1
|
Olou AA, Tom WA, Krzyzanowski G, Jiang C, Chandel DS, Fernando N, Draney AW, Destino J, Welch DR, Fernando MR. EV DNA from pancreatic cancer patient-derived cells harbors molecular, coding, non-coding signatures and mutational hotspots. Commun Biol 2025; 8:368. [PMID: 40044954 PMCID: PMC11882941 DOI: 10.1038/s42003-025-07567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025] Open
Abstract
DNA packaged into cancer cell-derived EV is not well appreciated. Here, we uncovered signatures of EV DNA secreted by pancreatic cancer cells. The cancer cells and non-cancer counterparts exhibit distinct low vs. high molecular weight (LMW vs. HMW) EV DNA fragments distribution, respectively. Genome sequencing and Single Nucleotide Variants analysis revealed that 95% of reads and 94% of SNVs map to noncoding regions of the genome. Given that ~1% of the human genome represents coding regions, the 5% mapping rate to coding regions suggests a non-random enrichment of certain coding regions and mutations. The LMW DNA fragments not only set cancer cells apart, but also harbor cancer specific enrichment of unique coding regions, the top nine being FAM135B, COL22A1, TSNARE1, KCNK9, ZFAT, JRK, MROH5, GSDMD, and MIR3667HG. Additionally, the cancer cells' LMW DNA fragments exhibit dense centromeric mapping more strikingly on chromosomes 3, 7, 9, 10, 11, 13, 17, and 20. Mutational profiling turned up close to 200 mutations specific for the cancer cells. Altogether, our analyses suggest that centromeric regions might hold clues to EV DNA content from pancreatic cancer, the molecular, mutational signatures thereof, and rationalizes the need for a new approach to DNA biomarker research.
Collapse
Affiliation(s)
- Appolinaire A Olou
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| | - Wesley A Tom
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gary Krzyzanowski
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Chao Jiang
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Dinesh S Chandel
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Nirmalee Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Adrian W Draney
- Department of Chemistry, Creighton University, Omaha, NE, USA
| | - Joel Destino
- Department of Chemistry, Creighton University, Omaha, NE, USA
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, and the University of Kansas Comprehensive Cancer Center, Kansas City, KS, USA
| | - M Rohan Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| |
Collapse
|
2
|
Tien SC, Chang CC, Huang CH, Peng HY, Chang YT, Chang MC, Lee WH, Hu CM. Exosomal miRNA 16-5p/29a-3p from pancreatic cancer induce adipose atrophy by inhibiting adipogenesis and promoting lipolysis. iScience 2024; 27:110346. [PMID: 39055920 PMCID: PMC11269291 DOI: 10.1016/j.isci.2024.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Over 80% of the patients with pancreatic ductal adenocarcinoma (PDAC) have cachexia/wasting syndrome. Cachexia is associated with reduced survival, decreased quality of life, and higher metastasis rates. Here, we demonstrate that fat loss is the earliest feature of PDAC-exosome-induced cachexia. MicroRNA sequencing of exosomal components from normal and cancer-derived exosomes revealed enrichment of miR-16-5p, miR-21-5p, miR-29a-3p, and miR-125b-5p in serum exosomes of mice harboring PDAC and patients with PDAC. Further, miR-16-5p and miR-29a-3p inhibited adipogenesis through decreasing Erlin2 and Cmpk1 expression which downregulates C/EBPβ and PPARγ. Synergistically, miR-29a-3p promotes lipolysis through increasing ATGL expression by suppressing MCT1 expression. Furthermore, PDAC-exosomes deprived of miR-16-5p and miR-29a-3p fail to induce fat loss. Hence, miR-16-5p and miR-29a-3p exosomal miRs are essential for PDAC-induced fat loss. Thus, we unravel that PDAC induces adipose atrophy via exosomal miRs. This knowledge may provide new diagnostic and therapeutic strategies for PDAC-induced cachexia.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chin-Chun Chang
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | | | - Hsuan-Yu Peng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Zhubei City, Hsinchu County 302058, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
