KJ, Small GR, Walker BR, Livingstone DE, Hadoke PW, Andrew R. Comparison of mechanisms of angiostasis caused by the anti-inflammatory steroid 5α-tetrahydrocorticosterone versus conventional glucocorticoids. Eur J Pharmacol 2022; 929:175111. [PMID: 35738450 DOI: 10.1016/j.ejphar.2022.175111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
5α-Tetrahydrocorticosterone (5αTHB) is an effective topical anti-inflammatory agent in mouse, with less propensity to cause skin thinning and impede new blood vessel growth compared with corticosterone. Its anti-inflammatory effects were not prevented by RU38486, a glucocorticoid receptor antagonist, suggesting alternative mechanisms. The hypothesis that 5αTHB directly inhibits angiogenesis to a lesser extent than hydrocortisone was tested, focussing on glucocorticoid receptor mediated actions. New vessel growth from aortae from C57BL/6 male mice was monitored in culture, in the presence of 5αTHB, hydrocortisone (mixed glucocorticoid/mineralocorticoid receptor agonist) or the selective glucocorticoid receptor agonist dexamethasone. Transcript profiles were studied, as was the role of the glucocorticoid receptor, using the antagonist, RU38486. Ex vivo, 5αTHB suppressed vessel growth from aortic rings, but was less potent than hydrocortisone (EC50 2512 nM 5αTHB, versus 762 nM hydrocortisone). In contrast to conventional glucocorticoids, 5αTHB did not alter expression of genes related to extracellular matrix integrity or inflammatory signalling, but caused a small increase in Per1 transcript, and decreased transcript abundance of Pecam1 gene. RU38486 did not antagonise the residual effects of 5αTHB to suppress vessel growth or regulate gene expression, but modified effects of dexamethasone. 5αTHB did not alter expression of glucocorticoid-regulated genes Fkbp51 and Hsd11b1, unlike hydrocortisone and dexamethasone. In conclusion, compared with hydrocortisone, 5αTHB exhibits limited suppression of angiogenesis, at least directly in blood vessels and probably independent of the glucocorticoid receptor. Discriminating the mechanisms employed by 5αTHB may provide the basis for the development of novel safer anti-inflammatory drugs for topical use.
Collapse
Affiliation(s)
- Amber J Abernethie
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Annalisa Gastaldello
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Giorgia Maltese
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth A Morgan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Kerry J McInnes
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Gary R Small
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Brian R Walker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Translational and Clinical Research Institute, Newcastle University, King's Gate, Newcastle Upon Tyne, NE1 7RU, UK
| | - Dawn Ew Livingstone
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK; Centre for Discovery Brain Science, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Patrick Wf Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
3
|
Zarobkiewicz MK, Morawska I, Kowalska W, Halczuk P, Roliński J, Bojarska-Junak AA. PECAM-1 Is Down-Regulated in γδT Cells during Remission, but Up-Regulated in Relapse of Multiple Sclerosis. J Clin Med 2022; 11:jcm11113210. [PMID: 35683597 PMCID: PMC9181399 DOI: 10.3390/jcm11113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction. PECAM-1 and NKRP1A are both involved in the vascular transmigration of T lymphocytes. Vascular transmigration is a crucial process in multiple sclerosis pathogenesis. Methods and aim. The current paper presents an analysis of PECAM-1 and NKRP1A expression on γδ T cells. Expression of PECAM-1 and NKRP1A on subsets of γδ T cells was performed with flow cytometry. Results. Based on the flow cytometry data, PECAM1 was slightly differentially modulated on γδ T cells—it was up-regulated during relapse, but down-regulated during remission. Moreover, a significant downregulation of CD3 expression was noted on γδ T cells from MS patients, most notably during relapse. Conclusions. This may be a sign of the overall activation of γδ T cells in the course of multiple sclerosis.
Collapse
Affiliation(s)
- Michał K. Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (W.K.); (J.R.)
- Correspondence: (M.K.Z.); (A.A.B.-J.)
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (W.K.); (J.R.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (W.K.); (J.R.)
| | - Paweł Halczuk
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland;
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (W.K.); (J.R.)
| | - Agnieszka A. Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (W.K.); (J.R.)
- Correspondence: (M.K.Z.); (A.A.B.-J.)
| |
Collapse
|
4
|
Liao D, Sundlov J, Zhu J, Mei H, Hu Y, Newman DK, Newman PJ. Atomic Level Dissection of the Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) Homophilic Binding Interface: Implications for Endothelial Cell Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:193-204. [PMID: 34937389 PMCID: PMC8942131 DOI: 10.1161/atvbaha.121.316668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE PECAM-1 (platelet endothelial cell adhesion molecule 1) is a 130 kDa member of the immunoglobulin (Ig) gene superfamily that is expressed on the surfaces of platelets and leukocytes and concentrated at the intercellular junctions of confluent endothelial cell monolayers. PECAM-1 Ig domains 1 and 2 (IgD1 and IgD2) engage in homophilic interactions that support a host of vascular functions, including support of leukocyte transendothelial migration and the maintenance of endothelial junctional integrity. The recently solved crystal structure of PECAM-1 IgD1 and IgD2 revealed a number of intermolecular interfaces predicted to play important roles in stabilizing PECAM-1/PECAM-1 homophilic interactions and in formation and maintenance of endothelial cell-cell contacts. We sought to determine whether the protein interfaces implicated in the crystal structure reflect physiologically important interactions. Approach and Results: We assessed the impact of single amino acid substitutions at the interfaces between opposing PECAM-1 molecules on homophilic binding and endothelial cell function. Substitution of key residues within the IgD1-IgD1 and IgD1-IgD2 interfaces but not those within the smaller IgD2-IgD2 interface, markedly disrupted PECAM-1 homophilic binding and its downstream effector functions, including the ability of PECAM-1 to localize at endothelial cell-cell borders, mediate the formation of endothelial tubes, and restore endothelial barrier integrity. CONCLUSIONS Taken together, these results validate the recently described PECAM-1 IgD1/IgD2 crystal structure by demonstrating that specific residues visualized within the IgD1-IgD1 and IgD1-IgD2 interfaces of opposing molecules in the crystal are required for functionally important homophilic interactions. This information can now be exploited to modulate functions of PECAM-1 in vivo.
Collapse
Affiliation(s)
- Danying Liao
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jesse Sundlov
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI
| | - Jieqing Zhu
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI,Department of Biochemistry, Medical College of Wisconsin, Milwaukee
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Debra K. Newman
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI,Department of Pharmacology, Medical College of Wisconsin, Milwaukee,Department of Microbiology Medical College of Wisconsin, Milwaukee,Department of The Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| | - Peter J. Newman
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Department of Pharmacology, Medical College of Wisconsin, Milwaukee,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee,Department of The Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
5
|
Aleithe S, Blietz A, Mages B, Hobusch C, Härtig W, Michalski D. Transcriptional Response and Morphological Features of the Neurovascular Unit and Associated Extracellular Matrix After Experimental Stroke in Mice. Mol Neurobiol 2019; 56:7631-7650. [PMID: 31089963 PMCID: PMC6815284 DOI: 10.1007/s12035-019-1604-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Experimental stroke studies yielded insights into single reactions of the neurovascular unit (NVU) and associated extracellular matrix (ECM). However, the extent of simultaneous processes caused by ischemia and their underlying transcriptional changes are still poorly understood. Strictly following the NVU and ECM concept, this study explored transcriptional responses of cellular and non-cellular components as well as their morphological characteristics following ischemia. Mice were subjected to 4 or 24 h of unilateral middle cerebral artery occlusion. In the neocortex and the striatum, cytoskeletal and glial elements as well as blood-brain barrier and ECM components were analyzed using real-time PCR. Western blot analyses allowed characterization of protein levels and multiple immunofluorescence labeling enabled morphological assessment. Out of 37 genes analyzed, the majority exhibited decreased mRNA levels in ischemic areas, while changes occurred as early as 4 h after ischemia. Down-regulated mRNA levels were predominantly localized in the neocortex, such as the structural elements α-catenin 2, N-cadherin, β-catenin 1, and βIII-tubulin, consistently decreasing 4 and 24 h after ischemia. However, a few genes, e.g., claudin-5 and Pcam1, exhibited increased mRNA levels after ischemia. For several components such as βIII-tubulin, N-cadherin, and β-catenin 1, matching transcriptional and immunofluorescence signals were obtained, whereas a few markers including neurofilaments exhibited opposite directions. In conclusion, the variety in gene regulation emphasizes the complexity of interactions within the ischemia-affected NVU and ECM. These data might help to focus future research on a set of highly sensitive elements, which might prospectively facilitate neuroprotective strategies beyond the traditional single target perspective.
