1
|
Wang L, Zou G, Yan Y, Shi R, Guo Y, Zhang M, Lu L, Dong K. Idebenone Protects Photoreceptors Impaired by Oxidative Phosphorylation Disorder in Retinal Detachment. Invest Ophthalmol Vis Sci 2025; 66:17. [PMID: 39774627 DOI: 10.1167/iovs.66.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Purpose Oxidative phosphorylation (OXPHOS) is an aerobic metabolic mechanism, and its dysfunction plays an important role in the pathological changes of ischemic diseases. However, systematic studies on the occurrence of retinal detachment (RD) are lacking. Methods Single-cell RNA sequencing (scRNA-seq) of the human retina was performed to detect the metabolic changes of various retinal cells after RD. In this study, animal experiments were conducted to explore the OXPHOS activity after RD. In addition, idebenone, a coenzyme Q10 (CoQ10) analog currently used to treat Leber hereditary optic neuropathy (LHON), was used to improve the OXPHOS disorder in experimental RD model. Results ScRNA-seq revealed abnormal energy metabolism and OXPHOS pathways in retinal cells after RD. Adenosine triphosphate (ATP) and reactive oxygen species (ROS) are the main products of OXPHOS, the mouse RD model indicated that the rise in ROS levels may have a greater impact on photoreceptors in the early stage, whereas decreased ATP synthesis was observed in the later stage; these changes threaten the function and morphology of the retina. Idebenone was administered to model mice intragastrically, leading to reduced ROS levels in the early stage post-RD and improved ATP synthesis in the later stage, which was closely related to the maintenance of mitochondrial morphology. Conclusions OXPHOS disorder leads to photoreceptor degeneration after RD, which can be alleviated by improving OXPHOS function.
Collapse
Affiliation(s)
- Lisong Wang
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Gaocheng Zou
- Department of Ophthalmology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yuanye Yan
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Ronghua Shi
- Core Facility Center for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue Guo
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Mei Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Li Lu
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Kai Dong
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| |
Collapse
|
2
|
Savastano MC, Carlà MM, Giannuzzi F, Fossataro C, Cestrone V, Boselli F, Biagini I, Beccia F, Raffaele Q, Gravina G, Rizzo C, Savastano A, Rizzo S. OCT analysis of preoperative foveal microstructure in recent-onset macula-off rhegmatogenous retinal detachment: visual acuity prognostic factors. Br J Ophthalmol 2024; 108:1743-1748. [PMID: 38719346 DOI: 10.1136/bjo-2024-325278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/20/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND To evaluate, in patients undergoing macula-off rhegmatogenous retinal detachment surgery (RRD), the correlation between preoperative optical coherence tomography (OCT) morphological features and postoperative visual acuity. METHODS Retrospective interventional non-randomised clinical trial on 89 eyes of 89 patients undergoing pars plana vitrectomy for macula-off primary RRD at Policlinico Universitario Agostino Gemelli from 2020 to 2023. Preoperative 6×6 mm OCT B scans with Nidek Mirante (Nidek, Gamagori, Japan) were performed, collecting the following features: foveal involvement (fovea-on vs fovea-off), subretinal hyper-reflective points (HRPs), outer retinal corrugations (ORCs) and intraretinal cystic spaces (ICS) in the outer nuclear layer. The patients were followed in a 6-month follow-up to evaluate best-corrected visual acuity (BCVA) outcomes. RESULTS Preoperative mean BCVA was 0.15±0.22 and improved to 0.29±0.3 decimals at 6 months (p<0.001). The presence of subretinal HRPs showed a significant negative impact on BCVA improvement in the univariate regression analysis (r=-0.264, p=0.024), as well as the presence of foveal detachment (r=-0.355, p=0.012). The other OCT features did not show a significant correlation with BCVA improvement: ORCs (r=0.072, p=0.257) and ICS (r=-0.020, p=0.734). In the multivariate regression analysis, the negative impact of foveal detachment was confirmed (r=-0.199, p=0.05) while the statistical significance of subretinal HRPs was lost (r=-0.135, p=0.105). CONCLUSIONS The negative impact of foveal involvement in a macula-off RRD was confirmed. Moreover, the presence of subretinal HRPs, as a possible indirect marker of inflammatory response extent, may act as a negative predictor for postoperative visual recover. TRIAL REGISTRATION NUMBER NCT05747144.
Collapse
Affiliation(s)
- Maria Cristina Savastano
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Matteo Mario Carlà
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Federico Giannuzzi
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Claudia Fossataro
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Valentina Cestrone
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Francesco Boselli
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Ilaria Biagini
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Flavia Beccia
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Milano, Italy
| | | | - Gianni Gravina
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Clara Rizzo
- Ophthalmology, University of Verona, Verona, Italy
| | - Alfonso Savastano
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
| | - Stanislao Rizzo
- "Fondazione Policlinico Universitario A Gemelli IRCCS", Rome, Italy
- Catholic University "Sacro Cuore", Rome, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Pisa, Italy
| |
Collapse
|
3
|
Tachibana T, Notomi S, Funatsu J, Fujiwara K, Nakatake S, Murakami Y, Nakao S, Kanamoto T, Ikeda Y, Ishibashi T, Sonoda KH, Hisatomi T. Intraocular kinetics of pathological ATP after photoreceptor damage in rhegmatogenous retinal detachment. Jpn J Ophthalmol 2024:10.1007/s10384-024-01087-x. [PMID: 39060674 DOI: 10.1007/s10384-024-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Extracellular Adenosine triphosphate (ATP) released by dying cells may cause a secondary cell death in neighboring cells in retinal degeneration. We investigated intraocular ATP kinetics to gain mechanical insights into the pathology in rhegmatogenous retinal detachment (RRD). STUDY DESIGN Retrospective clinical study. METHODS Vitreous or subretinal fluids (SRF) were obtained from patients with RRD (n=75), macular hole (MH; n=20), and epiretinal membrane (ERM; n=35) during vitrectomy. ATP levels in those samples were measured by luciferase assay. RESULTS Mean ATP levels in the vitreous from RRD patients were significantly higher compared to those from MH and ERM patients (2.3 and 0.3 nM, respectively. P<0.01). Mean ATP levels in the SRF from RRD (11.7 nM) were higher than those in the vitreous from RRD (P<0.01). Mean ATP levels in the vitreous with short durations (1-8 days) of RRD were higher compared to those with long durations (>8 days) (3.2 and 1.4 nM, respectively. P<0.05). Similarly, ATP in SRF with short durations were higher than those with long durations (23.8 and 3.6 nM, respectively. P<0.05). Furthermore, the concentrations of ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1), a major ATP degradative enzyme, in the vitreous from RRD were higher than those from MH/ERM (1.2 and 0.2 ng/ml, respectively. P<0.01). ENTPD1 expression was localized in the cytoplasm of CD11b-positive infiltrating cells in the vitreous and retinal cells. CONCLUSION ATP increased in the vitreous and SRF in RRD and decreased over time with an upregulation of ENTPD1. The kinetics indicate the pathological mechanism of the excessive extracellular ATP after RRD.
Collapse
Affiliation(s)
- Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Ohshima Eye Hospital, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino, Fukuoka, 818-8502, Japan.
| |
Collapse
|
4
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
5
|
Shome I, Thathapudi NC, Aramati BMR, Kowtharapu BS, Jangamreddy JR. Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. Int Ophthalmol 2023; 43:3891-3909. [PMID: 37347455 DOI: 10.1007/s10792-023-02767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disorder prevalent in the elderly population, which leads to the loss of central vision. The disease progression can be managed, if not prevented, either by blocking neovascularization ("wet" form of AMD) or by preserving retinal pigment epithelium and photoreceptor cells ("dry" form of AMD). Although current therapeutic modalities are moderately successful in delaying the progression and management of the disease, advances over the past years in regenerative medicine using iPSC, embryonic stem cells, advanced materials (including nanomaterials) and organ bio-printing show great prospects in restoring vision and efficient management of either forms of AMD. This review focuses on the molecular mechanism of the disease, model systems (both cellular and animal) used in studying AMD, the list of various regenerative therapies and the current treatments available. The article also highlights on the recent clinical trials using regenerative therapies and management of the disease.