- Drug Development Center, China Medical University, Taichung 406040, Taiwan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
3
|
Sheinin M, Mondal S, Pahan K. Neutralization of p40 Homodimer and p40 Monomer Leads to Tumor Regression in Patient-Derived Xenograft Mice with Pancreatic Cancer. Cancers (Basel) 2023; 15:5796. [PMID: 38136341 PMCID: PMC10742282 DOI: 10.3390/cancers15245796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic cancer is a highly aggressive cancer with a high mortality rate and limited treatment options. It is the fourth leading cause of cancer in the US, and mortality is rising rapidly, with a 12% relative 5-year survival rate. Early diagnosis remains a challenge due to vague symptoms, lack of specific biomarkers, and rapid tumor progression. Interleukin-12 (IL-12) is a central cytokine that regulates innate (natural killer cells) and adaptive (cytokine T-lymphocytes) immunity in cancer. We demonstrated that serum levels of IL-12p40 homodimer (p402) and p40 monomer (p40) were elevated and that of IL-12 and IL-23 were lowered in pancreatic cancer patients compared to healthy controls. Comparably, human PDAC cells produced greater levels of p402 and p40 and lower levels of IL-12 and IL-23 compared to normal pancreatic cells. Notably, neutralization of p402 by mAb a3-1d and p40 by mAb a3-3a induced the death of human PDAC cells, but not normal human pancreatic cells. Furthermore, we demonstrated that treatment of PDX mice with p402 mAb and p40 mAb resulted in apoptosis and tumor shrinkage. This study illustrates a new role of p402 and p40 monomer in pancreatic cancer, highlighting possible approaches against this deadly form of cancer with p402 and p40 monomer immunotherapies.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA (S.M.)
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Hu C, Huang C, Hsu M, Chien H, Wu P, Chen Y, Jeng Y, Tang S, Chung M, Shen C, Chang M, Chang Y, Tien Y, Lee W. Oncogenic KRAS, Mucin 4, and Activin A-Mediated Fibroblast Activation Cooperate for PanIN Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301240. [PMID: 37964407 PMCID: PMC10754145 DOI: 10.1002/advs.202301240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/22/2023] [Indexed: 11/16/2023]
Abstract
Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
Collapse
Affiliation(s)
- Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chien‐Chang Huang
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Min‐Fen Hsu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Hung‐Jen Chien
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Jung Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yi‐Ing Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yung‐Ming Jeng
- Department of PathologyNational Taiwan University HospitalTaipei10041Taiwan
- Graduate Institute of Pathology, College of MedicineNational Taiwan UniversityTaipei10041Taiwan
| | - Shiue‐Cheng Tang
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Mei‐Hsin Chung
- Department of PathologyNational Taiwan University Hospital−Hsinchu BranchHsinchu30331Taiwan
| | - Chia‐Ning Shen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Ming‐Chu Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Ting Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Wen Tien
- Department of SurgeryNational Taiwan University HospitalTaipei10041Taiwan
| | - Wen‐Hwa Lee
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Drug Development CenterChina Medical UniversityTaichung40402Taiwan
- Department of Biological ChemistryUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
5
|