Collapse
Affiliation(s)
- Susanne Aleithe
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany.
| | - Alexandra Blietz
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Bianca Mages
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Constance Hobusch
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Hu HM, Du HW, Cui JW, Feng DQ, Du ZD. New biomarkers of Kawasaki disease identified by urine proteomic analysis. FEBS Open Bio 2018; 9:265-275. [PMID: 30761252 PMCID: PMC6356163 DOI: 10.1002/2211-5463.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis that mainly afflicts infants and young children. The symptoms of KD are similar to those of various febrile diseases. Here, we attempted to develop accurate diagnostic biomarkers of KD by performing urine proteomic analysis of samples from healthy controls, patients with KD, and patients with another febrile disease, pneumonia (two patients). We identified differentially expressed proteins (DEPs) in KD as compared to normal controls. We also constructed functional annotation and protein-protein interaction (PPI) networks of DEPs in KD and pneumonia. DEPs common to both KD and pneumonia were identified, as well as DEPs specific to KD. Compared to normal control, 43 and 62 DEPs were identified in KD and pneumonia, respectively. Serine hydroxymethyltransferase 1 is a hub protein of the KD-specific PPI network. Thirteen DEPs common to both KD and pneumonia and 30 DEPs specific to KD were identified. Of these, the expression of eight DEPs could cluster normal and pneumonia samples into one group and cluster KD samples into another group based on hierarchical clustering. Our study identified several DEPs that may play a role in KD and that may serve as diagnostic biomarkers to distinguish patients with KD from both normal control and other febrile diseases.
Collapse
Affiliation(s)
- Hui-Min Hu
- Department of Cardiology Beijing Children's Hospital Capital Medical University Beijing China.,Department of Pediatrics Beijing Tongren Hospital Capital Medical University Beijing China
| | - Hong-Wu Du
- School of Chemistry and Biological Engineering University of Science & Technology Beijing China
| | - Jia-Wen Cui
- School of Chemistry and Biological Engineering University of Science & Technology Beijing China
| | - De-Qin Feng
- Institute of Microbiology Chinese Academy Science Beijing China
| | - Zhong-Dong Du
- Department of Cardiology Beijing Children's Hospital Capital Medical University Beijing China.,Shunyi Maternal and Children's Hospital of Beijing Children's Hospital China
| |
Collapse
|
7
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
8
|
Abraham V, Parambath A, Joe DS, DeLisser HM. Influence of PECAM-1 ligand interactions on PECAM-1-dependent cell motility and filopodia extension. Physiol Rep 2017; 4:4/22/e13030. [PMID: 27895229 PMCID: PMC5358002 DOI: 10.14814/phy2.13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/31/2023] Open
Abstract
Platelet endothelial cell adhesion molecule (PECAM‐1) has been implicated in angiogenesis through processes that involve stimulation of endothelial cell motility. Previous studies suggest that PECAM‐1 tyrosine phosphorylation mediates the recruitment and then activation of the tyrosine phosphatase SHP‐2, which in turn promotes the turnover of focal adhesions and the extension of filopodia, processes critical to cell motility. While these studies have implicated PECAM‐1‐dependent signaling in PECAM‐1‐mediated cell motility, the involvement of PECAM‐1 ligand binding in cell migration is undefined. Therefore to investigate the role of PECAM‐1 binding interactions in cell motility, mutants of PECAM‐1 were generated in which either homophilic or heparin/glycosaminoglycan (GAG)‐mediated heterophilic binding had been disabled and then expressed in an endothelial cell surrogate. We found that the ability of PECAM‐1 to stimulate cell migration, promote filopodia formation and trigger Cdc42 activation were lost if PECAM‐1‐dependent homophilic or heparin/GAG‐dependent heterophilic ligand binding was disabled. We further observed that PECAM‐1 concentrated at the tips of extended filopodia, an activity that was diminished if homophilic, but not heparin/GAG‐mediated heterophilic binding had been disrupted. Similar patterns of activities were seen in mouse endothelial cells treated with antibodies that specifically block PECAM‐1‐dependent homophilic or heterophilic adhesion. Together these data provide evidence for the differential involvement of PECAM‐1‐ligand interactions in PECAM‐1‐dependent motility and the extension of filopodia.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debria S Joe
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Effect of electroacupuncture on expressions of VEGF and CD31 in MCAO model rats. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2017. [DOI: 10.1007/s11726-017-1020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
A Role for CD154, the CD40 Ligand, in Granulomatous Inflammation. Mediators Inflamm 2017; 2017:2982879. [PMID: 28785137 PMCID: PMC5529663 DOI: 10.1155/2017/2982879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/10/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Granulomatous inflammation is a distinctive form of chronic inflammation in which predominant cells include macrophages, epithelioid cells, and multinucleated giant cells. Mechanisms regulating granulomatous inflammation remain ill-understood. CD154, the ligand of CD40, is a key mediator of inflammation. CD154 confers a proinflammatory phenotype to macrophages and controls several macrophagic functions. Here, we studied the contribution of CD154 in a mouse model of toxic liver injury with carbon tetrachloride and a model of absorbable suture graft. In both models, granulomas are triggered in response to endogenous persistent liver calcified necrotic lesions or by grafted sutures. CD154-deficient mice showed delayed clearance of carbon tetrachloride-induced liver calcified necrotic lesions and impaired progression of suture-induced granuloma. In vitro, CD154 stimulated phagocytosis of opsonized erythrocytes by macrophages, suggesting a potential mechanism for the altered granulomatous inflammation in CD154KO mice. These results suggest that CD154 may contribute to the natural history of granulomatous inflammation.
Collapse
|
11
|
Lu WH, Huang SJ, Yuh YS, Hsieh KS, Tang CW, Liou HH, Ger LP. Platelet Endothelial Cell Adhesion Molecule-1 Gene Polymorphisms are Associated with Coronary Artery Lesions in the Chronic Stage of Kawasaki Disease. ACTA CARDIOLOGICA SINICA 2017; 33:273-284. [PMID: 28559658 DOI: 10.6515/acs20161010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kawasaki disease is the most common cause of pediatric acquired heart disease. The role of platelet endothelial cell adhesion molecule-1 in the inflammatory process has been documented. To date, no report has investigated the relationship between coronary artery lesions of Kawasaki disease and platelet endothelial cell adhesion molecule-1 polymorphisms. METHODS A total of 114 Kawasaki disease children with coronary artery lesions and 185 Kawasaki disease children without coronary artery lesions were recruited in this study. The TaqMan assay was conducted to identify the genotype in this case-control study. RESULTS In three single nucleotide polymorphisms (Leu125Val, Ser563Asn, and Arg670Gly) of platelet endothelial cell adhesion molecule-1, we found that the Leu-Ser-Arg haplotype was associated with a significantly increased risk for coronary artery lesions in the chronic stage (odds ratio 3.05, 95% confidence interval 1.06-8.80, p = 0.039), but not for coronary artery lesions in the acute stage. Analysis based on the diplotypes of platelet endothelial cell adhesion molecule-1 also showed that Kawasaki disease with one or two alleles of Leu-Ser-Arg had a significantly increased risk of chronic coronary artery lesions (odds ratio 3.38, 95% confidence interval 1.11-10.28, p = 0.032) and had increased platelet counts after Kawasaki disease was diagnosed, as compared to those with other diplotypes. CONCLUSIONS The haplotype of platelet endothelial cell adhesion molecule-1 Leu-Ser-Arg might be associated with the increased platelet counts and the following risk of chronic coronary artery lesions in a dominant manner in Kawasaki disease.