Collapse
Affiliation(s)
- Ishita Shome
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Neethi C Thathapudi
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Ophthalmology and Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Bindu Madhav Reddy Aramati
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhavani S Kowtharapu
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jaganmohan R Jangamreddy
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
6
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
7
|
Zhang Q, Hu XM, Zhao WJ, Ban XX, Li Y, Huang YX, Wan H, He Y, Liao LS, Shang L, Jiang B, Qing GP, Xiong K. Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases. Int J Biol Sci 2023; 19:658-674. [PMID: 36632450 PMCID: PMC9830514 DOI: 10.7150/ijbs.77994] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of the necroptosis, a form of regulated necrosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL), represents a major breakthrough that has dramatically altered the conception of necrosis - traditionally thought of as uncontrolled cell death - in various human diseases. Retinal cell death is a leading cause of blindness and has been identified in most retinal diseases, e.g., age-related macular degeneration, glaucoma, retinal detachment, retinitis pigmentosa, etc. Increasing evidence demonstrates that retinal degenerative diseases also share a common mechanism in necroptosis. Exacerbated necroptotic cell death hinders the treatment for retinal degenerative diseases. In this review, we highlight recent advances in identifying retinal necroptosis, summarize the underlying mechanisms of necroptosis in retinal degenerative diseases, and discuss potential anti-necroptosis strategies, such as selective inhibitors and chemical agents, for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye He
- Changsha Aier Eye Hospital, Changsha, China
| | - Lv-shuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Bin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-ping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,✉ Corresponding author: E-mail:
| |
Collapse
|
8
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
9
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Mehterov N, Minchev D, Gevezova M, Sarafian V, Maes M. Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders. Mol Neurobiol 2022; 59:4926-4952. [PMID: 35657457 DOI: 10.1007/s12035-022-02889-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/17/2022] [Indexed: 10/25/2022]
Abstract
The purpose of this review is to summarize the current knowledge regarding the reciprocal associations between brain-derived neurotrophic factor (BDNF) and immune-inflammatory pathways and how these links may explain the involvement of this neurotrophin in the immune pathophysiology of mood disorders and schizophrenia. Toward this end, we delineated the protein-protein interaction (PPI) network centered around BDNF and searched PubMed, Scopus, Google Scholar, and Science Direct for papers dealing with the involvement of BDNF in the major psychosis, neurodevelopment, neuronal functions, and immune-inflammatory and related pathways. The PPI network was built based on the significant interactions of BDNF with neurotrophic (NTRK2, NTF4, and NGFR), immune (cytokines, STAT3, TRAF6), and cell-cell junction (CTNNB, CDH1) DEPs (differentially expressed proteins). Enrichment analysis shows that the most significant terms associated with this PPI network are the tyrosine kinase receptor (TRKR) and Src homology region two domain-containing phosphatase-2 (SHP2) pathways, tyrosine kinase receptor signaling pathways, positive regulation of kinase and transferase activity, cytokine signaling, and negative regulation of the immune response. The participation of BDNF in the immune response and its interactions with neuroprotective and cell-cell adhesion DEPs is probably a conserved regulatory process which protects against the many detrimental effects of immune activation and hyperinflammation including neurotoxicity. Lowered BDNF levels in mood disorders and schizophrenia (a) are associated with disruptions in neurotrophic signaling and activated immune-inflammatory pathways leading to neurotoxicity and (b) may interact with the reduced expression of other DEPs (CTNNB1, CDH1, or DISC1) leading to multiple aberrations in synapse and axonal functions.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Danail Minchev
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria. .,Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
11
|
McKay BR, Bansal A, Kryshtalskyj M, Wong DT, Berger A, Muni RH. Evaluation of Subretinal fluid Drainage Techniques during Pars Plana Vitrectomy for Primary Rhegmatogenous Retinal Detachment - ELLIPSOID study. Am J Ophthalmol 2022; 241:227-237. [PMID: 35597323 DOI: 10.1016/j.ajo.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare visual acuity and photoreceptor integrity following vitrectomy (PPV) with drainage from the peripheral retinal break(s) (PRB) vs. posterior retinotomy (PR) vs. perfluorocarbon liquid (PFCL) for macula-off rhegmatogenous retinal detachment (RRD). DESIGN Retrospective consecutive interventional comparative clinical study. METHODS 300 consecutive patients (300 eyes) with primary macula-off RRD underwent 23-gauge PPV with SRF drainage through 1) PRB (n=100), 2) PR (n=100), or 3) with PFCL (n=100). Visual acuity and SD-OCT were performed preoperatively and at 3, 6, and 12 months postoperatively. Primary outcomes were visual acuity and discontinuity of the external limiting membrane, ELM; ellipsoid zone, EZ; interdigitation zone, IDZ; and retinal pigment epithelium, RPE at 1-year. RESULTS Baseline characteristics were similar. Single-operation reattachment rates were: PRB 86%; PR 85%; PFCL 83%,p=0.9. Mean(±SD) logMAR visual acuity at 1-year was greater with PRB and PR compared to PFCL (PRB=0.6±0.5;PR=0.7±0.6;PFCL=0.9±0.6,p=0.002). There was an association between drainage technique and discontinuity of the ELM (PRB 26%,PR 24%,PFCL 44%,p=0.001), EZ (PRB 29%,PR 31%,PFCL 49%,p<0.001) and IDZ (PRB 43%,PR 39%,PFCL 56%, p=0.004). There was an association between drainage technique and risk of cystoid macular edema (CME) (PRB 28%,PR 39%,PFCL 46%,p=0.003) and ERM (PRB 64%,PR 90%,PFCL 61%,P<0.001). CONCLUSIONS PFCL-assisted drainage is associated with worse visual acuity and greater risk of outer retinal band discontinuity and CME compared with PRB or PR. PR had a greater risk of ERM compared with PRB and PFCL. PRB had the best outcomes overall. Drainage technique may impact long-term anatomic and functional outcomes.
Collapse
|
12
|
Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Usategui-Martín R, Fernandez-Bueno I. Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration. Front Neuroanat 2022; 16:812487. [PMID: 35221932 PMCID: PMC8873173 DOI: 10.3389/fnana.2022.812487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- Ricardo Usategui-Martín,
| | - Ivan Fernandez-Bueno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- *Correspondence: Ivan Fernandez-Bueno,
| |
Collapse
|
13
|
Conart JB, Augustin S, Remen T, Sahel JA, Guillonneau X, Delarasse C, Sennlaub F, Berrod JP. Vitreous cytokine expression profiles in patients with retinal detachment. J Fr Ophtalmol 2021; 44:1349-1357. [PMID: 34544594 DOI: 10.1016/j.jfo.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE To compare the expression profiles of various cytokines and chemokines in vitreous samples from patients with retinal detachment (RD) to those from controls and to analyze their association with various clinical features. METHODS In this prospective study, undiluted vitreous fluid was obtained from 41 patients with primary RD and 33 controls with macular hole or vitreomacular traction. A multiplex bead immunoassay was performed to determine the expression of 27 inflammatory mediators. RESULTS Eleven mediators were significantly upregulated in the vitreous of RD patients compared with controls, including the following: cytokines IL-1ra, IL-6, IL-7, IL-8, IFN-γ; chemokines CCL2, CCL3, CCL4, CXCL10 and CCL11 and growth factor G-CSF. Correlation analyses showed that levels of IL-1ra, CXCL10, CCL11 and G-CSF were positively correlated to the extent of detachment, while those of IL-1ra and CXCL10 were associated with the duration of detachment. There was also a positive association between the concentrations of CXCL10 and CCL11 and preoperative flare values. Additional analysis revealed that flare values and both CXCL10 and CCL11 levels were significantly higher in eyes with grade B or C proliferative vitreoretinopathy (PVR). CONCLUSION Our results confirm that RD induces a marked inflammatory response with a complex cytokine network. We identified proteins specifically linked to several clinical features that might contribute to photoreceptor degeneration and PVR-related redetachment. These proteins may represent potential therapeutic targets for improving the anatomical and functional outcomes of RD surgery.