Wang W, Jiang CF, Yin HS, Gao S, Yu BP. Targeting mitochondrial transcription factor A sensitizes pancreatic cancer cell to gemcitabine. Hepatobiliary Pancreat Dis Int 2023; 22:519-527. [PMID: 37002014 DOI: 10.1016/j.hbpd.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The survival of pancreatic cancer cells, particularly cancer stem cells which are responsible for tumor relapse, depends on mitochondrial function. Mitochondrial transcription factor A (TFAM) is critical for the regulation of mitochondrial DNA and thus mitochondrial function. However, the possible involvement of TFAM in pancreatic cancer is unknown. METHODS Human samples were obtained from pancreatic cancers and their adjacent tissues; human pancreatic cell lines were cultured in RPMI1640 medium. TFAM expressions in pancreatic tissues and cultured cells were determined using immunohistochemistry, ELISA, and reverse transcription polymerase chain reaction (RT-PCR). The effect of TFAM on cell growth, migration, colony formation and apoptosis were evaluated. Mitochondrial biogenesis in pancreatic cancer and normal cells were examined. RESULTS The majority of pancreatic cancer tissues exhibited higher TFAM expression compared to the adjacent counterparts. Consistently, TFAM mRNA and protein levels were higher in pancreatic cancer cell lines than in immortalized normal pancreatic epithelial cells. There was no difference on TFAM level between gemcitabine-sensitive and resistant pancreatic cancer cells. Functional analysis demonstrated that TFAM overexpression activated pancreatic normal and tumor cells whereas TFAM inhibition effectively inhibited the growth of pancreatic cancer cells. TFAM inhibition enhanced gemcitabine's cytotoxicity and suppressed growth, anchorage-independent colony formation and survival of gemcitabine-resistant pancreatic cancer cells. Mechanistic studies showed that TFAM inhibition resulted in remarkable mitochondrial dysfunction and energy crisis followed by oxidative stress. The basal mitochondrial biogenesis level correlated well with TFAM level in pancreatic cancer cells. CONCLUSIONS TFAM played essential roles in pancreatic cancer via regulating mitochondrial functions which highlighted the therapeutic value of inhibiting TFAM to overcome gemcitabine resistance.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Chun-Fan Jiang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Hai-Sen Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Nisco A, Carvalho TMA, Tolomeo M, Di Molfetta D, Leone P, Galluccio M, Medina M, Indiveri C, Reshkin SJ, Cardone RA, Barile M. Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue. FEBS J 2023; 290:4679-4694. [PMID: 37254652 DOI: 10.1111/febs.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 μm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 μm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Tiago M A Carvalho
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), University of Zaragoza, Spain
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| |
Collapse
|
7
|
Masuda T, Fukuda A, Yamakawa G, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Nagao M, Araki O, Yoshikawa T, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Masui T, Hatano E, Matsuzaki T, Noda M, Seno H. Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis. J Clin Invest 2023; 133:e161847. [PMID: 37712427 PMCID: PMC10503799 DOI: 10.1172/jci161847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.
Collapse
Affiliation(s)
| | | | - Go Yamakawa
- Department of Gastroenterology and Hepatology
| | | | | | - Makoto Sono
- Department of Gastroenterology and Hepatology
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology
- Department of Drug Discovery Medicine, Medical Innovation Center
| | | | - Osamu Araki
- Department of Gastroenterology and Hepatology
| | | | | | - Kenji Masuo
- Department of Gastroenterology and Hepatology
| | | | | | - Yu Muta
- Department of Gastroenterology and Hepatology
| | | | | | | | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
8
|
