1
|
Daliri K, Hescheler J, Pfannkuche KP. Prime Editing and DNA Repair System: Balancing Efficiency with Safety. Cells 2024; 13:858. [PMID: 38786078 PMCID: PMC11120019 DOI: 10.3390/cells13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Prime editing (PE), a recent progression in CRISPR-based technologies, holds promise for precise genome editing without the risks associated with double-strand breaks. It can introduce a wide range of changes, including single-nucleotide variants, insertions, and small deletions. Despite these advancements, there is a need for further optimization to overcome certain limitations to increase efficiency. One such approach to enhance PE efficiency involves the inhibition of the DNA mismatch repair (MMR) system, specifically MLH1. The rationale behind this approach lies in the MMR system's role in correcting mismatched nucleotides during DNA replication. Inhibiting this repair pathway creates a window of opportunity for the PE machinery to incorporate the desired edits before permanent DNA repair actions. However, as the MMR system plays a crucial role in various cellular processes, it is important to consider the potential risks associated with manipulating this system. The new versions of PE with enhanced efficiency while blocking MLH1 are called PE4 and PE5. Here, we explore the potential risks associated with manipulating the MMR system. We pay special attention to the possible implications for human health, particularly the development of cancer.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
| | - Kurt Paul Pfannkuche
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Bayat M, Shirgir A, Kazemi Veisari A, Najjar Sadeghi R. Detection of CDH1 gene promoter hypermethylation in gastric cancer and chronic gastritis. Pract Lab Med 2024; 40:e00406. [PMID: 38883562 PMCID: PMC11180341 DOI: 10.1016/j.plabm.2024.e00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aim The current study aimed to assess the frequency of CDH1 promoter gene hypermethylation in gastric cancer and chronic gastritis and its correlation with clinicopathological aspects. Methods Methylation-specific PCR was used to detect CDH1 promoter gene hypermethylation in 53 chronic gastritis patients and 40 gastric cancer patients along with normal adjacent tissues. Results The chronic gastritis group comprised 29 males and 24 females with a mean age of 51.8 ± 12.96 years, and 49.1 % of them were positive for H. pylori infection. The frequency of CDH1 hypermethylation in gastritis lesions was 18.8 %. CDH1 hypermethylation showed a significant correlation with H. pylori infection (p = 0.039), but no significant association was observed with other clinical features. The gastric cancer group consisted of individuals with a mean age of 65.4 ± 10.6, among them, 77.5 % were male and 22.5 % were female, 62.5 % had PT3 tumors, 40 % had PN1 lymph node involvement, and the majority (47.5 %) of samples were obtained from body segment. CDH1 hypermethylation was significantly associated with depth of invasion (p = 0.017) and nodal invasion (p = 0.041) in this group. In both groups, normal adjacent specimens lacked CDH1 hypermethylation, and there was no statistically significant correlation between CDH1 hypermethylation and age at which the tumor was diagnosed, gender, activity level, or tumor location. Conclusion This study demonstrates that E-cadherin methylation is associated with some characteristics of chronic gastritis and gastric cancer. These findings support previous research indicating that CDH1 hypermethylation may play a significant role in the development of gastric cancer.
Collapse
Affiliation(s)
- Mitra Bayat
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Shirgir
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-Communicable Disease Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rouhallah Najjar Sadeghi
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Gautam KA, Raghav A, Sankhwar SN, Singh R, Tripathi P. Genetic Polymorphisms of Gene Methionine Synthase Reductase (MTRR) and Risk of Urinary Bladder Cancer. Asian Pac J Cancer Prev 2023; 24:1137-1141. [PMID: 37116134 PMCID: PMC10352732 DOI: 10.31557/apjcp.2023.24.4.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Methionine synthase reductase (MTRR) gene involved in the signaling for production of enzyme called methionine synthase reductase that use for the synthesis of methionine, which further used in DNA replication and repair. Genetic variation in MTRR gene may alter the susceptibility of developing urinary bladder cancer. The present study undertaken to identify the contribution of genetic polymorphisms in the MTRR gene on the selected polymorphic sites including c.66A>G and c.524C>T towards urinary bladder cancer risk. Direct-DNA sequencing method was applied for the observation of genotyping distribution of MTRR c.66A>G and c.524C>T polymorphisms in 232 histopathological confirmed cases of transitional cell carcinoma (TCC) of urinary bladder cancer and 250 age-, sex- and ethnicity-matched cancer free controls. With significant difference (p = 0.05) of genotype analysis further corresponding Odds ratio (OR) and 95% confidence interval (CI) were calculated. Multivariable logistic regression analysis was applied for adjusting significant confounder variables. Haploview software (version 4.2) was used to perform pairwise Linkage Disequilibrium (LD) analysis. Age (p = 0.01), Habit of smoking (p = 0.05), tobacco consumption (p = 0.001) and diet (p = 0.02) were significantly differed between cases and controls. Both the MTRR substitution showed higher risk of developing urinary bladder cancer (p = <0.001), although this effect alters in multivariable logistic regression analysis in a protective association for both the substitution. No LD observed between the c.66A>G and c.524C>T substitutions. In conclusion, MTRR c.66A>G and c.524C>T substitutions showed a joint effect with the other associated risk factors. Further studies with a greater number of subjects of different ethnicity and polymorphisms are recommended for the better understanding urinary bladder cancer etiology and to screen the population who are at higher risk of developing urinary bladder cancer.
Collapse
Affiliation(s)
- Kirti Amresh Gautam
- Department of Basic & Applied Sciences, School of Engineering & Sciences, GD Goenka University, Gurugram, Haryana, India.
| | - Alok Raghav
- Multidisciplinary Research Unit, GSVM Medical College, Kanpur, India.
| | - S N Sankhwar
- Department of Urology, King George’s Medical University, Lucknow, India.
| | - Rajender Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | | |
Collapse
|
4
|
Spagnol LW, Polettini J, Silveira DA, Wegner GRM, Paiva DFF. P16 gene promoter methylation is associated with oncogenesis and progression of gastric carcinomas: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 180:103843. [DOI: 10.1016/j.critrevonc.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
5
|
Cabral LKD, Mapua CA, Natividad FF, Sukowati CHC, Cortez ER, Enriquez MLD. MutL homolog 1 methylation and microsatellite instability in sporadic colorectal tumors among Filipinos. World J Gastrointest Oncol 2021; 13:2101-2113. [PMID: 35070045 PMCID: PMC8713326 DOI: 10.4251/wjgo.v13.i12.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks third in terms of incidence and second in mortality worldwide. In CRC, the silencing of mismatch repair genes, including the mutL homolog 1 (hMLH1) has been linked to microsatellite instability (MSI), the lengthening or shortening of microsatellite repeats. Very limited data have been presented so far on the link of hMLH1 methylation and MSI in Southeast Asia populations with sporadic CRC, and on its clinical significance.
AIM To investigate the significance of the MSI status and hMLH1 methylation in CRC Filipino patients.
METHODS Fifty-four sporadic CRC patients with complete clinical data were included in this study. Genomic DNA from CRC tumor biopsies and their normal tissue counterparts were profiled for MSI by high resolution melting (HRM) analysis using the Bethesda Panel of Markers (BAT25, BAT26, D2S123, D5S346, and D17S250). hMLH1 methylation screening was performed using bisulfite conversion and methylation specific polymerase chain reaction. Statistical analysis was conducted to calculate their associations to clinicopathological characteristics and survival relevance (Kaplan-Meier curves and the log-rank test).
RESULTS hMLH1 methylation was observed in 9% and 35% of CRC and normal samples, respectively. Higher incidence of consistently methylated hMLH1 found in both normal and CRC was noticed for relation to location of tumor (P < 0.05). As for MSI status, D2S123 the most common unstable microsatellite and MSI-high (MSI-H) was the most common MSI profile, counted for 46% and 50% of normal and CRC tissues, respectively. The presence of MSI-low (MSI-L) and microsatellite stable (MSS) was 43% and 11% for normal, and 31% and 19% for CRC samples. The mean month of patients’ survival was shorter in patients whose normal and tumor tissues had methylated compared to those with unmethylated hMLH1 and with MSI-H compared to those with MSI-L/MSS (P < 0.05). This was supported by significant difference in Kaplan-Meier with log-rank analysis. This data indicated that hMLH1 methylation and high MSI status have prognostic value.
CONCLUSION This study showed the clinical significance of hMLH1 methylation and MSI status in sporadic CRC Filipino patients, especially in the normal part of the tumor.