Collapse
Affiliation(s)
- Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung.,National Yang-Ming University, Taipei.,Fooyin University
| | - Sin-Jhih Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Yeong-Seng Yuh
- Department of Pediatrics, Cheng Hsin General Hospital, Taipei
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Chia-Wan Tang
- Department of Pediatrics, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. J Cell Physiol 2017; 232:1689-1695. [PMID: 27591397 DOI: 10.1002/jcp.25583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Neutrophils from NOD (Non-Obese Diabetic) mice exhibited reduced migration speed, decreased frequency of directional changes, and loss of directionality during chemotaxis (compared to wild-type [WT] C57BL/6 mice). Additionally, F-actin of chemotaxing NOD neutrophils failed to orient toward the chemoattractant gradient and NOD neutrophil adhesion was impaired. A point mutation near the autophosphorylation site of Lyn in NOD mice was identified. Point mutations of G to A (G1412 in LynA and G1199 in LynB) cause a change of amino acid E393 (glutamic acid) to K (lysine) in LynA (E393 →K) (E372 of LynB), affecting fMLP-induced tyrosine phosphorylation. These data indicate that the Lyn mutation in NOD neutrophils is likely responsible for dysregulation of neutrophil adhesion and directed migration, implying the role of Lyn in modulating diabetic patient's susceptibility to bacterial and fungal infections. J. Cell. Physiol. 232: 1689-1695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Hannigan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Chi-Kuang Huang
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
13
|
Expression Profiling of Genes Related to Endothelial Cells Biology in Patients with Type 2 Diabetes and Patients with Prediabetes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1845638. [PMID: 27781209 PMCID: PMC5066000 DOI: 10.1155/2016/1845638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT2 Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
Collapse
|
14
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
15
|
Farnoodian M, Kinter JB, Yadranji Aghdam S, Zaitoun I, Sorenson CM, Sheibani N. Expression of pigment epithelium-derived factor and thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial cells. Physiol Rep 2015; 3:3/1/e12266. [PMID: 25602019 PMCID: PMC4387751 DOI: 10.14814/phy2.12266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Age‐related macular degeneration (AMD) is the leading cause of vision loss among elderly. Although the pathogenesis of AMD is associated with retinal pigmented epithelium (RPE) dysfunction and abnormal neovascularization the detailed mechanisms remain unresolved. RPE is a specialized monolayer of epithelial cells with important functions in ocular homeostasis. Pathological RPE damage contributes to major ocular conditions including retinal degeneration and irreversible loss of vision in AMD. RPE cells also assist in the maintenance of the ocular angiogenic balance by production of positive and negative regulatory factors including vascular endothelial growth factor (VEGF), thrombospondin‐1 (TSP1), and pigment epithelium‐derived factor (PEDF). The altered production of PEDF and TSP1, as endogenous inhibitors of angiogenesis and inflammation, by RPE cells have been linked to pathogenesis of AMD and choroidal and retinal neovascularization. However, lack of simple methods for isolation and culture of mouse RPE cells has resulted in limited knowledge regarding the cell autonomous role of TSP1 and PEDF in RPE cell function. Here, we describe a method for routine isolation and propagation of RPE cells from wild‐type, TSP1, and PEDF‐deficient mice, and have investigated their impact on RPE cell function. We showed that expression of TSP1 and PEDF significantly impacted RPE cell proliferation, migration, adhesion, oxidative state, and phagocytic activity with minimal effect on their basal rate of apoptosis. Together, our results indicated that the expression of PEDF and TSP1 by RPE cells play crucial roles not only in regulation of ocular vascular homeostasis but also have significant impact on their cellular function. Here, we report the isolation of RPE cells from wild‐type and transgenic mice retina. We demonstrate that lack of thrompospondin‐1 or pigment epithelium‐derived factor impacts the proliferation, migration, adhesion, oxidative state, and phagocytic activity of these cells.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, Clinical Investigation Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - James B Kinter
- Department of Ophthalmology and Visual Sciences, Clinical Investigation Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - Saeed Yadranji Aghdam
- Department of Ophthalmology and Visual Sciences, Clinical Investigation Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - Ismail Zaitoun
- Department of Ophthalmology and Visual Sciences, Clinical Investigation Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Clinical Investigation Graduate Program, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin Department of Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
16
|
Lee C, Liu A, Miranda-Ribera A, Hyun SW, Lillehoj EP, Cross AS, Passaniti A, Grimm PR, Kim BY, Welling PA, Madri JA, DeLisser HM, Goldblum SE. NEU1 sialidase regulates the sialylation state of CD31 and disrupts CD31-driven capillary-like tube formation in human lung microvascular endothelia. J Biol Chem 2014; 289:9121-35. [PMID: 24550400 PMCID: PMC3979388 DOI: 10.1074/jbc.m114.555888] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
The highly sialylated vascular endothelial surface undergoes changes in sialylation upon adopting the migratory/angiogenic phenotype. We recently established endothelial cell (EC) expression of NEU1 sialidase (Cross, A. S., Hyun, S. W., Miranda-Ribera, A., Feng, C., Liu, A., Nguyen, C., Zhang, L., Luzina, I. G., Atamas, S. P., Twaddell, W. S., Guang, W., Lillehoj, E. P., Puché, A. C., Huang, W., Wang, L. X., Passaniti, A., and Goldblum, S. E. (2012) NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia. NEU1 restrains endothelial cell migration whereas NEU3 does not. J. Biol. Chem. 287, 15966-15980). We asked whether NEU1 might regulate EC capillary-like tube formation on a Matrigel substrate. In human pulmonary microvascular ECs (HPMECs), prior silencing of NEU1 did not alter tube formation. Infection of HPMECs with increasing multiplicities of infection of an adenovirus encoding for catalytically active WT NEU1 dose-dependently impaired tube formation, whereas overexpression of either a catalytically dead NEU1 mutant, NEU1-G68V, or another human sialidase, NEU3, did not. NEU1 overexpression also diminished EC adhesion to the Matrigel substrate and restrained EC migration in a wounding assay. In HPMECs, the adhesion molecule, CD31, also known as platelet endothelial cell adhesion molecule-1, was sialylated via α2,6-linkages, as shown by Sambucus nigra agglutinin lectin blotting. NEU1 overexpression increased CD31 binding to Arachis hypogaea or peanut agglutinin lectin, indicating CD31 desialylation. In the postconfluent state, when CD31 ectodomains are homophilically engaged, NEU1 was recruited to and desialylated CD31. In postconfluent ECs, CD31 was desialylated compared with subconfluent cells, and prior NEU1 silencing completely protected against CD31 desialylation. Prior CD31 silencing and the use of CD31-null ECs each abrogated the NEU1 inhibitory effect on EC tube formation. Sialyltransferase 6 GAL-I overexpression increased α2,6-linked CD31 sialylation and dose-dependently counteracted NEU1-mediated inhibition of EC tube formation. These combined data indicate that catalytically active NEU1 inhibits in vitro angiogenesis through desialylation of its substrate, CD31.