Lottini T, Duranti C, Iorio J, Martinelli M, Colasurdo R, D’Alessandro FN, Buonamici M, Coppola S, Devescovi V, La Vaccara V, Coppola A, Coppola R, Lastraioli E, Arcangeli A. Combination Therapy with a Bispecific Antibody Targeting the hERG1/β1 Integrin Complex and Gemcitabine in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:2013. [PMID: 37046674 PMCID: PMC10093586 DOI: 10.3390/cancers15072013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an unmet medical need. Difficult/late diagnosis as well as the poor efficacy and high toxicity of chemotherapeutic drugs result in dismal prognosis. With the aim of improving the treatment outcome of PDAC, we tested the effect of combining Gemcitabine with a novel single chain bispecific antibody (scDb) targeting the cancer-specific hERG1/β1 integrin complex. First, using the scDb (scDb-hERG1-β1) in immunohistochemistry (IHC), Western blot (WB) analysis and immunofluorescence (IF), we confirmed the presence of the hERG1/β1 integrin complex in primary PDAC samples and PDAC cell lines. Combining Gemcitabine with scDb-hERG1-β1 improved its cytotoxicity on all PDAC cells tested in vitro. We also tested the combination treatment in vivo, using an orthotopic xenograft mouse model involving ultrasound-guided injection of PDAC cells. We first demonstrated good penetration of the scDb-hERG1-β1 conjugated with indocyanine green (ICG) into tumour masses by photoacoustic (PA) imaging. Next, we tested the effects of the combination at either therapeutic or sub-optimal doses of Gemcitabine (25 or 5 mg/kg, respectively). The combination of scDb-hERG1-β1 and sub-optimal doses of Gemcitabine reduced the tumour masses to the same extent as the therapeutic doses of Gemcitabine administrated alone; yielded increased survival; and was accompanied by minimised side effects (toxicity). These data pave the way for a novel therapeutic approach to PDAC, based on the combination of low doses of a chemotherapeutic drug (to minimize adverse side effects and the onset of resistance) and the novel scDb-hERG1-β1 targeting the hERG1/β1 integrin complex as neoantigen.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Franco Nicolás D’Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Matteo Buonamici
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo La Vaccara
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | | | - Roberto Coppola
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
9
|
Marchand B, Poulin MA, Lawson C, Tai LH, Jean S, Boucher MJ. Gemcitabine promotes autophagy and lysosomal function through ERK- and TFEB-dependent mechanisms. Cell Death Dis 2023; 9:45. [PMID: 36746928 PMCID: PMC9902516 DOI: 10.1038/s41420-023-01342-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Gemcitabine is a first-line treatment agent for pancreatic ductal adenocarcinoma (PDAC). Contributing to its cytotoxicity, this chemotherapeutic agent is primarily a DNA replication inhibitor that also induces DNA damage. However, its therapeutic effects are limited owing to chemoresistance. Evidence in the literature points to a role for autophagy in restricting the efficacy of gemcitabine. Autophagy is a catabolic process in which intracellular components are delivered to degradative organelles lysosomes. Interfering with this process sensitizes PDAC cells to gemcitabine. It is consequently inferred that autophagy and lysosomal function need to be tightly regulated to maintain homeostasis and provide resistance to environmental stress, such as those imposed by chemotherapeutic drugs. However, the mechanism(s) through which gemcitabine promotes autophagy remains elusive, and the impact of gemcitabine on lysosomal function remains largely unexplored. Therefore, we applied complementary approaches to define the mechanisms triggered by gemcitabine that support autophagy and lysosome function. We found that gemcitabine elicited ERK-dependent autophagy in PDAC cells, but did not stimulate ERK activity or autophagy in non-tumoral human pancreatic epithelial cells. Gemcitabine also promoted transcription factor EB (TFEB)-dependent lysosomal function in PDAC cells. Indeed, treating PDAC cells with gemcitabine caused expansion of the lysosomal network, as revealed by Lysosome associated membrane protein-1 (LAMP1) and LysoTracker staining. More specific approaches have shown that gemcitabine promotes the activity of cathepsin B (CTSB), a cysteine protease playing an active role in lysosomal degradation. We showed that lysosomal function induced by gemcitabine depends on TFEB, the master regulator of autophagy and lysosomal biogenesis. Interfering with TFEB function considerably limited the clonogenic growth of PDAC cells and hindered the capacity of TFEB-depleted PDAC cells to develop orthotopic tumors.