Collapse
Affiliation(s)
- Loraine Kay D Cabral
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City 1112, Philippines
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Cynthia A Mapua
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City 1112, Philippines
| | - Filipinas F Natividad
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City 1112, Philippines
| | | | - Edgardo R Cortez
- Department of Surgery, St. Luke's Medical Center, Quezon City 1112, Philippines
| | - Ma Luisa D Enriquez
- Research and Biotechnology Group, St. Luke's Medical Center, Quezon City 1112, Philippines
- Center for Natural Science and Environmental Research, De La Salle University, Manila 1004, Philippines
| |
Collapse
|
6
|
Yan H, Chen W, Ge K, Mao X, Li X, Liu W, Wu J. Value of Plasma Methylated SFRP2 in Prognosis of Gastric Cancer. Dig Dis Sci 2021; 66:3854-3861. [PMID: 33216241 DOI: 10.1007/s10620-020-06710-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Secreted frizzled-related protein 2 (SFRP2) in circulating tumor DNA (ctDNA) is related to gastric cancer (GC) proliferation. However, whether methylated SFRP2 in ctDNA serves as the biomarker in GC patients remains unknown. AIMS To investigate the relationship between methylated SFRP2 and the clinical outcomes of GC patients. METHODS One hundred and forty-eight GC patients receiving systemic chemotherapy were collected during 2015-2017. Aberrant SFRP2 methylation was detected before and after chemotherapy by digital PCR-based technologies. RESULTS Baseline SFRP2 methylation positively correlated with lymph node status (P < 0.001), distant metastasis (P < 0.001) and TNM stage (P = 0.005). The top 50% methylated SFRP2 had shorter progression-free survival (PFS) and overall survival (OS) than those with bottom 50% in stage III GC patients (median PFS, 11.0 vs. NR months; HR 13.05; 95% CI 3.05-55.95; median OS 17.0 vs. NR months; HR 7.80; 95% CI 1.81-33.60) and stage IV GC patients (median PFS, 4.0 vs. 7.0 months; HR 2.74; 95% CI 1.58-4.78; median OS 12.0 vs. 16.0 months; HR 3.14; 95% CI 1.67-5.92). Besides, the increased methylated SFPR2 from baseline to post-treatment was related to the worse PFS and OS among stage IV patients (median PFS, 5.0 vs. 7.0 months; HR 2.17; 95% CI 1.25-3.76; median OS 12.0 vs. 15.5 months; HR 3.51; 95% CI 1.94-6.35), but not to stage III patients. CONCLUSIONS SFRP2 methylation and dynamic change are associated with GC prognosis. Our findings provide potential biomarker detection approach in ctDNA for prognosis prediction and dynamic monitoring among GC patients.
Collapse
Affiliation(s)
- Haijiao Yan
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Wenyu Chen
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Kele Ge
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xizheng Mao
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xiaodong Li
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Wensong Liu
- Hepatobiliary Surgery Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Jun Wu
- Oncology Department, Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.
| |
Collapse
|
7
|
Nagaraju GP, Kasa P, Dariya B, Surepalli N, Peela S, Ahmad S. Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discov Today 2021; 26:2303-2314. [PMID: 33895313 DOI: 10.1016/j.drudis.2021.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) malignancies account for substantial mortality and morbidity worldwide. They are generally promoted by dysregulated signal transduction and epigenetic pathways, which are controlled by specific enzymes. Recent studies demonstrated that histone deacetylases (HDACs) together with DNA methyltransferases (DNMTs) have crucial roles in the signal transduction/epigenetic pathways in GI regulation. In this review, we discuss various enzyme targets and their functional mechanisms responsible for the regulatory processes of GI malignancies. We also discuss the epigenetic therapeutic targets that are mainly facilitated by DNMT and HDAC inhibitors, which have functional consequences and clinical outcomes for GI malignancies.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA
| | - Prameswari Kasa
- Dr L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | - Sujatha Peela
- Department of Biotechnology, Dr B.R. Ambedkar University, Srikakulam 532410, AP, India
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, FSU and UCF Colleges of Medicine, Orlando, FL 32804, USA.
| |
Collapse
|
8
|
Wisnieski F, Geraldis JC, Santos LC, Leal MF, Calcagno DQ, Gigek CO, Chen ES, Anauate AC, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Arasaki CH, Krainer J, Pabinger S, Burbano RR, Smith MAC. Differential regulation of LRRC37A2 in gastric cancer by DNA methylation. Epigenetics 2021; 17:110-116. [PMID: 33491552 DOI: 10.1080/15592294.2021.1878724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gastric cancer (GC) is one of the leading types of fatal cancer worldwide. Epigenetic manipulation of cancer cells is a useful tool to better understand gene expression regulatory mechanisms and contributes to the discovery of novel biomarkers. Our research group recently reported a list of 83 genes that are potentially modulated by DNA methylation in GC cell lines. Herein, we further explored the regulation of one of these genes, LRRC37A2, in clinical samples. LRRC37A2 expression was evaluated by RT-qPCR, and DNA methylation was studied using next-generation bisulphite sequencing in 36 GC and paired adjacent nonneoplastic tissue samples. We showed that both reduced LRRC37A2 mRNA levels and increased LRRC37A2 exon methylation were associated with undifferentiated and poorly differentiated tumours. Moreover, LRRC37A2 gene expression and methylation levels were inversely correlated at the +45 exon CpG site. We suggest that DNA hypermethylation may contribute to reducing LRRC37A2 expression in undifferentiated and poorly differentiated GC. Therefore, our results show how some genes may be useful to stratify patients who are more likely to benefit from epigenetic therapy.Abbreviations: AR: androgen receptor; 5-AZAdC: 5-aza-2'-deoxycytidine; B2M: beta-2-microglobulin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GC: gastric cancer; GLM: general linear model; LRRC37A2: leucine-rich repeat containing 37 member A2; SD: standard deviation; TFII-I: general transcription factor II-I; TSS: transcription start site; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.,Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jaqueline Cruz Geraldis
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil.,Universidade Federal do Pará, Belém, Brazil
| | | | | | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Haruo Arasaki
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Julie Krainer
- Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Stephan Pabinger
- Center for Health & Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Rommel Rodriguez Burbano
- Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Bai Y, Drokow EK, Waqas Ahmed HA, Song J, Akpabla GS, Kumah MA, Agyekum EB, Neku EA, Sun K. The relationship between methionine synthase rs1805087 polymorphism and hematological cancers risk. Future Oncol 2020; 16:2219-2233. [PMID: 32722923 DOI: 10.2217/fon-2020-0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The relationship between hematological cancer susceptibility and methionine synthase MTR A2756G (rs1805087) polymorphism is inconclusive based on data from past studies. Hence, this updated meta-analysis was conducted to investigate the relationship between methionine synthase reductase (MTR) rs1805087 polymorphism and hematological cancers. Method: We searched EMBASE, Google Scholar, Ovid and PubMed databases for possible relevant articles up to December 31, 2019. Results: The overall pooled outcome of our analysis showed lack of association between the risk of hematological malignancies and MTR A2756G polymorphism under the allele model (G vs A: odds ratio = 1.001, 95% CI: 0.944-1.061; p = 0.983), recessive model (GG vs GA + AA: odds ratio = 1.050, 95% CI: 0.942-1.170; p = 0.382). Conclusion: The findings in this study demonstrate a lack of relationship between hematological cancers and MTR A2756G.
Collapse
Affiliation(s)
- Yanliang Bai
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China.,Department of Haematology, Henan University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, PR China
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Gloria Selorm Akpabla
- Department of Internal Medicine, Tianjin Medical University, 300070, Tianjin, PR China
| | - Maame Awoyoe Kumah
- Department of Internal Medicine, University of Ghana Medical School, KB 77 Korle Bu-Accra, Ghana
| | | | - Enyonam Adjoa Neku
- School of Pharmacy, Zhengzhou University, 450001, Zhengzhou, Henan, PR China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China.,Department of Haematology, Henan University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, PR China
| |
Collapse
|
10
|
Ebrahimi V, Soleimanian A, Ebrahimi T, Azargun R, Yazdani P, Eyvazi S, Tarhriz V. Epigenetic modifications in gastric cancer: Focus on DNA methylation. Gene 2020; 742:144577. [DOI: 10.1016/j.gene.2020.144577] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
|
11
|
Norollahi SE, Mansour-Ghanaei F, Joukar F, Ghadarjani S, Mojtahedi K, Gharaei Nejad K, Hemmati H, Gharibpoor F, Khaksar R, Samadani AA. Therapeutic approach of Cancer stem cells (CSCs) in gastric adenocarcinoma; DNA methyltransferases enzymes in cancer targeted therapy. Biomed Pharmacother 2019; 115:108958. [PMID: 31075731 DOI: 10.1016/j.biopha.2019.108958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) show a remarkable sub class of cancer cells population which have a potential to organize and regulate stemness properties which possess a main particular responsibility for uncontrolled growth in carcinogenesis, production of different cancers in differentiated situation and also resistancy to radiotherapy and chemotherapy. Correspondingly, gastric cancer (GC) as a very serious type in cancer mortality in the world, has received a deep attention in molecular therapy recently. Besides the main characteristics of CSCs like differentiation, epithelial mesenchymal transition, self-renewal and metastasis, they are so effective in expression of stemness genes resistancy in radiotherapy and chemotherapy. In this way, the regulation of epigenetic elements including DNA methylation and the performance of DNA methyltransferase (DNMT) which is a notable epigenetic trait in GC, is of great importance. Inhibitors of DNA methylation are the first epigenetic drugs in cancer therapy. Considerably, recent studies indicate that low doses of DNMT inhibitors have a high potential in sustaining reduced DNA methylation and related with re-expression of silenced genes in tumorigenesis. Importantly, these certain doses have the ability to decrease the carcinogenesis and tumorigenesis in CSC populations within GC. Meaningly, the inhibition of DNMTs are able to reduce the accumulation of tumorigenic ability of GC CSCs. Furthermore, many epigenetic drugs have a great potential in cancer therapy, including histone methyltransferases, lysine demethylases, histone deacetylasesand, bromodomain and extra-terminal domain proteins and DNA methyltransferases inhibitors. In this review article, we try to focus on the therapeutic mechanism of DNMTs alongside with their impact on CSCs in GC.