Collapse
Affiliation(s)
| | | | | | | | | | - Alan S. Cross
- From the Departments of Medicine
- the Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Antonino Passaniti
- Pathology, and
- the Department of Veterans Affairs, Baltimore, Maryland 21201
| | | | | | | | - Joseph A. Madri
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Horace M. DeLisser
- the Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Simeon E. Goldblum
- From the Departments of Medicine
- Pathology, and
- the Department of Veterans Affairs, Baltimore, Maryland 21201
| |
Collapse
|
17
|
Sievert W, Tapio S, Breuninger S, Gaipl U, Andratschke N, Trott KR, Multhoff G. Adhesion molecule expression and function of primary endothelial cells in benign and malignant tissues correlates with proliferation. PLoS One 2014; 9:e91808. [PMID: 24632811 PMCID: PMC3954738 DOI: 10.1371/journal.pone.0091808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/14/2014] [Indexed: 12/03/2022] Open
Abstract
Background Comparative analysis of the cellular biology of the microvasculature in different tissues requires the availability of viable primary endothelial cells (ECs). This study describes a novel method to isolate primary ECs from healthy organs, repair blastemas and tumors as examples of non-proliferating and proliferating benign and malignant tissues and their functional characterization. Methodology/Principal Findings Single cell suspensions from hearts, lungs, repair blastemas and tumors were incubated consecutively with an anti-CD31 antibody and magnetic micro-beads, coupled to a derivative of biotin and streptavidin, respectively. Following magnetic bead separation, CD31-positive ECs were released by biotin-streptavidin competition. In the absence of micro-beads, ECs became adherent to plastic surfaces. ECs from proliferating repair blastemas and tumors were larger and exhibited higher expression densities of CD31, CD105 and CD102 compared to those from non-proliferating normal tissues such as heart and lung. The expression density of CD34 was particularly high in tumor-derived ECs, and that of CD54 and CD144 in ECs of repair blastemas. Functionally, ECs of non-proliferating and proliferating tissues differed in their capacity to form tubes in matrigel and to align under flow conditions. Conclusions/Significance This method provides a powerful tool to generate high yields of viable, primary ECs of different origins. The results suggest that an altered expression of adhesion molecules on ECs in proliferating tissues contribute to loss of EC function that might cause a chaotic tumor vasculature.
Collapse
Affiliation(s)
- Wolfgang Sievert
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Soile Tapio
- Department of Radiation Biology, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Stephanie Breuninger
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Udo Gaipl
- Department of Radiation Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
| | - Klaus-Rüdiger Trott
- Department of Oncology, Imperial University College London, London, United Kingdom
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinical Cooperation Group (CCG) “Innate Immunity in Tumor Biology”, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health Munich, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, Sheibani N. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis 2014; 5:e986. [PMID: 24407239 PMCID: PMC4040686 DOI: 10.1038/cddis.2013.517] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
Hyperglycemia impacts different vascular cell functions and promotes the development and progression of various vasculopathies including diabetic retinopathy. Although the increased rate of apoptosis in pericytes (PCs) has been linked to increased oxidative stress and activation of protein kinase C-δ (PKC-δ) and SHP-1 (Src homology region 2 domain-containing phosphatase-1) tyrosine phosphatase during diabetes, the detailed mechanisms require further elucidation. Here we show that the rate of apoptosis and expression of proapoptotic protein Bim were increased in the retinal PCs of diabetic Akita/+ mice and mouse retinal PCs cultured under high glucose conditions. Increased Bim expression in retinal PCs under high glucose conditions required the sustained activation of signal transducer and activator of transcription 1 (STAT1) through production of inflammatory cytokines. PCs cultured under high glucose conditions also exhibited increased oxidative stress and diminished migration. Inhibition of oxidative stress, PKC-δ or Rho-associated protein kinase I/II was sufficient to protect PCs against apoptosis under high glucose conditions. Furthermore, PCs deficient in Bim expression were protected from high glucose-mediated increased oxidative stress and apoptosis. However, only inhibition of PKC-δ lowered Bim levels. N-acetylcysteine did not affect STAT1 levels, suggesting that oxidative stress is downstream of Bim. PCs cultured under high glucose conditions disrupted capillary morphogenesis of retinal endothelial cells (ECs) in coculture experiments. In addition, conditioned medium prepared from PCs under high glucose conditions attenuated EC migration. Taken together, our results indicate that Bim has a pivotal role in the dysfunction of retinal PCs under high glucose conditions by increasing oxidative stress and death of PCs.
Collapse
Affiliation(s)
- E S Shin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Q Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2]
| | - Z Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - T L Palenski
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - I Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - C M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - N Sheibani
- 1] Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA [2] Mcpherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
19
|
Bartneck M, Skazik C, Paul NE, Salber J, Klee D, Zwadlo-Klarwasser G. The RGD Coupling Strategy Determines the Inflammatory Response of Human Primary Macrophages In Vitro and Angiogenesis In Vivo. Macromol Biosci 2013; 14:411-8. [DOI: 10.1002/mabi.201300362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Bartneck
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Medical Faculty; Department of Medicine III; RWTH Aachen; Aachen Germany
| | - Claudia Skazik
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Dermatology; RWTH Aachen; Aachen Germany
| | - Nora E. Paul
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Plastic Surgery and Hand Surgery - Burn Center; RWTH Aachen; Aachen Germany
| | - Jochen Salber
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Institute of Technical and Macromolecular Chemistry of RWTH Aachen University and DWI at RWTH Aachen; Aachen Germany
| | - Doris Klee
- Institute of Technical and Macromolecular Chemistry of RWTH Aachen University and DWI at RWTH Aachen; Aachen Germany
| | - Gabriele Zwadlo-Klarwasser
- Medical Faculty; Interdisciplinary Centre for Clinical Research Aachen (IZKF Aachen); RWTH Aachen; Aachen Germany
- Department of Dermatology; RWTH Aachen; Aachen Germany
| |
Collapse
|
20
|
Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 2012; 44:1800-12. [PMID: 22750474 DOI: 10.1016/j.biocel.2012.06.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing "pericyte-like" characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed.
Collapse
Affiliation(s)
- Brian M Dulmovits
- Sackler School of Graduate Biomedical Sciences Program in Cellular and Molecular Physiology, Department of Molecular Physiology and Pharmacology and the Center for Innovation in Wound Healing Research, Tufts University, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
21
|
Pepene CE. Soluble platelet/endothelial cell adhesion molecule (sPECAM)-1 is increased in polycystic ovary syndrome and related to endothelial dysfunction. Gynecol Endocrinol 2012; 28:370-4. [PMID: 22456311 DOI: 10.3109/09513590.2011.632792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Striking evidence indicates endothelial impairment in polycystic ovary syndrome (PCOS) but the mechanisms linking PCOS status to cardiovascular risk remain elusive. Platelet/endothelial cell adhesion molecule (PECAM)-1 is a soluble (s) signaling molecule involved in inflammation and angiogenesis with predictive value for endothelial dysfunction in patients at risk. In a prospective, controlled study, sPECAM-1 levels and the relationships to metabolic, inflammatory and vascular PCOS traits were evaluated in 26 patients and 29-age- and body mass index-matched controls. To assess endothelial injury, carotid artery intimae-media thickness (CIMT) and brachial artery flow-mediated vasodilatation (FMD) were employed. Of the 26 women with PCOS, 25 completed a six-month metformin combined with ethinylestradiol 0.3 mg/drospirenone 3 mg therapy. Soluble PECAM-1 levels were increased in PCOS (p = 0.018 vs. Controls) and significantly decreased at follow-up (p = 0.0002). Smoking and weight had no effect on sPECAM-1 dynamics. In both univariate and multivariate analysis, basal sPECAM-1 was inversely related to FMD (r = -0.311, p = 0.021) but not CIMT. To conclude, sPECAM-1 is increased in PCOS, an effect reversed by combined metformin and anti-androgenic contraceptive therapy. Elevated sPECAM-1 contributes to endothelial dysfunction however further studies are inquired to assess its relevance as biomarker and potential therapeutic target in PCOS.