Collapse
Affiliation(s)
- Benoît Marchand
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Marc-Antoine Poulin
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Christine Lawson
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Lee-Hwa Tai
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Steve Jean
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Boucher
- Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada. .,Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l'Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
10
|
Ishii T, Akiyama Y, Shimada S, Kabashima A, Asano D, Watanabe S, Ishikawa Y, Ueda H, Akahoshi K, Ogawa K, Ono H, Kudo A, Tanabe M, Tanaka S. Identification of a novel target of SETD1A histone methyltransferase and the clinical significance in pancreatic cancer. Cancer Sci 2023; 114:463-476. [PMID: 36271761 PMCID: PMC9899616 DOI: 10.1111/cas.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Although histone H3K4 methyltransferase SETD1A is overexpressed in various cancer types, the molecular mechanism underlying its overexpression and its target genes in pancreatic ductal adenocarcinoma (PDAC) remain unclarified. We conducted immunohistochemical staining for SETD1A in 105 human PDAC specimens to assess the relationship between SETD1A overexpression and clinicopathological features. The function and target genes of SETD1A were investigated using human pancreatic cancer cell lines. SETD1A expression was upregulated in 51.4% of patients with PDAC and was an independent prognostic factor associated with shorter disease-free survival after resection (p < 0.05). Knockdown and overexpression of SETD1A showed that SETD1A plays a crucial role in increasing the proliferation and motility of PDAC cells. SETD1A overexpression increased tumorigenicity. RNA sequencing of SETD1A-knockdown cells revealed downregulation of RUVBL1, an oncogenic protein ATP-dependent DNA helicase gene. ChIP analysis revealed that SETD1A binds to the RUVBL1 promoter region, resulting in increased H3K4me3 levels. Knockdown of RUVBL1 showed inhibition of cell proliferation, migration, and invasion of PDAC cells, which are similar biological effects to SETD1A knockdown. High expression of both SETD1A and RUVBL1 was an independent prognostic factor not only for disease-free survival but also for overall survival (p < 0.05). In conclusion, we identified RUVBL1 as a novel downstream target gene of the SETD1A-H3K4me3 pathway. Co-expression of SETD1A and RUVBL1 is an important factor for predicting the prognosis of patients with PDAC.
Collapse
Grants
- JP19cm0106540 Japan Agency for Medical Research and Development
- 19H01055 Ministry of Education, Culture, Sports, Science and Technology
- 20H03526 Ministry of Education, Culture, Sports, Science and Technology
- 20K21627 Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
- Princess Takamatsu Cancer Research Fund
Collapse
Affiliation(s)
- Takeshi Ishii
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Ayano Kabashima
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - Daisuke Asano
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shuichi Watanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshiya Ishikawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroki Ueda
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Keiichi Akahoshi
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Kosuke Ogawa
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Ono
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Atsushi Kudo
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Minoru Tanabe
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic SurgeryGraduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
11
|
Wang Z, Wang S, Jia Z, Zhao Y, Yang M, Yan W, Chen T, Xiang D, Shao R, Liu Y. Establishment and characterization of an immortalized epithelial cell line from human gallbladder. Front Oncol 2022; 12:994087. [PMID: 36387215 PMCID: PMC9650220 DOI: 10.3389/fonc.2022.994087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Although a plethora of studies have employed multiple gallbladder cancer (GBC) cell lines, it is surprisingly noted that there is still lack of a normal gallbladder epithelial cell line as a normal counterpart, thus impeding substantially the progress of mechanistic studies on the transformation of normal epithelial cells to cancer. Here, we created a normal gallbladder epithelial cell line named L-2F7 from human gallbladder tissue. Methods Gallbladder tissues from a diagnosed cholecystitis female patient were collected, and epithelial cells were enriched by magnetic cell sorting. Then, the cells were immortalized by co-introduction of human telomerase reverse transcriptase (hTERT) and Simian virus 40 large T antigen (LT-SV40) via a lentivirus infection system. After clonal selection and isolation, L-2F7 cells were tested for epithelial markers CK7, CK19, CK20, and CD326, genomic feature, cell proliferation, and migration using Western blot, immunofluorescence, whole genome sequencing, karyotyping, and RNA sequencing. L-2F7 cells were also transplanted to Nude (nu/nu) mice to determine tumorigenicity. Results We successfully identified one single-cell clone named L-2F7 which highly expressed epithelial markers CD326, CK7, CK19, and CK20. This cell line proliferated with a doubling time of 23 h and the epithelial morphology sustained over 30 passages following immortalization. Transient gene transduction of L-2F7 cells led to expression of exogenous GFP and FLAG protein. L-2F7 cells exhibited both distinct non-synonymous mutations from those of gallbladder cancer tissues and differential non-cancerous gene expression patterns similar to normal tissue. Although they displayed unexpected mobility, L-2F7 cells still lacked the ability to develop tumors. Conclusion We developed a non-cancerous gallbladder epithelial cell line, offering a valuable system for the study of gallbladder cancer and other gallbladder-related disorders.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Weikang Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Dongxi Xiang