Collapse
Affiliation(s)
- Syedeh Elham Norollahi
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shervin Ghadarjani
- Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Mojtahedi
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Kaveh Gharaei Nejad
- Skin Research Center, Dermatology Department, Guilan University of Medical Sciences, Razi Hospital, Sardare Jangal Street, Rasht, Iran
| | - Hossein Hemmati
- Razi Clinical Research Development Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Faeze Gharibpoor
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Roya Khaksar
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Akbar Samadani
- Gastrointestinal and liver diseases research center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Huang RJ, Charville GW, Hwang JH, Friedland S. A Chance to Cut Is a Chance to Cure: Endoscopic Submucosal Dissection for Early Gastric Cancer. Dig Dis Sci 2019; 64:1129-1132. [PMID: 30350240 DOI: 10.1007/s10620-018-5317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Robert J Huang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shai Friedland
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
13
|
Homocysteine and Digestive Tract Cancer Risk: A Dose-Response Meta-Analysis. JOURNAL OF ONCOLOGY 2018; 2018:3720684. [PMID: 30662463 PMCID: PMC6312580 DOI: 10.1155/2018/3720684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/14/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022]
Abstract
Background Homocysteine, a key component in one-carbon metabolism, is of great importance in remethylation. Many epidemiologic studies have assessed the association between homocysteine and risk of digestive tract cancer, but the results are inconsistent. Objective The objective of our meta-analysis is to assess the association between homocysteine and digestive tract cancer risk. Methods Comprehensive searches were performed on the PubMed, Embase, Cochrane, and Web of Science databases up to September 25, 2018, to identify relevant studies. Thirteen studies were included in the meta-analysis. Odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were used to estimate the strength of the relationship between homocysteine and the risk of digestive tract cancer. Results The pooled OR of digestive tract cancer risk for patients with the highest categories of blood homocysteine levels versus the lowest categories was 1.27 (95% CI, 1.15, 1.39) with no significant heterogeneity observed (P = 0.798, I 2 = 0.0%). Moreover, the dose-response analysis revealed that each 5μmol/L increase in homocysteine increased the incidence of digestive tract cancer by 7%. Conclusion Generally, our results indicated that elevated homocysteine was associated with higher risk of digestive tract cancer. That is, homocysteine concentration may be a potential biomarker for occurrence of digestive tract cancer.
Collapse
|
14
|
Alvarez MC, Fernandes J, Michel V, Touati E, Ribeiro ML. Effect of Helicobacter pylori Infection on GATA-5 and TFF1 Regulation, Comparison Between Pediatric and Adult Patients. Dig Dis Sci 2018; 63:2889-2897. [PMID: 30083861 DOI: 10.1007/s10620-018-5223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND GATA factors, which constitute a family of transcription regulatory proteins, participate in gastrointestinal development. Trefoil factor 1 (TFF1) plays a crucial role in mucosal defense and healing, and evidence suggests that GATA-5 mediated its regulation. Gastric cancer is a multiple-step process triggered by Helicobacter pylori and is characterized by accumulation of molecular and epigenetic alteration. The aim of this study was to evaluate the effect of H. pylori infection on the regulation of GATA-5 and TFF1 in vitro and in vivo. RESULTS Infected cells exhibited upregulation of GATA-5 and TFF1 after 48 h. An increase in GATA-5 and TFF1 mRNA levels was also found in mice samples after 6 and 12 months of infection, respectively. In human samples, we found an association between H. pylori infection and GATA-5 upregulation. In fact, among H. pylori-infected patients, hypermethylation was observed in 45.5% of pediatric samples, in 62.6% of chronic gastritis samples, and in 63% of gastric cancer samples. Regarding TFF1, the expression levels were similar in pediatrics and adults patients, and were independent of H. pylori infection, and the expression of these factors was downregulated in gastric cancer samples. GATA-5 promoter methylation was associated with a decrease in TFF1 mRNA levels. CONCLUSIONS Our results suggest that the upregulation of GATA-5 and TFF1 observed in vitro and in vivo may be correlated with a protective effect of the mucosa in response to infection. The epigenetic inactivation of GATA-5 observed in human biopsies from infected patients may suggest that this alteration is an early event occurring in association with H. pylori infection.
Collapse
Affiliation(s)
- Marisa Claudia Alvarez
- Programa de Pos Graduacao em Ciencias da Saude, Universidade São Francisco, Av. São Francisco de Assis, 218. Jd. São José, Bragança Paulista, SP, 12196-900, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, UNICAMP, Campinas, SP, Brazil
| | - Julien Fernandes
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Valérie Michel
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Eliette Touati
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Marcelo Lima Ribeiro
- Programa de Pos Graduacao em Ciencias da Saude, Universidade São Francisco, Av. São Francisco de Assis, 218. Jd. São José, Bragança Paulista, SP, 12196-900, Brazil. .,Programa de Pós Graduação em Genética e Biologia Molecular, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Fattahi S, Golpour M, Amjadi-Moheb F, Sharifi-Pasandi M, Khodadadi P, Pilehchian-Langroudi M, Ashrafi GH, Akhavan-Niaki H. DNA methyltransferases and gastric cancer: insight into targeted therapy. Epigenomics 2018; 10:1477-1497. [PMID: 30325215 DOI: 10.2217/epi-2018-0096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a major health problem worldwide occupying most frequent causes of cancer-related mortality. In addition to genetic modifications, epigenetic alterations catalyzed by DNA methyltransferases (DNMTs) are a well-characterized epigenetic hallmark in gastric cancer. The reversible nature of epigenetic alterations and central role of DNA methylation in diverse biological processes provides an opportunity for using DNMT inhibitors to enhance the efficacy of chemotherapeutics. In this review, we discussed key factors or mechanisms such as SNPs, infections and genetic modifications that trigger DNMTs level modification in gastric cancer, and their potential roles in cancer progression. Finally, we focused on how inhibitors of the DNMTs can most effectively be used for the treatment of gastric cancer with multidrug resistance.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, 4717647745, Babol, Iran.,North Research Center, Pasteur Institute, Amol, 4615885399, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | - Marzieh Sharifi-Pasandi
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Parastesh Khodadadi
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | | | - Gholam Hossein Ashrafi
- School of Life Science, Pharmacy & Chemistry, SEC Faculty, Cancer Theme, Kingston University London, Kingston upon Thames, London KT1 2EE, UK
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| |
Collapse
|
16
|
Hypomethylation of NANOG promoter in colonic mucosal cells of obese patients: a possible role of NF- κB. Br J Nutr 2018; 122:499-508. [PMID: 30157990 DOI: 10.1017/s000711451800212x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Obesity and particularly central obesity are the main risk factors of colon cancer. All intestinal cell populations including stem cells, their progenitors and differentiated colonocytes seem to be the origin of colorectal cancer. However, recent data support the role of differentiated cells as cancer origin especially during inflammation. Based on Yamanaka's seminal work, re-expression of few transcription factors in terminally differentiated cells creates stemness properti'es. Although these transcription factors are involved in tumorigenesis, they are epigenetically repressed in adult tissues. We proposed that obesity might regulate methylation of stemness genes in colonocytes via inflammatory signalling. Obesity-associated inflammation was analysed using Western blot analysis of phospho-IκB (inhibitor of NF-κB). Methylation-sensitive high-resolution melting analysis was performed on colonic mucosal samples of twenty obese and twenty normal-weight men to analyse promoter methylation of POU5F1 (OCT4), NANOG, MYC and CDKN2A. TNF-treated HT-29 cells were used to recapitulate the effect of NF-κB activation on stemness genes methylation. Our results showed that colonic phosphorylation of IκB, as a signal of NF-κB activation, was higher in obese subjects compared with their normal-weight counterparts. Moreover, promoter methylation of NANOG was likely to be lower in obese subjects and correlated with central obesity. HT-29 cells incubated by TNF-α showed hypomethylation of POU5F1 and MYC genes in addition to the NANOG. These results suggest that obesity-induced inflammation might be involved in the regulation of DNA methylation of oncogenic genes such as NANOG in differentiated colonocytes and thus predispose them to later oncogenic alterations.