Collapse
Affiliation(s)
- J-B Conart
- Department of Ophthalmology, Nancy University Hospital, Vandœuvre-lès-Nancy, France; Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France.
| | - S Augustin
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - T Remen
- ESPRI-BioBase Unit, Platform of PARC, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - J-A Sahel
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - X Guillonneau
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - C Delarasse
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - F Sennlaub
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - J-P Berrod
- Department of Ophthalmology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| |
Collapse
|
14
|
Biswal S, Gondchawar A, Ravishankar HN, Sagar P, Shanmugam PM, Shah A, Tekade P, Mooss V. Predictors of visual outcome in post-fever retinitis: a retrospective analysis. Int Ophthalmol 2021; 41:4099-4109. [PMID: 34546494 DOI: 10.1007/s10792-021-01983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To identify the predictors of final visual outcome in cases with post-fever retinitis (PFR). METHODS This is a retrospective study of cases with diagnosis of post-fever retinitis. Colour fundus photograph and optical coherence tomography (OCT) parameters at presentation and final visit were analysed. Various factors at presentation [age, systemic illness, best-corrected visual acuity (BCVA), area of retinitis and hard exudates, OCT parameters], at final visit (OCT parameters) and the treatment modalities used were correlated with BCVA at final visit. RESULTS Twenty-four eyes of 16 patients with PFR were included in the study. Median BCVA at presentation was 6/60 and at final visit was 6/9. By multiple linear regression after adjusting for other variables, for every 1 unit increase in height of subretinal fluid (SRF) at fovea at presentation, the value of final BCVA decreased by 0.001 unit. For every 1 unit increase in extent of ellipsoid zone (EZ) loss and subfoveal deposit height, the value of final BCVA decreased by 0.0001 unit and 0.004 unit, respectively. The baseline OCT parameters that had negative correlation with final BCVA included central macular thickness (r: - 0.5182, p: 0.02), maximum SRF height (r: - 0.5539, p < 0.01) and SRF height at fovea (r: - 0.582, p < 0.01). The OCT parameters at final visit which had a negative correlation with final BCVA included disorganisation of retinal inner layers (DRIL) within 1000 microns from centre of fovea (r: - 0.6494, p < 0.01), height of subfoveal deposit (r: - 0.7627, p < 0.01), horizontal extent of subfoveal deposit (r: - 0.6695, p < 0.01) and extent of EZ loss (r: - 0.8216, p < 0.01). CONCLUSION Height of SRF at presentation, extent of EZ loss and subfoveal deposit height at final visit were associated with poor final BCVA in PFR.
Collapse
Affiliation(s)
- Suchitra Biswal
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| | - Ankush Gondchawar
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| | - H N Ravishankar
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| | - Pradeep Sagar
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India.
| | - P Mahesh Shanmugam
- Department of Vitreo-Retina and Ocular Oncology, Sankara Eye Hospital, Bangalore, India
| | - Aanal Shah
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| | - Pradeep Tekade
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| | - Vidya Mooss
- Department of Vitreo-Retina, Sankara Eye Hospital, Harakere, Shimoga, Karnataka, 577202, India
| |
Collapse
|
15
|
RELATIONSHIP BETWEEN PREOPERATIVE FOVEAL MICROSTRUCTURE AND VISUAL ACUITY IN MACULA-OFF RHEGMATOGENOUS RETINAL DETACHMENT: Imaging Analysis by Swept Source Optical Coherence Tomography. Retina 2021; 40:1873-1880. [PMID: 31764614 DOI: 10.1097/iae.0000000000002687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To visualize foveal microstructures in macula-off rhegmatogenous retinal detachment using swept source optical coherence tomography preoperatively and postoperatively and to investigate the relationship between foveal microstructures and postoperative visual acuity. METHODS We retrospectively analyzed 42 eyes of 42 consecutive patients diagnosed with macula-off rhegmatogenous retinal detachment who underwent anatomically successful repair surgery and were followed up for 6 months. We used swept source optical coherence tomography to investigate the relationship between preoperative and postoperative continuity of both the external limiting membrane (ELM) and ellipsoid zone (Ez) and preoperative and postoperative best-corrected visual acuity. RESULTS Both preoperative ELM and Ez were continuous in 9 eyes (21%; ELM+/Ez+ eyes), only the ELM was continuous in 25 eyes (60%; ELM+/Ez- eyes), and neither was continuous in 8 eyes (19%; ELM-/Ez- eyes). Postoperative best-corrected visual acuity in ELM+/Ez+ eyes (-0.05 ± 0.04 logarithm of the minimum angle of resolution units, Snellen equivalent 20/18) was significantly better than that in both ELM+/Ez- (0.16 ± 0.16, 20/29; P = 0.03) and ELM-/Ez- (0.86 ± 0.37, 20/145; P < 0.001) eyes. Postoperative best-corrected visual acuity was significantly better in ELM+/Ez- than in ELM-/Ez- eyes (P < 0.001). CONCLUSION In macula-off rhegmatogenous retinal detachment, preoperative continuity of the ELM and Ez may be a predictor of postoperative best-corrected visual acuity.
Collapse
|
16
|
Ross BX, Jia L, Kong D, Wang T, Hager HM, Abcouwer SF, Zacks DN. Conditional Knock out of High-Mobility Group Box 1 (HMGB1) in Rods Reduces Autophagy Activation after Retinal Detachment. Cells 2021; 10:2010. [PMID: 34440779 PMCID: PMC8394251 DOI: 10.3390/cells10082010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
After retinal detachment (RD), the induction of autophagy protects photoreceptors (PR) from apoptotic cell death. The cytoplasmic high-mobility group box 1 (HMGB1) promotes autophagy. We previously demonstrated that the deletion of HMGB1 from rod PRs results in a more rapid death of these cells after RD. In this work, we tested the hypothesis that the lack of HMGB1 accelerates PR death after RD due to the reduced activation of protective autophagy in the retina after RD. The injection of 1% hyaluronic acid into the subretinal space was used to create acute RD in mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1Δrod) and littermate controls. RD sharply increased the number of apoptotic cells in the outer nuclear layer (ONL), and this number was further increased in HMGB1Δrod mouse retinas. The activation of autophagy after RD was reduced in the HMGB1Δrod mouse retinas compared to controls, as evidenced by diminished levels of autophagy regulatory proteins LC3-II, Beclin1, ATG5/12, and phospho-ATG16L1. The cKO of HMGB1 in rods increased the expression of Fas and the Bax/Bcl-2 ratio in detached retinas, promoting apoptotic cell death. In conclusion, endogenous HMGB1 facilitates autophagy activation in PR cells following RD to promote PR cell survival and reduce programmed apoptotic cell death.
Collapse
Affiliation(s)
- Bing X. Ross
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| | - Lin Jia
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| | - Dejuan Kong
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| | - Tiantian Wang
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Heather M. Hager
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| | - Steven F. Abcouwer
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| | - David N. Zacks
- Kellogg Eye Center, Department of Ophthalmology, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA; (B.X.R.); (L.J.); (D.K.); (T.W.); (H.M.H.); (S.F.A.)
| |
Collapse
|
17
|
Felfeli T, Murtaza F, Abueh B, Mandelcorn MS, Wong DD, Mandelcorn ED. Clinical Significance of Macula-Off Rhegmatogenous Retinal Detachment Preoperative Features on Optical Coherence Tomography. Ophthalmic Surg Lasers Imaging Retina 2021; 52:S23-S29. [PMID: 34310238 DOI: 10.3928/23258160-20210518-05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the clinical significance of preoperative spectral-domain optical coherence tomography (OCT) features and their association with postoperative outcomes in eyes with primary macula-off rhegmatogenous retinal detachment (RRD). PATIENTS AND METHODS This is a retrospective case series of all consecutive cases undergoing repair of primary macula-off RRD at two tertiary care academic centers between January 2018 to January 2021. RESULTS Among 406 eyes, baseline visual acuity (β = 0.184, P = .001) and time to surgery (β = 0.009, P = .033) were predictive of postoperative visual acuity at 1-year follow-up after adjusting for age, sex and lens status, as well as presence of preoperative features on OCT such as outer retinal corrugations and height of the retinal detachment. CONCLUSION Baseline visual acuity and time to surgical repair are the best predictors of vision outcomes following macula-off RRD repair. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:S23-S29.].