Collapse
|
22
|
Ieronimakis N, Hays A, Reyes M. Bone marrow-derived cells do not engraft into skeletal muscle microvasculature but promote angiogenesis after acute injury. Exp Hematol 2011; 40:238-249.e3. [PMID: 22155292 DOI: 10.1016/j.exphem.2011.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 11/15/2011] [Accepted: 12/03/2011] [Indexed: 12/28/2022]
Abstract
The skeletal muscle is supported by a vast network of microvessels with the capacity to regenerate in response to injury. However, the dynamics of microvascular repair and the origin of reconstituted endothelial cells in the skeletal muscle are poorly understood. A growing body of literature exists to indicate bone marrow (BM)-derived cells engraft into regenerating vascular endothelium and muscle macrovasculature. Therefore, we investigated the extent of BM contribution to skeletal muscle microvasculature after acute injury. Because reporters and markers commonly used to trace donor BM cells are not endothelial specific but are also expressed by leukocytes, we generated novel BM chimeras utilizing Tie2-green fluorescent protein BM cells transplanted into CD31 and Caveolin-1 knockout recipients. In turn, we surveyed BM vascular contribution, not just by the presence of green fluorescent protein, but also CD31 and Caveolin-1, respectively. After stable BM reconstitution, chimera limb muscles were cardiotoxin (CTX) injured and examined 21 days post-injury for the presence of green fluorescent protein, CD31, and Caveolin-1. Acute muscle injury by CTX is characterized by initial microvasculature death followed by rapid endothelial regeneration within 14 days post-damage. Histological analysis of injured and uninjured contralateral limb muscles revealed a complete absence of BM engraftment in the muscle vasculature of wild-type and CD31/Caveolin-1 knockout chimeras. In contrast, F4/80(+) cells isolated from CTX-injured muscle, expressed endothelial-related markers and promoted angiogenesis in vitro. Therefore, despite the absence of BM engraftment to regenerated skeletal muscle microvasculature, macrophages recruited after injury promote angiogenesis and, in turn, vascular regeneration.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Departments of Pathology and Lab Medicine, University of Washington School of Medicine, Seattle, Wash., USA
| | | | | |
Collapse
|
23
|
Abstract
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.
Collapse
Affiliation(s)
- Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Moraes LA, Barrett NE, Jones CI, Holbrook LM, Spyridon M, Sage T, Newman DK, Gibbins JM. Platelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells. J Thromb Haemost 2010; 8:2530-41. [PMID: 20723025 PMCID: PMC3298659 DOI: 10.1111/j.1538-7836.2010.04025.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/06/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI-Fc receptor (FcR)γ-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI-FcRγ-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. OBJECTIVE To investigate the possibility that PECAM-1 regulates the formation of the Gab1-p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. METHODS The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. RESULTS PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2-p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.
Collapse
Affiliation(s)
- L A Moraes
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Park S, DiMaio TA, Scheef EA, Sorenson CM, Sheibani N. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol Cell Physiol 2010; 299:C1468-84. [PMID: 20810911 DOI: 10.1152/ajpcell.00246.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin superfamily of cell adhesion molecules with important roles in angiogenesis and inflammation. However, the molecular and cellular mechanisms, and the role that specific PECAM-1 isoforms play in these processes, remain elusive. We recently showed attenuation of retinal vascular development and neovascularization in PECAM-1-deficient (PECAM-1-/-) mice. To gain further insight into the role of PECAM-1 in these processes, we isolated primary retinal endothelial cells (EC) from wild-type (PECAM-1+/+) and PECAM-1-/- mice. Lack of PECAM-1 had a significant impact on endothelial cell-cell and cell-matrix interactions, resulting in attenuation of cell migration and capillary morphogenesis. Mechanistically these changes were associated with a significant decrease in expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability in PECAM-1-/- retinal EC. PECAM-1-/- retinal EC also exhibited a lower rate of apoptosis under basal and challenged conditions, consistent with their increased growth rate. Furthermore, reexpression of PECAM-1 was sufficient to restore migration and capillary morphogenesis of null cells in an isoform-specific manner. Thus PECAM-1 expression modulates proangiogenic properties of EC, and these activities are significantly influenced by alternative splicing of its cytoplasmic domain.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-4673, USA
| | | | | | | | | |
Collapse
|
26
|
Zhu JX, Cao G, Williams JT, Delisser HM. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am J Physiol Cell Physiol 2010; 299:C854-65. [PMID: 20631249 DOI: 10.1152/ajpcell.00436.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility.
Collapse
Affiliation(s)
- Jing-Xu Zhu
- Pulmonary, Allergy and Critical Care Division, SVM-Hill Pavilion, Rm. 410B, 380 South Univ. Ave., Philadelphia, PA 19104-4539, USA
| | | | | | | |
Collapse
|
27
|
Privratsky JR, Newman DK, Newman PJ. PECAM-1: conflicts of interest in inflammation. Life Sci 2010; 87:69-82. [PMID: 20541560 DOI: 10.1016/j.lfs.2010.06.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a cell adhesion and signaling receptor that is expressed on hematopoietic and endothelial cells. PECAM-1 is vital to the regulation of inflammatory responses, as it has been shown to serve a variety of pro-inflammatory and anti-inflammatory functions. Pro-inflammatory functions of PECAM-1 include the facilitation of leukocyte transendothelial migration and the transduction of mechanical signals in endothelial cells emanating from fluid shear stress. Anti-inflammatory functions include the dampening of leukocyte activation, suppression of pro-inflammatory cytokine production, and the maintenance of vascular barrier integrity. Although PECAM-1 has been well-characterized and studied, the mechanisms through which PECAM-1 regulates these seemingly opposing functions, and how they influence each other, are still not completely understood. The purpose of this review, therefore, is to provide an overview of the pro- and anti-inflammatory functions of PECAM-1 with special attention paid to mechanistic insights that have thus far been revealed in the literature in hopes of gaining a clearer picture of how these opposing functions might be integrated in a temporal and spatial manner on the whole organism level. A better understanding of how inflammatory responses are regulated should enable the development of new therapeutics that can be used in the treatment of acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
28
|
Park OK, Lee CH, Hwang IK, Yoo KY, Choi JH, Won MH. Effects of repeated restraint stress on platelet endothelial cell adhesion molecule-1 immunoreactivity and protein levels in the gerbil hippocampus after transient cerebral ischemia. Anat Cell Biol 2010; 43:54-63. [PMID: 21190005 PMCID: PMC2998780 DOI: 10.5115/acb.2010.43.1.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 12/14/2022] Open
Abstract
Stress has long been known to be a causative factor of various disease states. In this study, we investigated the effects of repeated restraint stress on platelet endothelial cell adhesion molecule-1 (PECAM-1), a very important mediator in inflammation, immunoreactivity and protein levels as well as neuronal damage, in the gerbil hippocampus after 5 minutes of transient cerebral ischemia. Transient ischemia-induced neuronal death was shown in CA1 pyramidal cells 4 days after ischemia/reperfusion. However, repeated restraint stress protected neuronal death induced by ischemic damage. In the ischemia-group, PECAM-1 immunoreactivity and its protein levels were significantly increased in all the hippocampal subregions 4 days after ischemia/reperfusion. However, PECAM-1 immunoreactivity and its protein levels did not change significantly in the hippocampus of the stress-ischemia-group compared to the sham-groups. These results indicate that repeated restraint stress protects neuronal damage induced by transient cerebral ischemia, and this may be associated with maintenance of PECAM-1levels.
Collapse
Affiliation(s)
- Ok Kyu Park
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Recruited bone marrow cells expressing the EP3 prostaglandin E receptor subtype enhance angiogenesis during chronic inflammation. Biomed Pharmacother 2010; 64:93-100. [DOI: 10.1016/j.biopha.2009.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
|
30
|
|
31
|
Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 2009; 90:195-221. [PMID: 19563606 DOI: 10.1111/j.1365-2613.2008.00633.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The study of angiogenesis has grown exponentially over the past 40 years with the recognition that angiogenesis is essential for numerous pathologies and, more recently, with the advent of successful drugs to inhibit angiogenesis in tumours. The main problem with angiogenesis research remains the choice of appropriate assays to evaluate the efficacy of potential new drugs and to identify potential targets within the angiogenic process. This selection is made more complex by the recognition that heterogeneity occurs, not only within the endothelial cells themselves, but also within the specific microenvironment to be studied. Thus, it is essential to choose the assay conditions and cell types that most closely resemble the angiogenic disease being studied. This is especially important when aiming to translate data from in vitro to in vivo and from preclinical to the clinic. Here we critically review and highlight recent advances in the principle assays in common use including those for endothelial cell proliferation, migration, differentiation and co-culture with fibroblasts and mural cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as chick chorioallantoic membrane (CAM), zebrafish, sponge implantation, corneal, dorsal air sac, chamber and tumour angiogenesis models. Finally, we briefly discuss the direction likely to be taken in future studies, which include the use of increasingly sophisticated imaging analysis systems for data acquisition.