Collapse
|
17
|
Sanchez H, Hossain MB, Lera L, Hirsch S, Albala C, Uauy R, Broberg K, Ronco AM. High levels of circulating folate concentrations are associated with DNA methylation of tumor suppressor and repair genes p16, MLH1, and MGMT in elderly Chileans. Clin Epigenetics 2017; 9:74. [PMID: 28748002 PMCID: PMC5525256 DOI: 10.1186/s13148-017-0374-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Changes in DNA methylation, one of the most studied epigenetic mechanisms, are considered an initial marker for early cancer detection. We evaluated how availability of dietary factors (folates and vitamin B12) involved in one-carbon metabolism may contribute to DNA methylation changes of cancer-related genes in human subjects. METHODS We studied, by pyrosequencing, the methylation of tumor suppressor gene p16, DNA repair genes MLH1 and MGMT, and the repetitive element LINE-1 (as a surrogate for global DNA methylation), in blood of elderly individuals (n = 249) who had been exposed to folic acid (FA) through FA-fortified wheat flour during the last 12 years. RESULTS We found that serum folate and to a lesser extent, vitamin B12 concentrations, were significantly correlated with DNA methylation of p16, MLH1, and MGMT, but not with LINE-1. High serum folate concentrations (>45.3 nmol/L) were present in 31.1% of the participants. Although the methylated fraction of CpG sites in p16, MLH1, and MGMT was low (1.17-3.8%), high folate concentrations were significantly associated with methylation at the 3rd tertile of specific CpG sites in all genes with OR between 1.97 and 4.17. CONCLUSIONS This study shows that a public policy, like food fortification with FA that increases circulating serum folate levels, could affect methylation levels of specific genes linked to cancer risk. Our present results deserve additional studies to clarify the real impact of high FA levels for risk of cancer in a whole population chronically exposed to a fortified food such as wheat flour. TRIAL REGISTRATION ISRCTN 48153354 and ISRCTN 02694183.
Collapse
Affiliation(s)
- Hugo Sanchez
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mohammad B. Hossain
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lydia Lera
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Sandra Hirsch
- Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Ricardo Uauy
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institutet of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana M. Ronco
- Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Up-regulation of CRKL by microRNA-335 methylation is associated with poor prognosis in gastric cancer. Cancer Cell Int 2017; 17:28. [PMID: 28239297 PMCID: PMC5314703 DOI: 10.1186/s12935-017-0387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/28/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND MicroRNAs have been suggested to play a vital role in regulating carcinogenesis, tumor progression and invasion. MiR-335 is involved in suppressing metastasis and invasion in various human cancers. However, the mechanisms responsible for the aberrant expression of miR-335 in gastric cancer (GC) remain unknown. METHODS Expression of miR-335 in four GC cell lines and 231 GC tissues was determined by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). DNA methylation status in the CpG islands upstream of miR-335 in GC cell lines and tissues was determined by methylation-specific PCR and bisulfite sequence-PCR. The effects of the demethylating agent 5-aza-2'-deoxycytidine on cell proliferation, apoptosis, cell cycle, migration, and invasion were investigated in GC cell lines. RESULTS Cancer-specific methylation was detected in the upstream CpG-rich regions of miR-335, which dramatically silenced its transcriptional activity in GC cell lines and tissues. Low levels of miR-335 expression and high levels of miR-335 methylation in GC tissues were associated with poor clinical features and prognosis. Restoration of miR-335 expression in GC cells promoted cell apoptosis, inhibited tumor cell migration, invasion, and proliferation, and arrested the cell cycle at G0/G1 phase. Overexpression of miR-335 significantly reduced the activity of a luciferase reporter containing the 3' untranslated region of V-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL). CONCLUSIONS MiR-335 functions as a tumor suppressor and may be silenced by promoter hypermethylation. It plays a role in inhibiting tumor cell migration, invasion, and proliferation, arresting the cell cycle at G0/G1 phase, and promoting apoptosis in GC cells through targeting CRKL.
Collapse
|
19
|
Zhang XY, Zhang PY. Gastric cancer: somatic genetics as a guide to therapy. J Med Genet 2016; 54:305-312. [PMID: 27609016 DOI: 10.1136/jmedgenet-2016-104171] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022]
Abstract
Gastric cancer is the leading cause of cancer-related mortality across the world, with poor prognosis and a median overall survival of ≤12 months for advanced stage gastric cancer. Environmental, genetic and other predisposing factors contribute to the development of gastric cancer and a predominant factor was found to be infection of Helicobacter pylori Advances in understanding the deranged signalling pathways that are critical for normal cellular homeostasis helped in the development of novel drugs that target specific proteins and pathways to curtail the growth of gastric cancer. Genetic studies revealed several single nucleotide polymorphisms, chromosomal aberrations and epigenetic alterations that likely play a major role in elevating the susceptibility to develop gastric cancer. Methylation pattern of specific genes may likely prove to be a valid biomarker for early detection of gastric cancer, but much progress is needed to establish specific markers. Important developments have been made in targeting human epidermal growth factor receptor-2 and vascular endothelial growth factor receptor 2 for treating advanced gastro-oesophageal junction cancer, using specific monoclonal antibodies. Lack of efficacy with regard to targeting other signalling pathways including mesenchymal-epithelial transition/hepatocyte growth factor and mammalian target of rapamycin is probably due to suboptimal patient selection for these clinical trials, which is probably due to the lack of appropriate biomarkers, to decide on responsive patient population. Besides the development of antagonists for the cell growth-related signalling pathways, advances are also being made to tackle gastric cancer by immunotherapies, targeting immune check-points, which may hold promise for better treatment options in future.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Nanjing University of Chinese Medicine, Information Institute, Nanjing, Jiangsu, China
| | - Pei-Ying Zhang
- Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China.,The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu Province, China.,Xuzhou Clinical School of Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Xuzhou Clinical Medical College of Nanjing University of Chinese Medicine, Xuzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Mello AA, Leal MF, Rey JA, Pinto GR, Lamarão LM, Montenegro RC, Alves APNN, Assumpção PP, Borges BDN, Smith MC, Burbano RR. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS One 2015; 10:e0140492. [PMID: 26460485 PMCID: PMC4604160 DOI: 10.1371/journal.pone.0140492] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022] Open
Abstract
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Collapse
Affiliation(s)
- Adriano Azevedo Mello
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Juan Antonio Rey
- Laboratorio de Oncogenética Molecular, Hospital Universitario La Paz, Madrid, Madrid, Spain
| | | | - Leticia Martins Lamarão
- Laboratório de Testes de Ácidos Nucleicos, Fundação Centro de Hemoterapia e Hematologia do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | - Paulo Pimentel Assumpção
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Barbara do Nascimento Borges
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Centro de Tecnologia Agropecuária, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rommel Rodriguez Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
21
|
Libânio D, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol 2015; 6:111-132. [PMID: 26468448 PMCID: PMC4600186 DOI: 10.5306/wjco.v6.i5.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/22/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis.
Collapse
|
22
|
Somatic DNA Hypomethylation in H. pylori-Associated High-Risk Gastritis and Gastric Cancer: Enhanced Somatic Hypomethylation Associates with Advanced Stage Cancer. Clin Transl Gastroenterol 2015; 6:e85. [PMID: 25928808 PMCID: PMC4459532 DOI: 10.1038/ctg.2015.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Objectives: Helicobacter pylori-related high-risk gastritis (HRG) is a severe risk factor for gastric cancer (GC). The link between HRG and long-term risk for GC may involve genetic and epigenetic alterations underlying a field defect, i.e. a region of the mucosa prone to cancer development. Global DNA hypomethylation is a pervasive alteration in GC that associates with chromosomal instability and poor prognosis. The aim of this study was to determine the chronology of this alteration along the progression of HRG to GC, to test the hypothesis that it occurs early in the chronology of this pathway and plays a mechanistic role in the long-term cancer risk. Methods: We comparatively measured the genomic methylation level in gastric biopsies from 94 GC patients and 16 of their cancer-free relatives, 38 HRG patients, and 17 GERD patients, using a quantitative enzymatic method. Results: GC biopsies were hypomethylated compared to their matching non-tumor mucosa (P=9.4 × 10−12), irrespective of the tumor location or patients' country of origin. Genome-wide hypomethylation was also found in gastric mucosa of GC (P=1.5 × 10−5) and HRG (P=0.004) patients compared with healthy donors and GC relatives, regardless of the biopsy location within the stomach or previous H. pylori eradication therapy. An enhanced hypomethylation, distinguished by a bi-slope distribution of the differences in methylation between tumor and normal tissues, associated with a more invasive (P=0.005) and advanced stage (P=0.017) type of GC. Conclusions: Universal DNA demethylation in normal gastric mucosa in GC patients appears sporadic rather than familial. Genomic hypomethylation in HRG possibly contributes to a field defect for cancerization that is not reversed by bacterial eradication. Enhanced somatic hypomethylation may stratify GC for prognostic purposes.