Collapse
|
18
|
Muni RH, Felfeli T, Sadda SR, Juncal VR, Francisconi CLM, Nittala MG, Lindenberg S, Gunnemann F, Berger AR, Wong DT, Altomare F, Giavedoni LR, Kohly RP, Kertes PJ, Sarraf D, Hillier RJ. Postoperative Photoreceptor Integrity Following Pneumatic Retinopexy vs Pars Plana Vitrectomy for Retinal Detachment Repair: A Post Hoc Optical Coherence Tomography Analysis From the Pneumatic Retinopexy Versus Vitrectomy for the Management of Primary Rhegmatogenous Retinal Detachment Outcomes Randomized Trial. JAMA Ophthalmol 2021; 139:620-627. [PMID: 33885738 DOI: 10.1001/jamaophthalmol.2021.0803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Pneumatic retinopexy (PnR) is associated with superior visual acuity and reduced vertical metamorphopsia compared with pars plana vitrectomy (PPV) for primary rhegmatogenous retinal detachment (RRD). It is important to determine postoperative photoreceptor integrity with both surgical techniques. Objective To compare photoreceptor integrity on spectral domain-optical coherence tomography (SD-OCT) between PnR and PPV at 12 months postoperatively. Design, Setting, and Participants Post hoc analysis of the Pneumatic Retinopexy Versus Vitrectomy for the Management of Primary Rhegmatogenous Retinal Detachment Outcomes Randomized Trial (PIVOT) conducted between August 2012 and May 2017 at St Michael's Hospital, Toronto, Ontario, Canada. Primary RRDs with specific criteria were included. Data were analyzed between April and August 2020. Intervention Randomization to PnR vs PPV stratified by macular status. Main Outcomes and Measures Difference in proportion of patients with discontinuity of the ellipsoid zone (EZ) and external limiting membrane (ELM) between groups assessed independently by 2 masked graders at an external masked image reading center. Results A total of 150 participants completed the 12-month follow-up visit. A total of 145 patients (72 PPV and 73 PnR) had gradable spectral-domain optical coherence tomography at 12 months. Analysis of the central 3-mm (foveal) scans found that 24% (n = 17 of 72) vs 7% (n = 5 of 73) displayed EZ discontinuity (difference, 17%; odds ratio [OR], 4.204; 95% CI, 1.458-12.116; P = .005) and 20% (n = 14 of 71) vs 6% (n = 4 of 73) displayed ELM discontinuity (difference, 14%; OR, 4.237; 95% CI, 1.321-13.587; P = .01) in the PPV and PnR groups, respectively. Analysis of the 6-mm (foveal and nonfoveal) scans revealed that EZ and ELM discontinuity was greater in the PPV vs PnR groups (EZ, 32% [n = 23 of 72] vs 11% [n = 8 of 73]; difference, 21%; OR, 3.814; 95% CI, 1.573-9.249; P = .002; ELM, 32% [n = 23 of 71] vs 18% [n = 13 of 73]; difference, 14%; OR, 2.211; 95% CI, 1.015-4.819; P = .04). Conclusions and Relevance Discontinuity of the EZ and ELM was more common at 12 months postoperatively following PPV vs PnR for RRD repair. The findings of this post hoc analysis suggest that less discontinuity of the EZ and ELM may provide an anatomic basis for the previously reported superior functional outcomes with PnR, although the analysis does not prove a cause-and-effect relationship. Trial Registration ClinicalTrials.gov Identifier: NCT01639209.
Collapse
Affiliation(s)
- Rajeev H Muni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Kensington Vision and Research Centre, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science/Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Srinivas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California.,Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles
| | - Verena R Juncal
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Carolina L M Francisconi
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Frederic Gunnemann
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California.,Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles
| | - Alan R Berger
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - David T Wong
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Filiberto Altomare
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Louis R Giavedoni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Radha P Kohly
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Kensington Vision and Research Centre, University of Toronto, Toronto, Ontario, Canada.,The John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Peter J Kertes
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.,Kensington Vision and Research Centre, University of Toronto, Toronto, Ontario, Canada.,The John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles
| | - Roxane J Hillier
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, England.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
19
|
Zhang ZY, Sun YJ, Song JY, Fan B, Li GY. Experimental models and examination methods of retinal detachment. Brain Res Bull 2021; 169:51-62. [PMID: 33434623 DOI: 10.1016/j.brainresbull.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Retinal detachment refers to the separation of the retinal neuroepithelium and pigment epithelium, usually involving the death of photoreceptor cells. Severe detachment may lead to permanent visual impairment if not treated properly and promptly. According to the underlying causes, retinal detachment falls into one of three categories: exudative retinal detachment, traction detachment, and rhegmatogenous retinal detachment. Like many other diseases, it is difficult to study the pathophysiology of retinal detachment directly in humans, because the human retinal tissues are precious, scarce and non-regenerative; thus, establishing experimental models that better mimic the disease is necessary. In this review, we summarize the existing models of the three categories of retinal detachment both in vivo and in vitro, along with an overview of their examination methods and the major strengths and weaknesses of each model.
Collapse
Affiliation(s)
- Zi-Yuan Zhang
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Ying-Jian Sun
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Jing-Yao Song
- Second Hosp Shandong Univ, Dept Ophthalmol, 247 Bei Yuan St, Jinan, 250031, PR China.
| | - Bin Fan
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Guang-Yu Li
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| |
Collapse
|
20
|
Potic J, Mbefo M, Berger A, Nicolas M, Wanner D, Kostic C, Matet A, Behar-Cohen F, Moulin A, Arsenijevic Y. An in vitro Model of Human Retinal Detachment Reveals Successive Death Pathway Activations. Front Neurosci 2020; 14:571293. [PMID: 33324144 PMCID: PMC7726250 DOI: 10.3389/fnins.2020.571293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 01/30/2023] Open
Abstract
Purpose was to create an in vitro model of human retinal detachment (RD) to study the mechanisms of photoreceptor death. Methods Human retinas were obtained through eye globe donations for research purposes and cultivated as explants. Cell death was investigated in retinas with (control) and without retinal pigment epithelium (RPE) cells to mimic RD. Tissues were studied at different time points and immunohistological analyses for TUNEL, Cleaved caspase3, AIF, CDK4 and the epigenetic mark H3K27me3 were performed. Human and monkey eye globes with retinal detachment served as controls. Results The number of TUNEL-positive cells, compared between 1 and 7 days, increased with time in both retinas with RPE (from 1.2 ± 0.46 to 8 ± 0.89, n = 4) and without RPE (from 2.6 ± 0.73 to 16.3 ± 1.27, p < 0.014). In the group without RPE, cell death peaked at day 3 (p = 0.014) and was high until day 7. Almost no Cleaved-Caspase3 signal was observed, whereas a transient augmentation at day 3 of AIF-positive cells was observed to be about 10-fold in comparison to the control group (n = 2). Few CDK4-positive cells were found in both groups, but significantly more in the RD group at day 7 (1.8 ± 0.24 vs. 4.7 ± 0.58, p = 0.014). The H3K27me3 mark increased by 7-fold after 5 days in the RD group (p = 0.014) and slightly decreased at day 7 and was also observed to be markedly increased in human and monkey detached retina samples. Conclusion AIF expression coincides with the first peak of cell death, whereas the H3K27me3 mark increases during the cell death plateau, suggesting that photoreceptor death is induced by different successive pathways after RD. This in vitro model should permit the identification of neuroprotective drugs with clinical relevance.
Collapse
Affiliation(s)
- Jelena Potic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Clinic for Eye Diseases, Clinical Center of Serbia, Belgrade, Serbia.,Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Martial Mbefo
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Michael Nicolas
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dana Wanner
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Corinne Kostic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Department of Ophthalmology, Institut Curie, Université de Paris, Paris, France
| | - Francine Behar-Cohen
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,INSERM U 1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
21
|
Conart JB, Blot G, Augustin S, Millet-Puel G, Roubeix C, Beguier F, Charles-Messance H, Touhami S, Sahel JA, Berrod JP, Léveillard T, Guillonneau X, Delarasse C, Sennlaub F. Insulin inhibits inflammation-induced cone death in retinal detachment. J Neuroinflammation 2020; 17:358. [PMID: 33243251 PMCID: PMC7694924 DOI: 10.1186/s12974-020-02039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION ClinicalTrials.gov NCT03318588.