Collapse
Affiliation(s)
- Carolyn A Staton
- Microcirculation Research Group, Academic Unit of Surgical Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
32
|
Cao G, Fehrenbach ML, Williams JT, Finklestein JM, Zhu JX, Delisser HM. Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:903-15. [PMID: 19574426 DOI: 10.2353/ajpath.2009.090206] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Pulmonary, Allergy and Critical Care Division, SVM-Hill Pavilion, Room 410B, 380 South University Avenue, Philadelphia, PA 19104-3945, USA
| | | | | | | | | | | |
Collapse
|
33
|
Gu A, Tsark W, Holmes KV, Shively JE. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture. Exp Cell Res 2009; 315:1668-82. [PMID: 19285068 DOI: 10.1016/j.yexcr.2009.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 01/12/2023]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (-8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as -5 to -3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased over time. QRT-PCR analysis of the anti-CEACAM1 treated ES cells revealed a significant decrease in the expression of Ceacam1, Pecam1, Tie-1, and Flk-1, while VE-Cad and Tie-2 expression were unaffected. These results suggest that the expression and signaling of CEACAM1 may affect the expression of other factors known to play critical roles in vasculogenesis. Furthermore this 3D model of vasculogenesis in an environment of extracellular matrix may be a useful model for comparison to existing models of angiogenesis.
Collapse
Affiliation(s)
- Angel Gu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
34
|
Wu Y, Tworkoski K, Michaud M, Madri JA. Bone Marrow Monocyte PECAM-1 Deficiency Elicits Increased Osteoclastogenesis Resulting in Trabecular Bone Loss. THE JOURNAL OF IMMUNOLOGY 2009; 182:2672-9. [DOI: 10.4049/jimmunol.0802398] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Seidman MA, Chew TW, Schenkel AR, Muller WA. PECAM-independent thioglycollate peritonitis is associated with a locus on murine chromosome 2. PLoS One 2009; 4:e4316. [PMID: 19180231 PMCID: PMC2628736 DOI: 10.1371/journal.pone.0004316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such phenotype is seen in the C57BL/6 (B6) murine background. Methodology/Principal Findings We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB) and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with inflammatory responses in the absence of PECAM. Conclusions/Significance These data potentiate further study of the diapedesis machinery, as well as potential identification of new components of this machinery. As such, this study is an important step to better understanding the processes of inflammation.
Collapse
Affiliation(s)
- Michael A. Seidman
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Tina W. Chew
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alan R. Schenkel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - William A. Muller
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Attenuation of retinal vascular development and neovascularization in PECAM-1-deficient mice. Dev Biol 2008; 315:72-88. [PMID: 18206868 DOI: 10.1016/j.ydbio.2007.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/20/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022]
Abstract
Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) is expressed on the surface of endothelial cells (EC) at high levels with important roles in angiogenesis and inflammation. However, the physiological role PECAM-1 plays during vascular development and angiogenesis remains largely unknown. Here we determined the role of PECAM-1 in the postnatal development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) using PECAM-1-deficient (PECAM-1-/-) mice. A significant decrease in retinal vascular density was observed in PECAM-1-/- mice compared with PECAM-1+/+ mice. This was attributed to a decreased number of EC in the retinas of PECAM-1-/- mice. An increase in the rate of apoptosis was observed in retinal vessels of PECAM-1-/- mice, which was compensated, in part, by an increase in the rate of proliferation. However, the development and regression of hyaloid vasculature were not affected in the absence of PECAM-1. We did not observe a significant defect in astrocytes, the number of endothelial tip cell filopodias, and the rate of developing retinal vasculature progression in PECAM-1-/- mice. However, we observed aberrant organization of arterioles and venules, decreased secondary branching, and dilated vessels in retinal vasculature of PECAM-1-/- mice. In addition, retinal neovascularization was attenuated in PECAM-1-/- mice during OIR despite an expression of VEGF similar to that of PECAM-1+/+ mice. Mechanistically, these changes were associated with an increase in EphB4 and ephrin B2, and a decrease in eNOS, expression in retinal vasculature of PECAM-1-/- mice. These results suggest that PECAM-1 expression and its potential interactions with EphB4/ephrin B2 and eNOS are important for survival, migration, and functional organization of EC during retinal vascular development and angiogenesis.
Collapse
|
38
|
Wong MX, Hayball JD, Jackson DE. PECAM-1-regulated signalling thresholds control tolerance in anergic transgenic B-cells. Mol Immunol 2007; 45:1767-81. [PMID: 17977600 DOI: 10.1016/j.molimm.2007.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) is an immunoglobulin (Ig)-immunoreceptor tyrosine based inhibitory motif (Ig-ITIM) superfamily member that recruits and activates protein-tyrosine phosphatases, predominantly SHP-2 and to a lesser extent, SHP-1. Previously, we have shown that deletion of PECAM-1 results in a hyper-proliferative B-cell phenotype. We wanted to test whether the Ig-ITIM superfamily member, PECAM-1 maintains peripheral tolerance by regulating signalling thresholds of B-cells that control autoantibody production or relaxed negative selection of autoreactive B-cells in bone marrow. In order to address this issue, we utilised the classical model of lysozyme/immunoglobulin transgenic mouse model that defines thresholds for eliminating or inactivating self-reactive B-cells. In this study, we show that breeding of double transgenes: soluble hen egg lysozyme (HEL) and its corresponding high-affinity receptor (HEL-Ig) onto PECAM-1 null background resulted in a spontaneous loss of B-cell tolerance in vivo. The resultant PECAM-1(-/-) Dbl Tg mice displayed elevated levels of anti-HEL immunoglobulin M (IgM) antibodies in the serum compared to PECAM-1+/+ anergic counterparts. Dbl Tg B-cells lacking PECAM-1 showed enhanced B-cell proliferation and calcium flux responses to LPS, IL-4 alone, IgM cross-linking and IL-4 indicating augmentation of antigen-receptor signalling. Thus, PECAM-1 is important in maintaining peripheral tolerance in Dbl Tg B-cells.
Collapse
Affiliation(s)
- Mae-Xhum Wong
- Kronheimer Building, Burnet Institute incorporating the Austin Research Institute, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
39
|
DiMaio TA, Sheibani N. PECAM-1 isoform-specific functions in PECAM-1-deficient brain microvascular endothelial cells. Microvasc Res 2007; 75:188-201. [PMID: 18029285 DOI: 10.1016/j.mvr.2007.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/25/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is alternatively spliced generating eight isoforms that only differ in the length of their cytoplasmic domain. Multiple isoforms of PECAM-1 are present in the endothelium and their expression levels are regulated during vascular development and angiogenesis. However, the functional significance of PECAM-1 isoforms during these processes remains largely unknown. We recently showed that mouse brain endothelial (bEND) cells prepared from PECAM-1-deficient (PECAM-1-/-) mice differ in their cell adhesive and migratory properties compared to PECAM-1+/+ bEND cells. Here we demonstrate that the restoration of PECAM-1 expression in these cells affects their adhesive and migratory properties in an isoform-specific manner. Expression of Delta14&15 PECAM-1, the predominant isoform present in the mouse endothelium, in PECAM-1-/- bEND cells activated MAPK/ERKs, disrupted adherens junctions, and enhanced cell migration and capillary morphogenesis in Matrigel. In contrast, expression of Delta15 PECAM-1 in PECAM-1-/- bEND cells had minimal effects on their activation of MAPK/ERKs, migration, and capillary morphogenesis. The effects of PECAM-1 on cell adhesive and migratory properties were mediated in an isoform-specific manner, at least in part, through its interactions with intracellular signaling proteins, including SHP-2 and Src. These results suggest that the impact of PECAM-1 on EC adhesion, migration, and capillary morphogenesis is modulated by alternative splicing of its cytoplasmic domain.