Collapse
|
23
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
24
|
Yu DH, Waterland RA, Zhang P, Schady D, Chen MH, Guan Y, Gadkari M, Shen L. Targeted p16(Ink4a) epimutation causes tumorigenesis and reduces survival in mice. J Clin Invest 2014; 124:3708-12. [PMID: 25061879 DOI: 10.1172/jci76507] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer has long been viewed as a genetic disease; however, epigenetic silencing as the result of aberrant promoter DNA methylation is frequently associated with cancer development, suggesting an epigenetic component to the disease. Nonetheless, it has remained unclear whether an epimutation (an aberrant change in epigenetic regulation) can induce tumorigenesis. Here, we exploited a functionally validated cis-acting regulatory element and devised a strategy to induce developmentally regulated genomic targeting of DNA methylation. We used this system to target DNA methylation within the p16(Ink4a) promoter in mice in vivo. Engineered p16(Ink4a) promoter hypermethylation led to transcriptional suppression in somatic tissues during aging and increased the incidence of spontaneous cancers in these mice. Further, mice carrying a germline p16(Ink4a) mutation in one allele and a somatic epimutation in the other had accelerated tumor onset and substantially shortened tumor-free survival. Taken together, these results provide direct functional evidence that p16(Ink4a) epimutation drives tumor formation and malignant progression and validate a targeted methylation approach to epigenetic engineering.
Collapse
|
25
|
Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN GASTROENTEROLOGY 2014; 2014:464015. [PMID: 24729878 PMCID: PMC3963109 DOI: 10.1155/2014/464015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer.
Collapse
|
26
|
Zong L, Seto Y. CpG island methylator phenotype, Helicobacter pylori, Epstein-Barr virus, and microsatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis. PLoS One 2014; 9:e86097. [PMID: 24475075 PMCID: PMC3903497 DOI: 10.1371/journal.pone.0086097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Background The controversy of CpG island methylator phenotype (CIMP) in gastric cancer persists, despite the fact that many studies have been conducted on its relation with helicobacter pylori (H. pylori), Epstein-Barr virus (EBV), and microsatellite instability (MSI) and prognosis. To drive a more precise estimate of this postulated relationship, a meta-analysis was performed based on existing relevant studies. Methods We combined individual patient data from 12 studies which involved 1000 patients with gastric cancer, which met the criteria. We tabulated and analyzed parameters from each study, including H. pylori, EBV, MSI, and clinical information of patients. Results The overall OR for H. pylori infection in CIMP positive group vs. negative group revealed that significantly elevated risks of positive H. pylori infection in the former were achieved (OR 2.23 95% CI, 1.25–4.00; P = 0.007, Pheterogeneity = 0.05). Similarly, strong relation between EBV infection and CIMP was achieved by OR 51.27 (95% CI, 9.39–279.86; P<0.00001, Pheterogeneity = 0.39). The overall OR for MSI in CIMP positive group vs. negative group was 4.44 (95% CI, 1.17–16.88; P = 0.03, Pheterogeneity = 0.01). However, there did not appear to be any correlations with clinical parameters such as tumor site, pathological type, cell differentiation, TNM stage, distant metastasis, lymph node metastasis, and 5-year survival. Conclusions The meta-analysis highlights the strong relation of CIMP with H. pylori, EBV, and MSI, but CIMP can not be used as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Liang Zong
- Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Alvarez MC, Ladeira MSP, Scaletsky ICA, Pedrazzoli J, Ribeiro ML. Methylation pattern of THBS1, GATA-4, and HIC1 in pediatric and adult patients infected with Helicobacter pylori. Dig Dis Sci 2013; 58:2850-7. [PMID: 23765259 DOI: 10.1007/s10620-013-2742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Helicobacter pylori infection is usually acquired in childhood and persists into adulthood if untreated. The bacterium induces a chronic inflammatory response, which is associated with epigenetic alterations in oncogenes, tumor-suppressor genes, cell-cycle regulators, and cell-adhesion molecules. AIM The aim of this study was to analyze the effect of H. pylori infection on the methylation status of Thrombospondin-1 (THBS1), Hypermethylated in cancer 1 (HIC1) and Gata binding protein-4 (GATA-4) in gastric biopsy samples from children and adults infected or uninfected with the bacterium and in samples obtained from gastric cancer patients. METHODS The methylation pattern was analyzed with methylation-specific PCR. RESULTS Our results showed that H. pylori infection was associated with methylation of the promoter regions of the THBS1 and GATA-4 genes in pediatric and adult samples (p < 0.01). HIC1 showed the lowest level of methylation, which was not an early event during gastric carcinogenesis. CONCLUSIONS The results from this study indicate that methylation of THBS1 and GATA-4 occurs in the early stages of chronic gastritis and gastric cancer in association with H. pylori infection; however, in gastric cancer samples, other mechanisms cooperate with the down-regulation of these genes. Methylation of HIC1 may not be the principal mechanism implicated in its down-regulation in gastric cancer samples.
Collapse
Affiliation(s)
- Marisa Claudia Alvarez
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Av. São Francisco de Assis, 218. Jd. São José, Bragança Paulista, SP, Brazil
| | | | | | | | | |
Collapse
|
28
|
Lack of association between methionine synthase A2756G polymorphism and digestive system cancer risk: evidence from 3,9327 subjects. PLoS One 2013; 8:e61511. [PMID: 23613867 PMCID: PMC3629058 DOI: 10.1371/journal.pone.0061511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/10/2013] [Indexed: 12/14/2022] Open
Abstract
Background Polymorphisms in genes involved in the metabolism of folate and methyl groups have been implicated with risk of digestive system cancer. Methionine synthase (MTR) plays a central role in folate metabolism, thereby affecting DNA methylation. The association between A2756G polymorphism (rs1805087) in MTR and digestive system cancer susceptibility was inconsistent in previous studies. To investigate this inconsistency, we performed this meta-analysis. Methods Databases including Pubmed, EMBASE, ISI Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. Potential sources of heterogeneity were also assessed by subgroup analysis and meta-regression. Results A total of 29 articles with 15,368 patients and 23,959 controls were included. We found no association between MTR A2756G polymorphism and digestive system cancer in overall population (G allele: OR = 1.03, 95% CI = 0.98–1.09, P = 0.25; dominant model: OR = 1.03, 95% CI = 0.97–1.10, P = 0.33; recessive model: OR = 1.02, 95% CI = 0.89–1.17, P = 0.79). In the stratified analyses according to cancer type, sample size and genotyping method, no evidence of any gene-disease association was obtained in almost all genetic models. However, marginal significant associations were found for East Asians and hospital-based studies. Conclusions This meta-analysis suggests that there is no significant association between the MTR A2756G polymorphism and digestive system cancer risk.
Collapse
|
29
|
Hu XT, He C. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. CHINESE JOURNAL OF CANCER 2013; 32:31-41. [PMID: 22059906 PMCID: PMC3845584 DOI: 10.5732/cjc.011.10175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/27/2011] [Accepted: 08/17/2011] [Indexed: 12/14/2022]
Abstract
Gastric cancer is one of the most common malignancies and a leading cause of cancer mortality worldwide. The pathogenesis mechanisms of gastric cancer are still not fully clear. Inactivation of tumor suppressor genes and activation of oncogenes caused by genetic and epigenetic alterations are known to play significant roles in carcinogenesis. Accumulating evidence has shown that epigenetic silencing of the tumor suppressor genes, particularly caused by hypermethylation of CpG islands in promoters, is critical to carcinogenesis and metastasis. Here, we review the recent progress in the study of methylations of tumor suppressor genes involved in the pathogenesis of gastric cancer. We also briefly describe the mechanisms that induce tumor suppressor gene methylation and the status of translating these molecular mechanisms into clinical applications.
Collapse
Affiliation(s)
- Xiao-Tong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province,
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310016, P. R. China.
| |
Collapse
|
30
|
Kang GH. CpG island hypermethylation in gastric carcinoma and its premalignant lesions. KOREAN JOURNAL OF PATHOLOGY 2012; 46:1-9. [PMID: 23109971 PMCID: PMC3479707 DOI: 10.4132/koreanjpathol.2012.46.1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 11/15/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022]
Abstract
Gastric cancers arise through a multistep process characterized by the progressive accumulation of molecular alterations in which genetic and epigenetic mechanisms have been implicated. Gastric cancer is one of the human malignancies in which aberrant promoter CpG island hypermethylation is frequently found. Helicobacter pylori and Epstein-Barr virus, which are known carcinogens for gastric cancer, are closely associated with enhanced hypermethylation of CpG island loci in gastric non-neoplastic epithelial cells and cancer cells, respectively. Aberrant CpG island hypermethylation occurs early in the multistep cascade of gastric carcinogenesis and tends to increase with the step-wise progression of the lesion. Approximately 400 genes that are actively expressed in normal gastric epithelial cells are estimated to be inactivated in gastric cancers as a result of promoter CpG island hypermethylation. In this review, a variety of information is summarized regarding CpG island hypermethylation in gastric cancer.