Collapse
Affiliation(s)
- Jean-Baptiste Conart
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.,Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Guillaume Blot
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sébastien Augustin
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Géraldine Millet-Puel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Christophe Roubeix
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Fanny Beguier
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Hugo Charles-Messance
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Sara Touhami
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Jean-Paul Berrod
- Département d'Ophtalmologie, CHRU Nancy, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | - Thierry Léveillard
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Cécile Delarasse
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| | - Florian Sennlaub
- Institut de la Vision, INSERM, UMR_S 968, CNRS, Sorbonne Université, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
22
|
Gao M, Liu H, Xiao Y, Guo Y, Wan X, Li X, Li M, Liang J, Zhai Y, Liu W, Jiang M, Luo X, Sun X. xCT regulates redox homeostasis and promotes photoreceptor survival after retinal detachment. Free Radic Biol Med 2020; 158:32-43. [PMID: 32679366 DOI: 10.1016/j.freeradbiomed.2020.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUNDS Photoreceptor degeneration underlies various retinal disorders that lead to vision impairment. Currently, no effective medication is available to rescue photoreceptors under disease conditions. Elucidation of the molecular pathways involved in photoreceptor degeneration is a prerequisite for the rational design of therapeutic interventions. Photoreceptors are among the most energy-demanding tissues that require highly active oxidative phosphorylation. Therefore, disruption of metabolic support to photoreceptors results in a redox imbalance and subsequent cell death. We hypothesize that the redox regulatory pathway could be a potential therapeutic target to rescue photoreceptors under disease conditions. METHODS Experimental retinal detachment was induced in mice. A murine photoreceptor-derived 661w cell line treated with H2O2 was employed as an in vitro model to study the cellular response to oxidative stress. The expression and functional role of xCT, an upstream regulator of redox homeostasis, was assessed in vivo and in vitro. An xCT expression vector was constructed for an in vivo study to evaluate the therapeutic potential of this molecule. RESULTS xCT expression was upregulated in detached retina and H2O2-stimulated 661w cells compared to the control cells. Pharmacological inhibition of xCT by sulfasalazine (SAS) promoted photoreceptor degeneration after retinal detachment and 661w cell death upon H2O2 treatment. Additionally, SAS treatment induced reactive oxidative species (ROS) accumulation, glutathione (GSH) depletion, and glutamate release in 661w cells. In contrast, xCT overexpression via viral infection protected photoreceptors from degeneration after retinal detachment. CONCLUSION We conclude that xCT expression is upregulated in photoreceptors after retinal detachment and plays a neuroprotective role in preserving photoreceptors. Mechanistically, xCT promotes cellular homeostasis by regulating intracellular ROS and GSH levels, which are critical to photoreceptor survival after retinal detachment. Collectively, our findings identify xCT as a potential therapeutic target for protection of photoreceptors under disease conditions.
Collapse
Affiliation(s)
- Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Haiyun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Yinong Guo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Xiaoling Wan
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Min Li
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Jian Liang
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Yuanqi Zhai
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Mei Jiang
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xueting Luo
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China.
| |
Collapse
|
23
|
Ross BX, Choi J, Yao J, Hager HM, Abcouwer SF, Zacks DN. Loss of High-Mobility Group Box 1 (HMGB1) Protein in Rods Accelerates Rod Photoreceptor Degeneration After Retinal Detachment. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32460314 PMCID: PMC7405795 DOI: 10.1167/iovs.61.5.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Retinal detachment (RD) disrupts the nutritional support and oxygen delivery to photoreceptors (PRs), ultimately causing cell death. High-mobility group box 1 (HMGB1) can serve as an extracellular alarmin when released from stressed cells. PRs release HMGB1 after RD. The purpose of this study was to investigate the relationship between HMGB1 and PR survival after RD. Methods Acute RD was created by injection of hyaluronic acid (1%) into the subretinal space in C57BL/6 mice and mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1ΔRod). Immunofluorescence (IF) in retinal sections was used to localize HMGB1, rhodopsin, and Iba-1 proteins. Optical coherence tomography and electroretinography were used to quantify retinal thickness and function, respectively. The morphology of the retina was assessed by hematoxylin and eosin. Results HMGB1 protein was localized to the nuclei of all retinal neurons, including PRs, with cones staining more intensely than rods. HMGB1 protein was also found in the inner and outer segments of cones but not rods. Creation of RD caused a dramatic increase of HMGB1 protein IF in rods. cKO of HMGB1 in rods did not affect retinal structure or function. However, after RD, loss of rods and reduction in the thickness of the outer nuclear layer were significantly increased in the HMGB1ΔRod retinas as compared to the control. Interestingly, depletion of HMGB1 in rods did not affect the activation and mobilization of microglia/macrophages normally seen after RD. Conclusions Increased HMGB1 expression in stressed rods may represent an intrinsic mechanism regulating their survival after RD.
Collapse
Affiliation(s)
- Bing X. Ross
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Joanne Choi
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Heather M. Hager
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
24
|
Potic J, Bergin C, Giacuzzo C, Daruich A, Pournaras JA, Kowalczuk L, Behar-Cohen F, Konstantinidis L, Wolfensberger TJ. CHANGES IN VISUAL ACUITY AND PHOTORECEPTOR DENSITY USING ADAPTIVE OPTICS AFTER RETINAL DETACHMENT REPAIR. Retina 2020; 40:376-386. [PMID: 31972809 DOI: 10.1097/iae.0000000000002378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To quantify changes in photoreceptor density using adaptive optics fundus camera in patients after retinal detachment (RD) and to correlate them with macular involvement and best-corrected visual acuity. METHODS At 1 and 3 months (M1 and M3) after vitrectomy, 194 patients underwent adaptive optics imagery in both eyes, at 5 locations, that we matched between time points using anatomical landmarks. Twenty-two patients (10 fovea-OFF [OFF] and 12 fovea-ON [ON]) had matched and analyzable adaptive optics images. We used analysis of variance for repeated measures. RESULTS Best-corrected visual acuity (logarithm of the minimum angle of resolution and Snellen equivalent [SE]) was significantly different between OFF and ON RDs at baseline: 2.0 (2.3-0.95) (SE: 20/2000) versus 0 (0.1-0) (SE: 20/20); at M1: 0.35 (0.5-0.1) (SE: 20/40) versus 0.05 (0-0.1) (SE: 20/25); and at M3: 0.25 (0.3-0.1) (SE: 20/32) versus 0 (0-0) (SE: 20/20). We observed that cone density was stable in fellow eyes between M1 and M3 (P = 0.67); decreased in treated eyes than in fellow eyes (P < 0.05); and increased postoperatively in the ON group (P = 0.02) but not in the OFF group (P = 0.97). Visual acuity and RD type were independently correlated with cone density (P = 0.004, P = 0.000). CONCLUSION Postoperative cone density was reduced in OFF RD, but also in the ON group, although the drop recovered during the 3-month follow-up. Cone density was significantly correlated with both visual acuity and type of RD at both time points.
Collapse
Affiliation(s)
- Jelena Potic
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Clinics for Eye Diseases, Clinical Center of Serbia, Department of Ophthalmology, School of Medicine, University of Belgrade, Belgrade, Serbia; and
| | - Ciara Bergin
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Clarice Giacuzzo
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Alejandra Daruich
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Antoine Pournaras
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Laura Kowalczuk
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Centre de Recherche des Cordeliers UMRS1138, INSERM, Paris, France
| | - Lazaros Konstantinidis
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| | - Thomas J Wolfensberger
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Guo Y, Gao M, Wan X, Li X, Wang Y, Sun M, Li T, Jiang M, Luo X, Sun X. An improved method for establishment of murine retinal detachment model and its 3D vascular evaluation. Exp Eye Res 2020; 193:107949. [PMID: 32006561 DOI: 10.1016/j.exer.2020.107949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Retinal detachment (RD) results in disruption of retinal physiology and visual function. Although surgical intervention has been well-developed to restore the retinal anatomic structure, post-op progression of visual function decline is prominent in a large proportion of patients. Therefore, the establishment of a disease model that accurately mimics RD pathogenesis is crucial to mechanistic study and drug screening. General protocols to induce RD in mice are frequently associated with complications leading to model instability and reduced reproducibility. In this study, we established a stable and reproducible mice RD model with a detached area of over 90% and rare complications. Briefly, the modified method was realized by vitreous humor extraction to reduce intraocular pressure, followed by directly-visible hyaluronic acid injection into subretinal space. The detachment of retina was confirmed by fundus photography, and progressive thinning of the outer nuclear layer (ONL) was determined by HE staining. Apoptotic signals were prominent in the ONL. Consistently, visual function was significantly compromised as determined by ERG. Moreover, retinal vasculature appeared to remodel and acquired winding, twisted and dilated structures illustrated by 3D reconstruction. In addition, activation of Müller cells and microglia, and infiltration of blood-derived macrophages were detected locally. Collectively, we have established a modified protocol to model RD with increased stability, reproducibility and fewer complications, and 3D high-resolution imaging and reconstruction of vasculature could provide new tools to evaluate this model.