Collapse
Affiliation(s)
- Terri A DiMaio
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-4673, USA
| | | |
Collapse
|
40
|
Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 2007; 27:2514-23. [PMID: 17872453 DOI: 10.1161/atvbaha.107.151456] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) is a molecule expressed on all cells within the vascular compartment, being expressed to different degrees on most leukocyte sub-types, platelets, and on endothelial cells where its expression is largely concentrated at junctions between adjacent cells. As well as exhibiting adhesive properties, PECAM-1 is an efficient signaling molecule and is now known to have diverse roles in vascular biology including roles in angiogenesis, platelet function, and thrombosis, mechanosensing of endothelial cell response to fluid shear stress, and regulation of multiple stages of leukocyte migration through venular walls. This review will focus on some new developments with respect to the role of PECAM-1 in inflammation and vascular biology, highlighting the emerging complexities associated with the functions of this unique molecule.
Collapse
Affiliation(s)
- Abigail Woodfin
- Centre for Microvascular Research, William Harvey Research Institute, Barts & The London, Queen Mary College, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | |
Collapse
|
41
|
Khromykh LM, Kulikova NL, Anfalova TV, Muranova TA, Abramov VM, Vasiliev AM, Khlebnikov VS, Kazansky DB. Cyclophilin A produced by thymocytes regulates the migration of murine bone marrow cells. Cell Immunol 2007; 249:46-53. [DOI: 10.1016/j.cellimm.2007.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 01/08/2023]
|
42
|
Kondo S, Scheef EA, Sheibani N, Sorenson CM. PECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis. Am J Physiol Cell Physiol 2007; 292:C2070-83. [PMID: 17563397 DOI: 10.1152/ajpcell.00489.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in angiogenesis through its involvement in endothelial cell-cell and cell-matrix interactions and signal transduction. Recent studies indicate that the cytoplasmic domain of PECAM-1 plays an important role in its cell adhesive and signaling properties. However, the role PECAM-1 isoforms play during angiogenic events such as cell adhesion and migration requires further delineation. To gain insight into the role PECAM-1 plays during vascular development and angiogenesis, we examined the expression pattern of PECAM-1 isoforms during kidney vascularization. We show that multiple isoforms of PECAM-1 are expressed during renal vascular development with different frequencies. The PECAM-1 that lacks exons 14 and 15 (Delta14&15) was the predominant isoform detected in the renal vasculature. To further study PECAM-1 isoform-specific functions we isolated kidney endothelial cells (EC) from wild-type and PECAM-1-deficient (PECAM-1-/-) mice with B(4)-lectin-coated magnetic beads. PECAM-1-/- kidney EC showed reduced migration, inability to undergo capillary morphogenesis in Matrigel, dense peripheral focal adhesions, and peripheral cortical actin distribution compared with wild-type cells. PECAM-1-/- kidney EC secreted increased amounts of fibronectin and decreased amounts of tenascin-C and thrombospondin-1. Reexpression of Delta14&15, but not full-length, PECAM-1 in PECAM-1-/- kidney EC restored cell migration and capillary morphogenesis defects. Thus PECAM-1 may regulate the adhesive and migratory properties of kidney EC in an isoform-specific fashion through modulation of integrin activity and extracellular matrix protein expression. Our results indicate that regulated expression of specific PECAM-1 isoforms may enable EC to accommodate the different stages of angiogenesis.
Collapse
Affiliation(s)
- Shuji Kondo
- Dept. of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-4108, USA
| | | | | | | |
Collapse
|
43
|
Liang CM, Zhong CP, Sun RX, Liu BB, Huang C, Qin J, Zhou S, Shan J, Liu YK, Ye SL. Local expression of secondary lymphoid tissue chemokine delivered by adeno-associated virus within the tumor bed stimulates strong anti-liver tumor immunity. J Virol 2007; 81:9502-11. [PMID: 17567706 PMCID: PMC1951415 DOI: 10.1128/jvi.00208-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Development of an effective antitumor immune response depends on the appropriate interaction of effector and target cells. Thus, the expression of chemokines within the tumor may induce a more potent antitumor immune response. Secondary lymphoid tissue chemokine (SLC) is known to play a critical role in establishing a functional microenvironment in secondary lymphoid tissues. Its capacity to attract dendritic cells (DCs) and colocalize them with T cells makes it a good therapeutic candidate against cancer. In this study, we used SLC as a treatment for tumors established from a murine hepatocellular carcinoma model. SLC was encoded by recombinant adeno-associated virus (rAAV), a system chosen for the low host immunity and high efficiency of transduction, enabling long-term expression of the gene of interest. As a result, rAAV-SLC induced a significant delay of tumor progression, which was paralleled by a profound infiltration of DCs and activated CD4(+) T cells and CD8(+) T cells (CD3(+) CD69(+) cells) into the tumor site. In addition, rAAV-SLC treatment was also found to reduce tumor growth in nude mice, most likely due to inhibition of neoangiogenesis. In conclusion, local expression of SLC by rAAV represents a promising approach to induce immune-mediated regression of malignant tumors.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, T-Lymphocyte/analysis
- CD3 Complex/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/therapy
- Chemokine CCL21
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Dendritic Cells/immunology
- Dependovirus/genetics
- Disease Models, Animal
- Female
- Flow Cytometry
- Genetic Therapy/methods
- Genetic Vectors
- Lectins, C-Type
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- T-Lymphocyte Subsets/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Chun-min Liang
- Department of Anatomy and Histology and Embryology, Shanghai Medical College, Fudan University, 200032 Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
PECAMigration. Blood 2007. [DOI: 10.1182/blood-2007-03-075747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Abstract
PECAM-1 (CD31) knockout (KO) mice exhibit excessive megakaryocytopoiesis accompanied by increased numbers of megakaryocytes associated with the stromal niche rather than the vascular niche. During earlier stages of megakaryocytopoiesis in KO marrow, an expanded Lin(-)Sca-1(+) c-kit(+) hematopoietic stem cell (HSC) population and increased quiescent Lin(-) progenitor pool were identified. During the later stages of megakaryocytopoiesis, CD31KO megakaryocytes exhibited abnormal adhesion/transmigration behaviors. Lastly, KO animals exhibited excessive splenic extramedullary megakaryocytopoiesis, which likely compensates for the impaired marrow megakaryocytopoiesis, resulting in normal peripheral platelet number. Thus, PECAM-1 modulates megakaryocytopoiesis in a hierarchic manner, functioning as a thermostat to "fine-tune" megakaryocytopoiesis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, USA
| | | | | | | |
Collapse
|
46
|
Fujiwara M, Suemoto H, Muragaki Y, Ooshima A. Fas-mediated upregulation of vascular endothelial growth factor and monocyte chemoattractant protein-1 expression in cultured dermal fibroblasts: Role in the inflammatory response. J Dermatol 2007; 34:99-109. [PMID: 17239146 DOI: 10.1111/j.1346-8138.2006.00226.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Fas-Fas ligand interaction is the most important pathway in starting apoptosis. In addition, several recent reports have emerged documenting non-apoptotic roles for Fas. However, a non-apoptotic role of Fas in dermal fibroblasts remains unknown. The present study investigated whether Fas stimulation not only promotes apoptosis but also stimulates elements of the inflammatory response such as angiogenesis and macrophage infiltration. Fas stimulation was performed by treating cultured human dermal fibroblasts with an agonistic anti-Fas monoclonal antibody (mAb). Anti-Fas mAb-treated fibroblasts showed a significantly greater increase of caspase-3 and caspase-8 activity compared with control fibroblasts. Addition of the anti-Fas mAb induced DNA fragmentation, as confirmed by the DNA ladder assay. Terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL) staining showed that treatment with the anti-Fas mAb induced an increase of apoptotic fibroblasts in a time-dependent manner. At both mRNA and protein levels, anti-Fas mAb-treated fibroblasts showed significantly higher expression of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP)-1 compared with control fibroblasts. A pan-caspase inhibitor (Z-VAD-FMK) significantly inhibited VEGF and MCP-1 expression. After transplantation of fibroblasts into mice with severe combined immunodeficiency, the nodules derived from anti-Fas mAb-treated fibroblasts showed more abundant neovascularization, increased macrophage infiltration, and more apoptotic cells in comparison with nodules derived from control fibroblasts. The results of both in vitro and in vivo studies confirmed significantly higher angiogenic activity and macrophage chemotactic activity of anti-Fas mAb-treated fibroblasts compared with control fibroblasts.