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| | - Rong Shao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| |
Collapse
|
12
|
Monberg ME, Geiger H, Lee JJ, Sharma R, Semaan A, Bernard V, Wong J, Wang F, Liang S, Swartzlander DB, Stephens BM, Katz MHG, Chen K, Robine N, Guerrero PA, Maitra A. Occult polyclonality of preclinical pancreatic cancer models drives in vitro evolution. Nat Commun 2022; 13:3652. [PMID: 35752636 PMCID: PMC9233687 DOI: 10.1038/s41467-022-31376-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Heterogeneity is a hallmark of cancer. The advent of single-cell technologies has helped uncover heterogeneity in a high-throughput manner in different cancers across varied contexts. Here we apply single-cell sequencing technologies to reveal inherent heterogeneity in assumptively monoclonal pancreatic cancer (PDAC) cell lines and patient-derived organoids (PDOs). Our findings reveal a high degree of both genomic and transcriptomic polyclonality in monolayer PDAC cell lines, custodial variation induced by growing apparently identical cell lines in different laboratories, and transcriptomic shifts in transitioning from 2D to 3D spheroid growth models. Our findings also call into question the validity of widely available immortalized, non-transformed pancreatic lines as contemporaneous "control" lines in experiments. We confirm these findings using a variety of independent assays, including but not limited to whole exome sequencing, single-cell copy number variation sequencing (scCNVseq), single-nuclei assay for transposase-accessible chromatin with sequencing, fluorescence in-situ hybridization, and single-cell RNA sequencing (scRNAseq). We map scRNA expression data to unique genomic clones identified by orthogonally-gathered scCNVseq data of these same PDAC cell lines. Further, while PDOs are known to reflect the cognate in vivo biology of the parental tumor, we identify transcriptomic shifts during ex vivo passage that might hamper their predictive abilities over time. The impact of these findings on rigor and reproducibility of experimental data generated using established preclinical PDAC models between and across laboratories is uncertain, but a matter of concern.
Collapse
Affiliation(s)
- Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA.
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel B Swartzlander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Shi X, Yang J, Liu M, Zhang Y, Zhou Z, Luo W, Fung KM, Xu C, Bronze MS, Houchen CW, Li M. Circular RNA ANAPC7 Inhibits Tumor Growth and Muscle Wasting via PHLPP2-AKT-TGF-β Signaling Axis in Pancreatic Cancer. Gastroenterology 2022; 162:2004-2017.e2. [PMID: 35176309 PMCID: PMC10428768 DOI: 10.1053/j.gastro.2022.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Pancreatic cancer has the highest prevalence of cancer-associated cachexia among all cancers. ZIP4 promotes pancreatic cancer progression by regulating oncogenic miR-373, and perturbation of circular RNAs (circRNAs) is associated with cancer aggressiveness. This study aimed to identify circRNAs involved in ZIP4/miR-373-driven cancer growth and cachexia and decipher the underlying mechanism. METHODS Differentially expressed circRNAs and potential targets of microRNA were identified through in silico analysis. The RNA interactions were determined by means of biotinylated microRNA pulldown, RNA immunoprecipitation, and luciferase reporter assays. The function of circRNA in ZIP4-miR-373 signaling axis were examined in human pancreatic cancer cells, 3-dimensional spheroids and organoids, mouse models, and clinical specimens. Mouse skeletal muscles were analyzed by means of histology. RESULTS We identified circANAPC7 as a sponge for miR-373, which inhibited tumor growth and muscle wasting in vitro and in vivo. Mechanistic studies showed that PHLPP2 is a downstream target of ZIP4/miR-373. CircANAPC7 functions through PHLPP2-mediated dephosphorylation of AKT, thus suppressing cancer cell proliferation by down-regulating cyclin D1 and inhibiting muscle wasting via decreasing the secretion of transforming growth factor-β through STAT5. We further demonstrated that PHLPP2 induced dephosphorylation of CREB, a zinc-dependent transcription factor activated by ZIP4, thereby forming a CREB-miR-373-PHLPP2 feed-forward loop to regulate tumor progression and cancer cachexia. CONCLUSION This study identified circANAPC7 as a novel tumor suppressor, which functions through the CREB-miR-373-PHLPP2 axis, leading to AKT dephosphorylation, and cyclin D1 and transforming growth factor-β down-regulation to suppress tumor growth and muscle wasting in pancreatic cancer.