Collapse
Affiliation(s)
- Yinong Guo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Xiaoling Wan
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Mengsha Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Mei Jiang
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai engineering center for precise diagnosis and treatment of eye diseases, 200080, Shanghai, China.
| |
Collapse
|
26
|
Ma M, Li B, Zhang M, Zhou L, Yang F, Ma F, Shao H, Li Q, Li X, Zhang X. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment. Exp Eye Res 2019; 191:107899. [PMID: 31866431 DOI: 10.1016/j.exer.2019.107899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Retinal detachment (RD) induces ischemia and oxygen deficiency in the retina and results in multiple pathological events; photoreceptor cell degeneration and death is the eventual cause of vision decline. In this study, we investigated the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) in a rat retinal detachment (RD) model. The model was developed using a subretinal injection of 1% hyaluronic acid in male Sprague-Dawley rats. MSC-Exos were sub-retinally injected at the time of retinal separation to study their therapeutic function. The retinal expression levels of inflammatory cytokines TNF-α, IL-1β, and MCP-1 were detected by RT-PCR, the autophagy-related protein 5 (Atg5) and microtubule-associated protein 1 light chain 3 beta (LC3) were detected by Western blot, and apoptosis was examined using TUNEL assays at 3 days following RD. Retinal structure was observed at 7 days post-RD. Proteomic analysis was also performed to detect proteins carried by MSC-Exos using iTRAQ-based technology combined with one-dimensional nano LC-nano-ESI- MS/MS. We found that expression of TNF-α and IL-1β were significantly reduced, the LC3-II to LC3-I ratio was enhanced and cleavage of Atg5 was decreased after MSC-Exo treatment. Treatment with MSC-Exos also suppressed photoreceptor cell apoptosis and maintained normal retinal structure when compared to control groups. Proteomic analysis revealed that MSC-Exos contained proteins with anti-inflammatory, neuroprotective and anti-apoptotic effects. These results suggest that MSC-Exos have therapeutic effects on RD-induced retinal injury and can be used to reduce effects of retinal detachment on photoreceptor cell degeneration in patients.
Collapse
Affiliation(s)
- Mingming Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Bing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Feifei Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin, 300384, China.
| |
Collapse
|
27
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
28
|
Ding J, Yang N, Yan Y, Wang Y, Wang X, Lu L, Dong K. Rapamycin Inhibited Photoreceptor Necroptosis and Protected the Retina by Activation of Autophagy in Experimental Retinal Detachment. Curr Eye Res 2019; 44:739-745. [PMID: 30892958 DOI: 10.1080/02713683.2019.1588331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: After experimental retinal detachment (RD), the applications of caspase inhibitor z-vad-fmk (a pan-caspase inhibitor) could inhibit apoptosis, but increased receptor interacting protein (RIP)-mediated necroptosis. In this study, we investigated whether rapamycin could inhibit necroptosis and cooperate with z-vad-fmk to protect the retina after RD. Methods: RD animal models were established in Sprague-Dawley rats by subretinal injection of sodium hyaluronate and treated with subretinal injections of z-vad-fmk or z-vad-fmk combined with rapamycin. On day 3 after RD, retinas were collected and analyzed by transmission electron microscopy (TEM), ROS assay, and western blot (for beclin-1, LC-3, RIP-1, AIF). On day 7 after RD, retinas were observed by H&E staining. Vision-dependent behavior of rats was tested by the modified Morris water maze. Results: TEM and H&E staining indicated that rapamycin combined with z-vad-fmk could reduce photoreceptor necrosis and preserve the ONL thickness after RD. The modified Morris water maze test showed that vision-dependent behavior was also significantly improved in the rapamycin + z-vad-fmk group.Western Blotting results demonstrated that rapamycin promoted the activation of autophagy by promoting beclin-1 and LC-3 induction and inhibited z-vad-fmk-induced necroptosis by inhibiting RIP-1 expression. In addition, rapamycin could also inhibit ROS production and AIF release. Conclusions: These findings indicated that rapamycin is a promising therapeutic agent that inhibits z-VAD-induced necroptosis, and protects photoreceptors and improves functional outcome in combination with z-vad-fmk.
Collapse
Affiliation(s)
- Jie Ding
- a Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui , P.R. China.,b Department of Ophthalmology , Wannan Medical College , Wuhu , Anhui , China
| | - Nan Yang
- c Department of Ophthalmology , Afiliated Provincial Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Yuanye Yan
- b Department of Ophthalmology , Wannan Medical College , Wuhu , Anhui , China
| | - Yisai Wang
- c Department of Ophthalmology , Afiliated Provincial Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Xiuqin Wang
- a Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Li Lu
- a Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Kai Dong
- a Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui , P.R. China
| |
Collapse
|
29
|
Takahashi K, Morizane Y, Hisatomi T, Tachibana T, Kimura S, Hosokawa MM, Shiode Y, Hirano M, Doi S, Toshima S, Araki R, Matsumae H, Kanzaki Y, Hosogi M, Yoshida A, Sonoda KH, Shiraga F. The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS One 2018; 13:e0209996. [PMID: 30596769 PMCID: PMC6312337 DOI: 10.1371/journal.pone.0209996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/15/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose To investigate the influence of subretinal injection pressure on the microstructure of the retina in a monkey model. Methods After vitrectomy, balanced salt solution was injected subretinally into one eye each of four cynomolgus monkeys while controlling the injection pressure. Initially, a pressure of 2 psi was used, and this was gradually increased to determine the minimum required pressure. Subsequent injections were performed at two pressures: minimum (n = 13) and high (n = 6). To compare the influence of these injection pressures on retinal structure, optical coherence tomography (OCT) was performed before surgery and every week afterwards. The monkeys were euthanized and their eyes were enucleated at 1 or 6 weeks after the injections. The eyes were processed for light microscopy and transmission electron microscopy (TEM) as well as for TdT-mediated dUTP nick end labeling. Results The minimum pressure required to perform subretinal injection was 6 psi. After injection at this pressure, both OCT and microscopy showed that the retinal structure was well-preserved throughout the experimental period at all injection sites. Conversely, after injection at high pressure (20 psi) OCT images at all injection sites showed disruption of the ellipsoid zone (EZ) after 1 week. Microscopy indicated damage to the photoreceptor outer segment (OS) and stratification of the retinal pigment epithelium (RPE). After 6 weeks, OCT demonstrated that the EZ had become continuous and TEM confirmed that the OS and RPE had recovered. Photoreceptor apoptosis was absent after subretinal injection at both pressures. Conclusions The retinal damage caused by subretinal injection increases depending on pressure, indicating that clinicians should perform subretinal injection at pressures as low as possible to ensure safety.
Collapse
Affiliation(s)
- Kosuke Takahashi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuhei Kimura
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mio Morizane Hosokawa
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Shiode
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masayuki Hirano
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Doi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Toshima
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoichi Araki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Matsumae
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kanzaki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mika Hosogi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Atsushi Yoshida
- Research and Development Division, Santen Pharmaceutical Co., Ltd., Nara, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
30
|
INCOMPLETE REPAIR OF RETINAL STRUCTURE AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING. Retina 2018; 37:1523-1528. [PMID: 27828909 DOI: 10.1097/iae.0000000000001388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used a cynomolgus monkey model and focused on surgical damages of ILM peeling for long observational period of 3 years. METHODS Vitrectomy was performed followed by ILM peeling similar to clinical settings in humans. Ultrastructural changes of the retina were investigated by light, transmission, and scanning electron microscopy at 3 months and 3 years after ILM peeling. RESULTS Ultrastructural study showed that the ILM peeled area was still clearly recognized after 3 years. The Müller cell processes covered most of the retina; however, the nerve fiber layer was partly uncovered and exposed to the vitreous space. The arcuate linear nerve fiber bundles were observed as comparable with dissociated optic nerve fiber layer appearance. Small round retinal surface defects were also observed around macula, resembling the dimple sign. Forceps-related retinal thinning was also found on the edge of ILM peeling, where we started peeling with fine forceps. CONCLUSION The ultrastructural studies showed that most of ILM peeling area was covered with glial cells during wound healing processes. Retinal changes were found comparable with dissociated optic nerve fiber layer appearance or dimple sign, which were clinically observed with optical coherence tomography.