Collapse
Affiliation(s)
- Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Wu PY, Zhang Z, Wang JM, Guo WW, Xiao N, He Q, Wang YP, Fan YM. Germline promoter hypermethylation of tumor suppressor genes in gastric cancer. World J Gastroenterol 2012; 18:70-8. [PMID: 22228973 PMCID: PMC3251808 DOI: 10.3748/wjg.v18.i1.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore germline hypermethylation of the tumor suppressor genes MLH1, CDH1 and P16INK4a in suspected cases of hereditary gastric cancer (GC).
METHODS: A group of 140 Chinese GC patients in whom the primary cancer had developed before the age of 60 or who had a familial history of cancer were screened for germline hypermethylation of the MLH1, CDH1 and P16INK4a tumor suppressor genes. Genomic DNA was extracted from peripheral blood leukocytes and modified by sodium bisulfite. The treated DNA was then subjected to bisulfite DNA sequencing for a specific region of the MLH1 promoter. The methylation status of CDH1 or P16INK4a was assayed using methylation-specific PCR. Clonal bisulfite allelic sequencing in positive samples was performed to obtain a comprehensive analysis of the CpG island methylation status of these promoter regions.
RESULTS: Methylation of the MLH1 gene promoter was detected in the peripheral blood DNA of only 1/140 (0.7%) of the GC patient group. However, this methylation pattern was mosaic rather than the allelic pattern which has previously been reported for MLH1 in hereditary non-polyposis colorectal cancer (HNPCC) patients. We found that 10% of the MLH1 alleles in the peripheral blood DNA of this patient were methylated, consistent with 20% of cells having one methylated allele. No germline promoter methylation of the CDH1 or P16INK4a genes was detected.
CONCLUSION: Mosaic germline epimutation of the MLH1 gene is present in suspected hereditary GC patients in China but at a very low level. Germline epimutation of the CDH1 or P16INK4a gene is not a frequent event.
Collapse
|
32
|
Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, Kao HW, Fang WL, Huang KH, Chan WC, Lin WC. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011; 129:2600-10. [PMID: 21960261 DOI: 10.1002/ijc.25919] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play fundamental roles in diverse biological and pathological processes by targeting the expression of specific genes. Here, we identified 38 methylation-associated miRNAs, the expression of which could be epigenetically restored by cotreatment with 5-aza-2'-deoxycytidine and trichostatin A. Among these 38 miRNAs, we further analyzed miR-34b, miR-127-3p, miR-129-3p and miR-409 because CpG islands are predicted adjacent to them. The methylation-silenced expression of these miRNAs could be reactivated in gastric cancer cells by treatment with demethylating drugs in a time-dependent manner. Analysis of the methylation status of these miRNAs showed that the upstream CpG-rich regions of mir-34b and mir-129-2 are frequently methylated in gastric cancer tissues compared to adjacent normal tissues, and their methylation status correlated inversely with their expression patterns. The expression of miR-34b and miR-129-3p was downregulated by DNA hypermethylation in primary gastric cancers, and the low expression was associated with poor clinicopathological features. In summary, our study shows that tumor-specific methylation silences miR-34b and miR-129 in gastric cancer cells.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shin SH, Park SY, Ko JS, Kim N, Kang GH. Aberrant CpG island hypermethylation in pediatric gastric mucosa in association with Helicobacter pylori infection. Arch Pathol Lab Med 2011; 135:759-65. [PMID: 21631269 DOI: 10.5858/2010-0140-oa.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Helicobacter pylori infection is primarily acquired during childhood and persists throughout life in the absence of eradication with antibiotics. Helicobacter pylori infection induces methylation in the promoter CpG island loci in gastric epithelial cells. Thus, aberrant CpG island hypermethylation in gastric epithelial cells likely occurs early in life, although there are no existing data supporting this notion. OBJECTIVES To identify whether aberrant CpG island hypermethylation occurs in pediatric stomach mucosa in association with H pylori infection and to compare methylation profiles of samples from pediatric and adult stomach tissues. DESIGN We analyzed pediatric (n = 47) and adult (n = 38) gastric mucosa samples for their methylation status in 12 promoter CpG island loci using the MethyLight assay and compared the number of methylated genes and the methylation levels in individual genes between H pylori -positive and H pylori -negative sample results and between pediatric and adult samples. RESULTS The average number of methylated genes was significantly higher in H pylori -infected pediatric samples than in H pylori -negative pediatric samples (3.4 versus 0.3, P < .001) and in H pylori -infected adult samples than in H pylori -negative adult samples (7.6 versus 0.9, P < .001). Seven genes showed significantly higher methylation levels in H pylori -infected pediatric samples than in H pylori -negative pediatric samples (all values were P < .05). CONCLUSIONS These results indicate that CpG island hypermethylation occurs in pediatric gastric mucosa in association with H pylori infection and that the genes affected by H pylori -associated hypermethylation were similar in pediatric and adult samples.
Collapse
Affiliation(s)
- So-Hyun Shin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Korea
| | | | | | | | | |
Collapse
|
34
|
Genomic and epigenetic profiles of gastric cancer: Potential diagnostic and therapeutic applications. Surg Today 2010; 41:24-38. [DOI: 10.1007/s00595-010-4370-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/22/2010] [Indexed: 02/07/2023]
|
35
|
Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK, Radosevich JA. Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 2010; 11:2715-45. [PMID: 20717533 PMCID: PMC2920563 DOI: 10.3390/ijms11072715] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/17/2010] [Accepted: 07/13/2010] [Indexed: 12/19/2022] Open
Abstract
The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer.
Collapse
Affiliation(s)
- William A. Paradise
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
| | - Benjamin J. Vesper
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA; E-Mail:
| | - Joshua D. Waltonen
- Department of Otolaryngology, Wake Forest University, Winston-Salem, NC 27157, USA; E-Mail:
| | | | - G. Kenneth Haines
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
| | - James A. Radosevich
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
36
|
Liggett T, Melnikov A, Yi QL, Replogle C, Brand R, Kaul K, Talamonti M, Abrams RA, Levenson V. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 2010; 116:1674-80. [DOI: 10.1002/cncr.24893] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Perrin D, Ruskin HJ, Niwa T. Cell type-dependent, infection-induced, aberrant DNA methylation in gastric cancer. J Theor Biol 2010; 264:570-7. [PMID: 20219476 DOI: 10.1016/j.jtbi.2010.02.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/05/2010] [Accepted: 02/23/2010] [Indexed: 02/08/2023]
Abstract
Epigenetic changes correspond to heritable modifications of the chromatin structure, which do not involve any alteration of the DNA sequence but nonetheless affect gene expression. These mechanisms play an important role in cell differentiation, but aberrant occurrences are also associated with a number of diseases, including cancer and neural development disorders. In particular, aberrant DNA methylation induced by H. Pylori has been found to be a significant risk factor in gastric cancer. To investigate the sensitivity of different genes and cell types to this infection, a computational model of methylation in gastric crypts is developed. In this article, we review existing results from physical experiments and outline their limitations, before presenting the computational model and investigating the influence of its parameters.
Collapse
Affiliation(s)
- Dimitri Perrin
- Centre for Scientific Computing & Complex Systems Modelling, Dublin City University, Ireland.
| | | | | |
Collapse
|
38
|
Tamura G, So K, Miyoshi H, Honda T, Nishizuka S, Motoyama T. Quantitative assessment of gene methylation in neoplastic and non-neoplastic gastric epithelia using methylation-specific DNA microarray. Pathol Int 2010; 59:895-9. [PMID: 20021617 DOI: 10.1111/j.1440-1827.2009.02458.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A fiber-type DNA microarray was used to calculate methylation rates (MR) of four tumor suppressor genes, lysyl oxidase (LOX), p16, RUNX3, and tazarotene-induced gene 1 (TIG1). MR were calculated in 26 primary gastric cancers and corresponding non-neoplastic gastric epithelia, and the results were compared to those of conventional methylation-specific polymerase chain reaction (MSP). MR ranged from 0.1% to 69.1% (mean, 18.3%) for LOX, 0.5-74.1% (mean, 15.7%) for p16, 0.2-76.5% (mean, 22.7%) for RUNX3, and 0.6-41.2% (mean, 5.8%) for TIG1 in primary gastric cancers, and from 0.1% to 25.8% (mean, 8.7%) for LOX, 1.0- 23.2% (mean, 10.3%) for p16, 0.7-25.1% (mean, 5.5%) for RUNX3, and 1.8-27.6% (mean, 11.4%) for TIG1 in corresponding non-neoplastic gastric epithelia. Although MR varied significantly across different samples for both neoplastic and non-neoplastic gastric epithelia, high-level methylation (MR >40%) was cancer specific and was observed in 19.2%, 19.2%, 30.8%, and 3.8% of primary gastric cancers for LOX, p16, RUNX3, and TIG1, respectively. All samples with high-level methylation, as well as some samples with low MR (particularly <10%) were judged to be methylation positive on conventional MSP. Quantitative analysis of gene methylation using methylation-specific DNA microarray is a promising method for cancer diagnosis.