Collapse
Affiliation(s)
- Xiuhui Shi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mingyang Liu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuqing Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhijun Zhou
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
14
|
Kamal MA, Siddiqui I, Belgiovine C, Barbagallo M, Paleari V, Pistillo D, Chiabrando C, Schiarea S, Bottazzi B, Leone R, Avigni R, Migliore R, Spaggiari P, Gavazzi F, Capretti G, Marchesi F, Mantovani A, Zerbi A, Allavena P. Oncogenic KRAS-Induced Protein Signature in the Tumor Secretome Identifies Laminin-C2 and Pentraxin-3 as Useful Biomarkers for the Early Diagnosis of Pancreatic Cancer. Cancers (Basel) 2022; 14:2653. [PMID: 35681634 PMCID: PMC9179463 DOI: 10.3390/cancers14112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations characterize pancreatic cell transformation from the earliest stages of carcinogenesis, and are present in >95% of pancreatic ductal adenocarcinoma (PDAC) cases. In search of novel biomarkers for the early diagnosis of PDAC, we identified the proteins secreted by the normal human pancreatic cell line (HPDE) recently transformed by inducing the overexpression of the KRASG12V oncogene. We report a proteomic signature of KRAS-induced secreted proteins, which was confirmed in surgical tumor samples from resected PDAC patients. The putative diagnostic performance of three candidates, Laminin-C2 (LAMC2), Tenascin-C (TNC) and Pentraxin-3 (PTX3), was investigated by ELISA quantification in two cohorts of PDAC patients (n = 200) eligible for surgery. Circulating levels of LAMC2, TNC and PTX3 were significantly higher in PDAC patients compared to the healthy individuals (p < 0.0001). The Receiver Operating Characteristics (ROC) curve showed good sensitivity (1) and specificity (0.63 and 0.85) for LAMC2 and PTX3, respectively, but not for TNC, and patients with high levels of LAMC2 had significantly shorter overall survival (p = 0.0007). High levels of LAMC2 and PTX3 were detected at early stages (I−IIB) and in CA19-9-low PDAC patients. In conclusion, pancreatic tumors release LAMC2 and PTX3, which can be quantified in the systemic circulation, and may be useful in selecting patients for further diagnostic imaging.