Collapse
|
31
|
Xie J, Zhu R, Peng Y, Gao W, Du J, Zhao L, Chi Y, Yang L. Tumor necrosis factor-alpha regulates photoreceptor cell autophagy after retinal detachment. Sci Rep 2017; 7:17108. [PMID: 29215050 PMCID: PMC5719449 DOI: 10.1038/s41598-017-17400-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022] Open
Abstract
Photoreceptor cell death is the ultimate process underlying many retinal diseases, including retinal detachment (RD). Both autophagy and inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), participate in photoreceptor cell death after RD. In this study, we examined whether TNF-α inhibition would impact the autophagy of photoreceptors and reduce the death of photoreceptors after retinal detachment (RD). RD models were created in C57BL/6J mice by a subretinal injection of 1% hyaluronic acid. The TNF-α inhibitor infliximab was administered via intraperitoneal injection two hours before RD. The levels of TNF-α and the autophagy-related proteins Atg5 and LC3B were assayed by immunofluorescence at 1 day, 3 days, and 7 days following RD. Apoptosis was examined at 3 days post-detachment via TUNEL assays. Photoreceptor cell counts were assessed at 7 days after RD. After RD, the protein levels of LC3B and Atg5 increased and reached a peak at 3 days, which decreased at 7 days. The expression of LC3B and Atg5 was prolonged and increased at a slower rate with TNF-α inhibition. The moderate augmentation and extension of autophagy through TNF-α inhibition resulted in the reduction of apoptosis and the enhancement of photoreceptor cell survival.
Collapse
Affiliation(s)
- Jia Xie
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Ruilin Zhu
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Yuan Peng
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Wenna Gao
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Liang Zhao
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Ying Chi
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
32
|
MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci Rep 2017; 7:14336. [PMID: 29084983 PMCID: PMC5662618 DOI: 10.1038/s41598-017-14298-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptor death and retinal gliosis underlie the majority of vision threatening retinal diseases including retinal detachment (RD). Although the underlying pathobiology of vision limiting processes in RD is not fully understood, inflammation is known to play a critical role. We conducted an iTRAQ proteomic screen of up- and down-regulated proteins in a murine model of RD to identify potential targetable candidates. Macrophage migration inhibitory factor (MIF) was identified and evaluated for neurotoxic and pro-gliotic effects during RD. Systemic administration of the MIF inhibitor ISO-1 significantly blocked photoreceptor apoptosis, outer nuclear layer (ONL) thinning, and retinal gliosis. ISO-1 and MIF knockout (MIFKO) had greater accumulation of Müller glia pERK expression in the detached retina, suggesting that Müller survival pathways might underlie the neuroprotective response. Our data show the feasibility of the MIF-inhibitor ISO-1 to block pathological damage responses in retinal detachment and provide a rationale to explore MIF inhibition as a potential therapeutic option for RD.
Collapse
|
33
|
Gonzalez-Fernandez F, Fornalik M, Garlipp MA, Gonzalez-Fernandez P, Sung D, Meyer A, Baier R. Pericellular interphotoreceptor matrix dictates outer retina critical surface tension. Exp Eye Res 2017; 167:163-173. [PMID: 29051013 DOI: 10.1016/j.exer.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 μm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for these surface properties. The critical surface tension of detached bovine retina is dictated not by the outer segments, but by a pericellular IPM covering the outer segment tips.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Pathology & Anatomic Sciences, SUNY, Buffalo, NY, United States.
| | - Mark Fornalik
- Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | | | - Priscilla Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Dongjin Sung
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Anne Meyer
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | - Robert Baier
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| |
Collapse
|
34
|
Ambiya V, Khodani M, Goud A, Narayanan R, Tyagi M, Rani PK, Chhablani J. Early Focal Laser Photocoagulation in Acute Central Serous Chorioretinopathy: A Prospective, Randomized Study. Ophthalmic Surg Lasers Imaging Retina 2017; 48:564-571. [PMID: 28728183 DOI: 10.3928/23258160-20170630-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/27/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the role of early focal laser photocoagulation in acute central serous chorioretinopathy (CSC). PATIENTS AND METHODS A total of 58 eyes with acute naïve CSC (less than 2 months' duration) with focal leak on fundus fluorescein angiography (FFA) were randomized into either a laser or a sham laser group. Eyes with chronic CSC and subfoveal leak were excluded. Visual acuity assessment, microperimetry, optical coherence tomography, and FFA were done at baseline, 1 month (minus FFA), 3 months, and 6 months after treatment. RESULTS There was a significant improvement in best-corrected visual acuity, low-contrast visual acuity, retinal sensitivity, and central macular thickness at all visits in both groups (P < .001); however, there was no significant difference between the groups regarding time of resolution. Four eyes in the sham laser group needed rescue laser compared with one eye in early laser group (P = .16). CONCLUSION Early laser photocoagulation is not superior to sham laser for acute CSC; therefore, observation appears to the safest and most effective strategy. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:564-571.].
Collapse
|
35
|
Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep 2017; 7:9517. [PMID: 28842607 PMCID: PMC5572737 DOI: 10.1038/s41598-017-09743-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration is a common starting point of reactive gliosis, which may have beneficial and detrimental consequences. It remains incompletely understood how distinctive pathologies and cell death processes differentially regulate glial responses. Müller glia (MG) in the retina are a prime model: Neurons are regenerated in some species, but in mammals there may be proliferative disorders and scarring. Here, we investigated the relationship between retinal damage and MG proliferation, which are both induced in a reproducible and temporal order in organotypic culture of EGF-treated mouse retina: Hypothermia pretreatment during eye dissection reduced neuronal cell death and MG proliferation; stab wounds increased both. Combined (but not separate) application of defined cell death signaling pathway inhibitors diminished neuronal cell death and maintained MG mitotically quiescent. The level of neuronal cell death determined MG activity, indicated by extracellular signal-regulated kinase (ERK) phosphorylation, and proliferation, both of which were abolished by EGFR inhibition. Our data suggest that retinal cell death, possibly either by programmed apoptosis or necrosis, primes MG to be able to transduce the EGFR–ERK activity required for cell proliferation. These results imply that cell death signaling pathways are potential targets for future therapies to prevent the proliferative gliosis frequently associated with certain neurodegenerative conditions.
Collapse
|
36
|
Dong K, Han L, Liu J, Wang F, Sun X. RNA Interference Reveals the Coregulatory Effects of Cylindromatosis on Apoptosis and Necroptosis of Photoreceptor Cells in Experimental Retinal Detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [DOI: 10.1016/j.ajpath.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Telegina DV, Kozhevnikova OS, Kolosova NG. Molecular mechanisms of cell death in retina during development of age-related macular degeneration. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|
39
|
Miller JW. Beyond VEGF-The Weisenfeld Lecture. Invest Ophthalmol Vis Sci 2016; 57:6911-6918. [PMID: 28027565 PMCID: PMC5214225 DOI: 10.1167/iovs.16-21201] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
Purpose To review advances made in the treatment of age-related macular degeneration (AMD) and share perspectives on the future of AMD treatment. Methods Review of published clinical and experimental studies. Results Inhibitors of vascular endothelial growth factor (VEGF) truly revolutionized the treatment of AMD. However, available results from longer-term studies suggest that a degenerative process is unveiled, and continues to occur, even when neovascularization is controlled. Furthermore, anti-VEGF therapy may play a role in the development of atrophic changes. We have proposed using neuroprotection to prevent atrophy, and multiple models of retinal degeneration have shown that it is necessary to block both apoptotic and necrotic cell death pathways. Despite the success of anti-VEGF therapy and the promise of neuroprotection, neither addresses the underlying cause of AMD. It has been postulated that in early AMD, the retention and abnormal accumulation of lipids in Bruch's membrane and below the retinal pigmented epithelium (RPE) lead to drusen. Thus, it is conceivable to target the retained lipoproteins and seek to remove them. In a case study and pilot multicenter clinical trial, we observed significant regression of drusen and an improvement in visual acuity in patients taking high-dose statin therapy. These results, though preliminary, warrant further investigation. Conclusion Future treatment of AMD should be based on biology, which will require continued elucidation of the pathogenic mechanisms of AMD development. Neuroprotection represents a potential therapeutic approach, and other promising targets include immune pathways (e.g., inflammation, complement, and inflammasomes) and lipid/lipoprotein accumulation. Finally, due to the heterogeneity of AMD, future progress in therapy will benefit from improved phenotyping and classification.