Collapse
Affiliation(s)
- Masao Fujiwara
- Department of Plastic and Reconstructive Surgery, Shimane Prefectural Central Hospital, Izumo, Japan.
| | | | | | | |
Collapse
|
47
|
Mendes JB, Campos PP, Ferreira MAND, Bakhle YS, Andrade SP. Host response to sponge implants differs between subcutaneous and intraperitoneal sites in mice. J Biomed Mater Res B Appl Biomater 2007; 83:408-15. [PMID: 17415768 DOI: 10.1002/jbm.b.30810] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthetic matrices have been used widely to repair and/or to replace biological tissues. However, there is relatively little information on the effect of different anatomical compartments on the host response to foreign implants. We have analyzed such responses to sponge implants in subcutaneous and in intraperitoneal sites in mice at days 3, 5, and 8 postimplantation by measuring inflammation, angiogenesis, and production of proangiogenic/inflammatory cytokines. The angiogenic response, assessed by hemoglobin content and by morphometric analysis of the number of vessels, was higher in intraperitoneal implants. Levels of vascular endothelial growth factor in intraperitoneal implants were 14-fold higher than in subcutaneous implants at day 3 and remained high for the next 5 days. Neutrophil accumulation as determined by myeloperoxidase activity was the same in both types of implants. Macrophage accumulation (N-acetylglucosaminidase activity) was also similar on days 3 and 8 in both implants. Levels of the chemokine CXCL2/KC were always higher, but those of CCL2/JE lower, in the intraperitoneal implant. These results demonstrate that the anatomical site of the implant markedly influenced the host response to synthetic matrices. Our results provide a greater understanding of factors affecting the biocompatibility of exogenous materials placed at different anatomical sites.
Collapse
Affiliation(s)
- Juliana B Mendes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Cx Post 468, CEP 31270-901 Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
48
|
Tanabe K, Maeshima Y, Ichinose K, Kitayama H, Takazawa Y, Hirokoshi K, Kinomura M, Sugiyama H, Makino H. Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 2006; 71:227-38. [PMID: 17191085 DOI: 10.1038/sj.ki.5002040] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peritoneal sclerosis is a major and serious complication in patients on long-term continuous ambulatory peritoneal dialysis (PD). The involvement of angiogenesis and proangiogenic factors such as vascular endothelial growth factor (VEGF)-A in progressing peritoneal sclerosis has been reported. We previously reported the therapeutic efficacy of endostatin peptide, a potent inhibitor of angiogenesis derived from type XVIII collagen, in a mouse diabetic nephropathy model. Here, we examined the therapeutic effect of endostatin peptide in preventing progression in a mouse peritoneal sclerosis model. Male ICR mice received intraperitoneal injections of chlorhexidine gluconate (CG) every other day to induce peritoneal sclerosis. Endostatin peptide (1 or 4 mg/kg/day) was administered via subcutaneously implanted osmotic minipumps. Peritoneal sclerosis (day 24) was significantly suppressed by endostatin peptide in a dose-dependent manner. Peritoneal accumulation of type III collagen was significantly suppressed by endostatin peptide. Increase in the number of CD31(+) blood vessels, F4/80(+) monocyte/macrophage accumulation, and 5-bromodeoxyuridine(+) proliferating cells was significantly inhibited by endostatin peptide. Increase in peritoneal expression of VEGF-A, profibrotic transforming growth factor-beta1, and alpha-smooth muscle actin was suppressed by endostatin peptide. Immunoreactivity for endogenous endostatin (whole molecule) and endostatin receptor alpha5beta1-integrin was increased and colocalized to CD31(+) blood vessels in the thickened peritonea of CG-injected mice. These results demonstrate the potential use of antiangiogenic endostatin peptide as a novel therapeutic agent in preventing peritoneal sclerosis, a severe complication in patients undergoing long-term PD.
Collapse
Affiliation(s)
- K Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lucerna M, Zernecke A, de Nooijer R, de Jager SC, Bot I, van der Lans C, Kholova I, Liehn EA, van Berkel TJC, Yla-Herttuala S, Weber C, Biessen EAL. Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment. Blood 2006; 109:122-9. [PMID: 16990600 DOI: 10.1182/blood-2006-07-031773] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Vascular endothelial growth factor-A is widely used in clinical trials for the treatment of cardiac ischemia. VEGF-A was recently suggested to act in a proinflammatory manner, which could aggravate adjacent atherogenesis in VEGF-A–based therapy. To assess potential bystander effects, VEGF-A was focally overexpressed in advanced atherosclerotic plaques in ApoE−/− mice. Sheer-induced carotid artery plaques were transluminally incubated with Ad.hVEGF-A leading to neointimal overexpression of VEGF-A. Ad.hVEGF-A treatment of pre-existing lesions was seen to promote plaque expansion, with a concomitant increase in macrophage and lipid content, whereas it lowered collagen content. In general, Ad.hVEGF-A–treated plaques displayed a more vulnerable phenotype. VEGF-A overexpression was not accompanied by increased microvessel development in the neointima, suggesting that VEGF-A destabilizes atherosclerotic plaques through an angiogenesis-independent mechanism. Intravital microscopy confirmed that treatment with Ad.hVEGF-A led to an increased monocyte adhesion, which was mediated by a VCAM-1/PECAM-1–dependent pathway. VEGF-A indeed induced a differential expression of VCAM-1 and PECAM-1 in endothelial cells. Our data underline the importance of regular monitoring of stenotic vessels adjacent to the site of VEGF-A application. We propose that VCAM-1/PECAM-1–directed cotherapy may be an efficient strategy to prevent bystander effects of focal VEGF-A therapy in patients suffering from cardiovascular disease.
Collapse
Affiliation(s)
- Markus Lucerna
- Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Biswas P, Canosa S, Schoenfeld D, Schoenfeld J, Li P, Cheas LC, Zhang J, Cordova A, Sumpio B, Madri JA. PECAM-1 affects GSK-3beta-mediated beta-catenin phosphorylation and degradation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:314-24. [PMID: 16816383 PMCID: PMC1698776 DOI: 10.2353/ajpath.2006.051112] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates a variety of endothelial and immune cell biological responses. PECAM-1-null mice exhibit prolonged and increased permeability after inflammatory insults. We observed that in PECAM-1-null endothelial cells (ECs), beta-catenin remained tyrosine phosphorylated, coinciding with a sustained increase in permeability. Src homology 2 domain containing phosphatase 2 (SHP-2) association with beta-catenin was diminished in PECAM-1-null ECs, suggesting that lack of PECAM-1 inhibits the ability of this adherens junction component to become dephosphorylated, promoting a sustained increase in permeability. beta-Catenin/Glycogen synthase kinase 3 (GSK-3beta) association and beta-catenin serine phosphorylation levels were increased and beta-catenin expression levels were reduced in PECAM-1-null ECs. Glycogen synthase kinase 3 (GSK-3beta) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress. Our data suggest that PECAM-1 serves as a critical dynamic regulator of endothelial barrier permeability. On stimulation by a vasoactive substance or shear stress, PECAM-1 became tyrosine phosphorylated, enabling recruitment of SHP-2 and tyrosine-phosphorylated beta-catenin to its cytoplasmic domain, facilitating dephosphorylation of beta-catenin, and allowing reconstitution of adherens junctions. In addition, PECAM-1 modulated the levels of beta-catenin by regulating the activity of GSK-3beta, which in turn affected the serine phosphorylation of beta-catenin and its proteosomal degradation, affecting the ability of the cell to reform adherens junctions in a timely fashion.
Collapse
Affiliation(s)
- Purba Biswas
- Department of Pathology, Yale University School of Medicine, 310 Cedar St., Lauder Hall, Rm. L115, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|