Collapse
Affiliation(s)
- Gen Tamura
- Department of Pathology and Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Yashima K, Sasaki S, Koda M, Kawaguchi K, Harada K, Murawaki Y. Premalignant lesions in gastric cancer. Clin J Gastroenterol 2009; 3:6-12. [PMID: 26189899 DOI: 10.1007/s12328-009-0130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 12/27/2022]
Abstract
Despite a plateau in incidence, gastric cancer is one of the most common cancers worldwide and causes considerable morbidity and mortality. Premalignant gastric lesions are well known risk factors for the development of intestinal-type gastric adenocarcinomas. In this multistep model of gastric carcinogenesis, Helicobacter pylori causes chronic active inflammation of the gastric mucosa, which slowly progresses through the premalignant stages of atrophic gastritis, intestinal metaplasia, and adenoma/dysplasia to gastric carcinoma. This progression is paralleled by a stepwise accumulation of multiple genetic and epigenetic abnormalities. Detection, treatment, and molecular analyses of premalignant lesions may thus provide a basis for gastric cancer prevention. This review describes an overview of current knowledge on premalignant gastric lesions. It also reviews the issue of surveillance of patients with premalignant lesions in order to improve the survival of patients with gastric cancer.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan.
| | - Shuji Sasaki
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Masaharu Koda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Kenichi Harada
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan
| | - Yoshikazu Murawaki
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
40
|
Tamura G. Hypermethylation of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. World J Gastrointest Oncol 2009; 1:41-6. [PMID: 21160773 PMCID: PMC2999099 DOI: 10.4251/wjgo.v1.i1.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/15/2009] [Accepted: 07/22/2009] [Indexed: 02/05/2023] Open
Abstract
A number of tumor suppressor and tumor-related genes exhibit promoter hypermethylation with resultant gene silencing in human cancers. The frequencies of methylation differ among genes and genomic regions within CpG islands in different tissue types. Hypermethylation initially occurs at the edge of CpG islands and spreads to the transcription start site before ultimately shutting down gene expression. When the degree of methylation was quantitatively evaluated in neoplastic and non-neoplastic gastric epithelia using DNA microarray analysis, high-level methylation around the transcription start site appeared to be a tumor-specific phenomenon, although multiple tumor suppressor genes became increasingly methylated with patient age in non-neoplastic gastric epithelia. Quantitative analysis of DNA methylation is a promising method for both cancer diagnosis and risk assessment.
Collapse
Affiliation(s)
- Gen Tamura
- Gen Tamura, Department of Pathology and Laboratory Medicine, Yamagata Prefectural Central Hospital, 1800 Aoyagi, Yamagata 990-2292, Japan
| |
Collapse
|
41
|
Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B. Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 2009; 218:265-72. [PMID: 19294736 DOI: 10.1002/path.2541] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Invasive lobular carcinoma (ILC) of the breast is believed to develop from in situ lesions, atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS). Down-regulation of the cell-cell adhesion protein E-cadherin is a defining feature of lobular breast cancer (LBC) and already occurs in ALH and LCIS. Apart from mutational mechanisms, epigenetic silencing of the E-cadherin gene (CDH1) is thought to be involved in E-cadherin down-regulation and has been observed at a high frequency in ILC. Whether CDH1 promoter methylation is already present in in situ lesions and thus contributes to the initiation of LBC is not established. We thus examined microdissected archived tissue from 20 LBCs by methylation-specific PCR to determine the CDH1 methylation status of lobular lesions. Nineteen of the 20 LBCs had a hypermethylated CDH1 promoter, including 13/14 ILCs and 13/13 ALHs or LCIS. Bisulphite sequencing indicated that methylation was complete within the investigated promoter fragment. Intriguingly, CDH1 methylation was likewise present in 8/8 adjacent non-neoplastic epithelia, but not in 6/6 mammary epithelia from healthy subjects. E-cadherin protein and mRNA were down-regulated in in situ lesions relative to adjacent epithelia. Together, these results indicate that CDH1 promoter methylation occurs in LBC prior to E-cadherin down-regulation and neoplastic formation. We thus propose that epigenetic silencing represents the first of the two hits required to silence both CDH1 alleles for LBC to develop. Because promoter methylation is in principle reversible, our findings suggest that chemoprevention of LBC by epigenetic drugs should be feasible. Furthermore, the presence of CDH1 methylation in pre-neoplastic epithelia suggests the existence of mammary regions with increased disease susceptibility, providing an explanation for the often multifocal presentation of LBC.
Collapse
Affiliation(s)
- Donghui Zou
- Cancer Genetics Laboratory, Biochemistry Department, University of Otago, Aotearoa, New Zealand
| | | | | | | | | | | |
Collapse
|
42
|
Kuo SJ, Chen ST, Yeh KT, Hou MF, Chang YS, Hsu NC, Chang JG. Disturbance of circadian gene expression in breast cancer. Virchows Arch 2009; 454:467-74. [PMID: 19296127 DOI: 10.1007/s00428-009-0761-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
To explore the mechanism of the disruption of circadian rhythm in breast cancer, we examined the expression of nine circadian genes in 53 newly diagnosed breast cancers by immunohistochemical staining, mutational analysis, and methylation analysis of the promoter of circadian genes. Our results showed that 37 of the 53 breast cancer tissues had hypermethylation on the promoters of PER1, PER2, CRY1, or BMAL1. Twenty-five out of 53 paired noncancerous (normal) tissues had methylation on the promoter of PER1 or CRY1. Our results indicated a higher frequency of concurrent methylation of PER1 and CRY1 promoters in cancerous and normal tissues. Promoter methylation of the PER1 correlates with c-erbB2 immunohistochemical reaction of > or = 2+ (p = 0.012) and has a strong inverse correlation with estrogen receptor positivity (p = 0.016). We further analyzed the patterns of circadian gene expression by immunohistochemical methods and found that homogeneous expression of PER2 or BMAL1 is significantly associated with lymph node metastasis and poor prognosis. PER2 heterogeneous expression correlates with <2+ c-erbB2 immunohistochemical reaction. Heterogeneous expression of CLOCK is associated significantly with 3-year survival. In conclusion, the expression pattern of circadian genes might be a biomarker for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Shou-Jen Kuo
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Yu J, Cheng YY, Tao Q, Cheung KF, Lam CNY, Geng H, Tian LW, Wong YP, Tong JHM, Ying JM, Jin H, To KF, Chan FKL, Sung JJY. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009; 136:640-51.e1. [PMID: 19084528 DOI: 10.1053/j.gastro.2008.10.050] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS By using methylation-sensitive representational difference analysis, we identified protocadherin 10 (PCDH10), a gene that encodes a protocadherin and is silenced in a tumor-specific manner. We analyzed its epigenetic inactivation, biological effects, and prognostic significance in gastric cancer. METHODS Methylation status was evaluated by combined bisulfite restriction analysis and bisulfite sequencing. The effects of PCDH10 re-expression were determined in growth, apoptosis, proliferation, and invasion assays. PCDH10 target genes were identified by complementary DNA microarray analysis. RESULTS PCDH10 was silenced or down-regulated in 94% (16 of 17) of gastric cancer cell lines; expression levels were restored by exposure to demethylating agents. Re-expression of PCDH10 in MKN45 gastric cancer cells reduced colony formation in vitro and tumor growth in mice; it also inhibited cell proliferation (P < .01), induced cell apoptosis (P < .001), and repressed cell invasion (P < .05), up-regulating the pro-apoptosis genes Fas, Caspase 8, Jun, and CDKN1A; the antiproliferation gene FGFR; and the anti-invasion gene HTATIP2. PCDH10 methylation was detected in 82% (85 of 104) of gastric tumors compared with 37% (38 of 104) of paired nontumor tissues (P < .0001). In the latter, PCDH10 methylation was higher in precancerous lesions (27 of 45; 60%) than in chronic gastritis samples (11 of 59; 19%) (P < .0001). After a median follow-up period of 16.8 months, multivariate analysis revealed that patients with PCDH10 methylation in adjacent nontumor areas had a significant decrease in overall survival. Kaplan-Meier survival curves showed that PCDH10 methylation was associated significantly with shortened survival in stage I-III gastric cancer patients. CONCLUSIONS PCDH10 is a gastric tumor suppressor; its methylation at early stages of gastric carcinogenesis is an independent prognostic factor.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Frequent inactivation of RUNX3 in endometrial carcinoma. Gynecol Oncol 2008; 110:439-44. [DOI: 10.1016/j.ygyno.2008.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/04/2008] [Accepted: 05/06/2008] [Indexed: 11/23/2022]
|
45
|
Nardone G, Compare D. Epigenetic alterations due to diet and Helicobacter pylori infection in gastric carcinogenesis. Expert Rev Gastroenterol Hepatol 2008; 2:243-8. [PMID: 19072359 DOI: 10.1586/17474124.2.2.243] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sporadic gastric cancer is considered to be the result of a progressive accumulation of genotypic changes due to an adverse environment (i.e., diet and Helicobacter pylori infection). The main molecular mechanism implicated in cancer-related molecular alterations is of epigenetic nature, which includes DNA methylation and histone modification. Diet may influence the methylation status supplying methyl groups S-adenosyl-methionine formation, modifying DNA methyltransferase activity and influencing DNA demethylation activity. H. pylori may affect DNA methyltransferase directly or through inflammatory mediators (e.g., reactive oxygen species or nitric oxide). In conclusion, gastric cancer is a multistep process due to an adverse environment over a long period of time. Dietary habit and H. pylori infection can induce epigenetic alterations that, in turn, trigger gastric carcinogenesis.