Collapse
Affiliation(s)
- Joan W. Miller
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| |
Collapse
|
40
|
Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner. Placenta 2016; 49:55-63. [PMID: 28012455 DOI: 10.1016/j.placenta.2016.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. METHODS BDNF signaling was measured in placentas from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI>30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. RESULTS Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. DISCUSSION BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome.
Collapse
|
41
|
Sarfare S, Dacquay Y, Askari S, Nusinowitz S, Hubschman JP. Biocompatibility of a Synthetic Biopolymer for the Treatment of Rhegmatogenous Retinal Detachment. ACTA ACUST UNITED AC 2016; 6. [PMID: 26744635 DOI: 10.4172/2155-9570.1000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the retinal safety and toxicity of a novel synthetic biopolymer to be used as a patch to treat rhegmatogenous retinal detachment. METHODS Thirty one adult wild type albino mice were divided in 2 groups. In Group A (n=9) 0.2 μl balanced salt solution (BSS) and in Group B (n=22), 0.2 μl biopolymer was injected in the subretinal space. Trans-scleral subretinal injection was performed in one eye and the fellow eye was used as control. In both groups, in vivo color fundus photography, electroretinogram (ERG), spectral domain optical coherence tomography (SD-OCT) were performed before injection and at days 7 and 14 post-intervention. Histological analysis was performed following euthanization at days 1, 7 and 21 post-injection. RESULTS The biopolymer was visualized in the subretinal space in vivo by SD-OCT and post-life by histology up to 1 week after the injection. There were no significant differences in ERG parameters between the two groups at 1 and 2 weeks post-injection. Minimal inflammatory response and loss of photoreceptor cells was only observed in the immediate proximity of the site of scleral perforation, which was similar in both groups. Overall integrity of the outer, inner retina and retinal pigment epithelial (RPE) layers was unaffected by the presence of the biopolymer in the subretinal space. CONCLUSIONS Functional and histological evaluation suggests that the synthetic biopolymer is non-inflammatory and non-toxic to the eye. It may represent a safe therapeutic agent in the future, for the treatment of rhegmatogenous retinal detachment.
Collapse
Affiliation(s)
- Shanta Sarfare
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yann Dacquay
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Syed Askari
- Medicus Biosciences, 2528 Qume Drive, Unit 1, San José, California 95131, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jean-Pierre Hubschman
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
42
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
43
|
Matsumoto H, Murakami Y, Kataoka K, Notomi S, Mantopoulos D, Trichonas G, Miller JW, Gregory MS, Ksander BR, Marshak-Rothstein A, Vavvas DG. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium. Cell Death Dis 2015; 6:e1986. [PMID: 26583327 PMCID: PMC4670938 DOI: 10.1038/cddis.2015.334] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/30/2023]
Abstract
Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL-/-), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL-/- mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment.
Collapse
Affiliation(s)
- H Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Murakami
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Kataoka
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - S Notomi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D Mantopoulos
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - G Trichonas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - M S Gregory
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - B R Ksander
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Schepens Eye Research Institute, Boston, MA, USA
| | - A Marshak-Rothstein
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - D G Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Modjtahedi N, Hangen E, Gonin P, Kroemer G. Metabolic epistasis among apoptosis-inducing factor and the mitochondrial import factor CHCHD4. Cell Cycle 2015; 14:2743-7. [PMID: 26178476 DOI: 10.1080/15384101.2015.1068477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypomorphic mutation of apoptosis-inducing factor (AIF) in the whole body or organ-specific knockout of AIF compromises the activity of respiratory chain complexes I and IV, as it confers resistance to obesity and diabetes induced by high-fat diet. The mitochondrial defect induced by AIF deficiency can be explained by reduced AIF-dependent mitochondrial import of CHCHD4, which in turn is required for optimal import and assembly of respiratory chain complexes. Here we show that, as compared to wild type control littermates, mice with a heterozygous knockout of CHCHD4 exhibit reduced weight gain when fed with a Western style high-fat diet. This finding suggests widespread metabolic epistasis among AIF and CHCHD4. Targeting either of these proteins or their functional interaction might constitute a novel strategy to combat obesity.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- a Equipe 11 labellisée Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris , France
| | | | | | | |
Collapse
|
45
|
Kataoka K, Matsumoto H, Kaneko H, Notomi S, Takeuchi K, Sweigard JH, Atik A, Murakami Y, Connor KM, Terasaki H, Miller JW, Vavvas DG. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death. Cell Death Dis 2015; 6:e1731. [PMID: 25906154 PMCID: PMC4650542 DOI: 10.1038/cddis.2015.73] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1β, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases.
Collapse
Affiliation(s)
- K Kataoka
- 1] Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - H Matsumoto
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - H Kaneko
- Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - S Notomi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K Takeuchi
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - J H Sweigard
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - A Atik
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Y Murakami
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - K M Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - H Terasaki
- Department of Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
| | - J W Miller
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - D G Vavvas
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Yan Q, Zhu H, Wang FH, Feng JY, Wang WQ, Shi X, Zhou YP, Zhang X, Sun XD. Inhibition of TRB3 Protects Photoreceptors against Endoplasmic Reticulum Stress-Induced Apoptosis after Experimental Retinal Detachment. Curr Eye Res 2015; 41:240-8. [DOI: 10.3109/02713683.2015.1006371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
|
48
|
BRILLIANT BLUE G DOUBLE STAINING ENHANCES SUCCESSFUL INTERNAL LIMITING MEMBRANE PEELING WITH MINIMAL ADVERSE EFFECT BY LOW CELLULAR PERMEABILITY INTO LIVE CELLS. Retina 2015; 35:310-8. [DOI: 10.1097/iae.0000000000000289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
|
50
|
Dong K, Zhu ZC, Wang FH, Ke GJ, Yu Z, Xu X. Activation of autophagy in photoreceptor necroptosis after experimental retinal detachment. Int J Ophthalmol 2014; 7:745-52. [PMID: 25349786 DOI: 10.3980/j.issn.2222-3959.2014.05.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/20/2014] [Indexed: 01/08/2023] Open
Abstract
AIM To investigate whether photoreceptor necroptosis induced by z-VAD-FMK (pan caspase inhibitor) was involved the activation of autophagy and whether Necrostatin-1, a specific necroptosis inhibitor, could inhibit this induction of autophagy after experimental retinal detachment. METHODS Experimental retinal detachment models were created in Sprague-Dawley rats by subretinal injection of sodium hyaluronate and subretinal injections of z-VAD-FMK, vehicle or z-VAD-FMK plus Necrostatin-1. Three days after retinal detachment, morphologic changes were observed by transmission electron microscopy. In other animals, retinas were subjected to immunoprecipitation and Western Blotting, then probed with anti-RIP1, phosphoserine, LC-3II or caspase 8 antibody. RESULTS It was proved by immunoprecipitation and western blotting, that photoreceptor necroptosis was mediated by caspase-8 inhibition and receptor interacting protein kinase (RIP1) phosphorylation activation. Transmission electron microscope and western blotting results indicated that photoreceptor necroptosis was involved the LC-3II and autophagosomes induction. We also discovered Necrostatin-1 could inhibit RIP1 phosphorylation and LC-3II induction. CONCLUSION These data firstly indicate photoreceptor necroptosis is associated with the activation of autophagy. Necrostatin-1 protects photoreceptors from necroptosis and autophagy by down-regulation of RIP1 phosphorylation and LC-3II.
Collapse
Affiliation(s)
- Kai Dong
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Zi-Cheng Zhu
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Feng-Hua Wang
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China ; Eye Research Institute of Shanghai Jiaotong University, Shanghai 200080, China
| | - Gen-Jie Ke
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Zhang Yu
- Department of Morphology, Fudan University Shanghai Medical College, Shanghai 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China ; Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| |
Collapse
|