Collapse
Affiliation(s)
- Gerardo Nardone
- Dipartimento di Medicina Clinica e Sperimentale, Unità di Gastroenterologia, Università degli Studi di Napoli "Federico II", Via Pansini N degrees 5, 80131 Napoli, Italy.
| | | |
Collapse
|
46
|
Abstract
Infiltrating adenocarcinoma of the pancreas is thought to develop through well-defined precursor lesions called pancreatic intraductal neoplasia (PanIN). Despite the exponential growth in our understanding of genetic events that characterize the progression of PanINs to invasive carcinoma, little is known about the role of epigenetic alterations in these precursor lesions. To define the timing and prevalence of methylation abnormalities during early pancreatic carcinogenesis, we investigated the CpG island methylation profile in the various grades of PanINs. Using methylation-specific PCR, we analyzed DNA samples from 65 PanIN lesions for methylation status of eight genes recently identified by microarray approach as aberrantly hypermethylated in invasive pancreatic cancer. Aberrant methylation at any of the eight genes was identified in 68% of all the PanIN lesions examined, and, notably, aberrant methylation was identified in more than 70% of the earliest lesions (PanIN-1A). The average number of methylated loci was 1.1 in PanIN-1A, 0.8 in PanIN-1B, 1.1 in PanIN-2, and 2.9 in PanIN-3 lesions (P=0.01 for PanIN -3 vs earlier PanINs). Among the genes analyzed, NPTX2 demonstrated an increase in methylation prevalence from PanIN-1 to PanIN-2 (P=0.0008), and from PanIN-2 to PanIN-3 for SARP2 (P=0.001), Reprimo (P=0.01), and LHX1 (P=0.03). These results suggest that aberrant CpG island hypermethylation begins in early stages of PanINs, and its prevalence progressively increases during neoplastic progression.
Collapse
|
47
|
DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. J Transl Med 2008; 88:161-70. [PMID: 18158559 DOI: 10.1038/labinvest.3700707] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcriptional silencing by CpG island hypermethylation is a potential mechanism for the inactivation of tumor-related genes. Virtually, all types of human cancers show CpG island hypermethylation, and gastric carcinoma (GC) is one of the tumors with a high frequency of aberrant CpG island hypermethylation. In this study, we prescreened DNA methylation of 170 CpG island loci in a training set of 8 paired GC and GC-associated non-neoplastic mucosae (GCN) using MethyLight technology and selected 27 DNA methylation markers showing higher methylation frequency or level in GC than in GCN. These markers were then analyzed in a tester set of 25 paired GC and GCN and 27 chronic gastritis (CG) from non-cancer patients to generate their DNA methylation profiles. We identified 17 novel methylation markers in GC, including SFRP4, SEZ6L, TWIST1, BCL2, KL, TERT, SCGB3A1, IGF2, GRIN2B, SFRP5, DLEC1, HOXA1, CYP1B1, SMAD9, MT1G, NR3C1, and HOXA10. Of the 27 selected CpG island loci, 23 were methylated in GC, GCN, and CG and the remainder four loci (DLEC1, CHFR, CYP1B1, and NR3C1) were only methylated in GC. We found that the number of methylated loci was significantly higher in GC than in GCN or CG and that Helicobacter pylori infection was strongly associated with aberrant CpG island hypermethylation in CG. Hypermethylation was more prevalent in Epstein-Barr virus (EBV)-positive GC than in EBV-negative GC and in diffuse-type GC than in intestinal-type GC. Through our large-scale screening of 170 CpG island loci, we found 17 new DNA methylation markers of GC, which may serve as useful markers that may identify a distinct subset of GC.
Collapse
|
48
|
Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter 2008; 13:35-41. [PMID: 18205664 DOI: 10.1111/j.1523-5378.2008.00572.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Gastric carcinogenesis involves CpG island hypermethylation (CIHM) of tumor-suppressor genes. Although the CIHM of these genes occurs in non-neoplastic gastric cells, it is unclear whether this epigenetic alteration is linked with aging and/or gastric cancer risk. We investigated this linkage in noncancerous gastric mucosa infected with H. pylori. SUBJECTS AND METHODS Noncancerous corpus mucosa was endoscopically obtained from H. pylori-positive gastric cancer patients (n = 34), and age-matched H. pylori-positive noncancerous controls (n = 68). Genomic DNA retrieved from the mucosa was subjected to methylation-specific polymerase chain reaction for p16, Ecad, and DAPK genes. Linkage between CIHM and clinicopathologic factors was evaluated. RESULTS CIHM rates of DAPK, Ecad, and p16 promoters were significantly higher in noncancerous gastric mucosa of gastric cancer patients (91, 88, and 68%, respectively) than in noncancerous controls (71, 53, and 25%, respectively). Multivariate regression analysis showed a significant linkage between CIHM in noncancerous mucosa and coexistence of gastric cancer. Significant linkage between polymorphoneutrophil infiltration and CIHM was observed except for CIHM of p16. No linkage was observed between CIHM and other parameters, including age. High CIHM status (all three tested genes methylated) was associated with an increased risk of gastric cancer, with an odds ratio of 9.8 (95% confidence interval, 3.8-25.3). CONCLUSIONS In a subset of the H. pylori-infected population, CIHM of tumor-suppressor genes in noncancerous gastric mucosa is linked with the risk of gastric cancer and polymorphoneutrophil infiltration, but not aging. CIHM is a potential marker of gastric cancer risk.
Collapse
Affiliation(s)
- Mitsuru Kaise
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Nakajima T, Enomoto S, Ushijima T. DNA methylation: a marker for carcinogen exposure and cancer risk. Environ Health Prev Med 2007. [PMID: 19568874 DOI: 10.1007/s12199-007-0005.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancers arise as a consequence of multiple genetic and epigenetic alterations. Many genes aberrantly methylated in cancers have been identified in recent years, and their use in cancer diagnosis and therapy is currently under investigation. During our genome-wide screening for a novel tumor-suppressor gene in gastric cancers, we found that only a small amount of aberrant methylation was present, even in non-cancerous gastric mucosae. A subsequent large-scale analysis of the gastric mucosae of healthy individuals and gastric cancer patients using quantitative methylation-specific PCR (qMSP) revealed that Helicobacter pylori infection potently induced aberrant DNA methylation in non-cancerous gastric mucosae and that these high methylation levels can decrease following cessation of the H. pylori infection. Helicobacter pylori infection induced the methylation of specific genes among 48 genes that can be methylated in gastric cancer cell lines. Most importantly, the methylation levels in the gastric mucosae of individuals without H. pylori infection correlated with their risk of gastric cancer. These findings show that a field for cancerization is formed by H. pylori infection and that this field can be measured using DNA methylation as a marker. The concept of an "epigenetic field for cancerization" has been also demonstrated for colon and breast cancers, and it is possibly present for other cancers and other diseases. Applied knowledge of epigenetic changes in human diseases has now started to make an impact on the prevention, diagnostics, and therapeutics of these diseases.
Collapse
Affiliation(s)
- Takeshi Nakajima
- Carcinogenesis Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | |
Collapse
|
50
|
DNA methylation: a marker for carcinogen exposure and cancer risk. Environ Health Prev Med 2007; 13:8-15. [PMID: 19568874 DOI: 10.1007/s12199-007-0005-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/24/2007] [Indexed: 12/27/2022] Open
Abstract
Cancers arise as a consequence of multiple genetic and epigenetic alterations. Many genes aberrantly methylated in cancers have been identified in recent years, and their use in cancer diagnosis and therapy is currently under investigation. During our genome-wide screening for a novel tumor-suppressor gene in gastric cancers, we found that only a small amount of aberrant methylation was present, even in non-cancerous gastric mucosae. A subsequent large-scale analysis of the gastric mucosae of healthy individuals and gastric cancer patients using quantitative methylation-specific PCR (qMSP) revealed that Helicobacter pylori infection potently induced aberrant DNA methylation in non-cancerous gastric mucosae and that these high methylation levels can decrease following cessation of the H. pylori infection. Helicobacter pylori infection induced the methylation of specific genes among 48 genes that can be methylated in gastric cancer cell lines. Most importantly, the methylation levels in the gastric mucosae of individuals without H. pylori infection correlated with their risk of gastric cancer. These findings show that a field for cancerization is formed by H. pylori infection and that this field can be measured using DNA methylation as a marker. The concept of an "epigenetic field for cancerization" has been also demonstrated for colon and breast cancers, and it is possibly present for other cancers and other diseases. Applied knowledge of epigenetic changes in human diseases has now started to make an impact on the prevention, diagnostics, and therapeutics of these diseases.
Collapse
|