Collapse
Affiliation(s)
- Mohammad Azhar Kamal
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Imran Siddiqui
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Cristina Belgiovine
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Marialuisa Barbagallo
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Valentina Paleari
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Daniela Pistillo
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Barbara Bottazzi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberto Leone
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Avigni
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Migliore
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
| | - Francesca Gavazzi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
| | - Giovanni Capretti
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Federica Marchesi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alberto Mantovani
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Paola Allavena
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| |
Collapse
|
15
|
Wong CH, Li CH, Man Tong JH, Zheng D, He Q, Luo Z, Lou UK, Wang J, To KF, Chen Y. The Establishment of CDK9/ RNA PolII/H3K4me3/DNA Methylation Feedback Promotes HOTAIR Expression by RNA Elongation Enhancement in Cancer. Mol Ther 2022; 30:1597-1609. [PMID: 35121112 PMCID: PMC9077372 DOI: 10.1016/j.ymthe.2022.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles. Importantly, since HOTAIR heavily contributes to cancer progression by promoting tumor growth and metastasis, HOTAIR becomes a potential target for cancer therapy. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we performed a pan-cancer analysis using more than 4,200 samples and found that intragenic exon CpG island (Ex-CGI) was hypermethylated and was positively correlated to HOTAIR expression. Also, we revealed that Ex-CGI methylation promotes HOTAIR expression through enhancing the transcription elongation process. Furthermore, we linked up the aberrant intragenic tri-methylation on H3 at lysine 4 (H3K4me3) and Ex-CGI DNA methylation in promoting transcription elongation of HOTAIR. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis downregulated HOTAIR expression and inhibited cell growth in many cancers. To our knowledge, this is the first time that a positive feedback loop that involved CDK9-mediated phosphorylation of RNA Polymerase II Serine 2 (RNA PolII Ser2), H3K4me3, and intragenic DNA methylation, which induced robust transcriptional elongation and heavily contributed to the upregulation of oncogenic lncRNA in cancer has been demonstrated. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis could be a novel therapy in many cancers through inhibiting the HOTAIR expression.
Collapse
Affiliation(s)
- Chi Hin Wong
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Chi Han Li
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Joanna Hung Man Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Qifang He
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhiyuan Luo
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ut Kei Lou
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Jiatong Wang
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- A School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, China.
| |
Collapse
|
16
|
Pausch TM, Bartel M, Cui J, Aubert O, Mitzscherling C, Liu X, Gesslein B, Schuisky P, Kommoss FKF, Bruckner T, Golriz M, Mehrabi A, Hackert T. SmartPAN: in vitro and in vivo proof-of-safety assessments for an intra-operative predictive indicator of postoperative pancreatic fistula. Basic Clin Pharmacol Toxicol 2022; 130:542-552. [PMID: 35040273 DOI: 10.1111/bcpt.13708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 12/01/2022]
Abstract
Pancreatic surgery is complicated by untreated fluid leakage, but no tenable techniques exist to detect and close leakage sites during surgery. A novel hydrogel called SmartPAN has been developed to meet this need and is here assessed for safety before trials on human patients. Firstly, resazurin assays were used to test the cytotoxic effects of SmartPAN's active bromothymol blue (BTB) indicator and its solution of phosphate-buffered saline (PBS) on normal (HPDE: Human Pancreatic Duct Epithelial) or carcinomic (FAMPAC) human pancreatic cells. Cells incubated with BTB showed no significant reduction in cell viability below threshold safety levels. However, PBS had a mild cytotoxic effect on FAMPAC cells. Secondly, SmartPAN's pathological effects were evaluated in vivo by applying 4 mL SmartPAN to a porcine (Sus scrofa domesticus) model of pancreatic resection. There were no significant differences in macroscopic and microscopic pathologies between pigs treated with SmartPAN or saline. Thirdly, measurements using HPLC-MS/MS demonstrate that BTB does not cross into the bloodstream and was eliminated from the body within two days of surgery. Overall, SmartPAN appears safe in the short-term and ready for first-in-human trials because its components are either biocompatible or quickly neutralized by dilution and drainage.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Marc Bartel
- Institute of Legal and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jiaqu Cui
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Ophelia Aubert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Clara Mitzscherling
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Xinchun Liu
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | | | | | - Felix K F Kommoss
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Legal and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Germany
| |
Collapse
|
17
|
Abt ER, Le TM, Dann AM, Capri JR, Poddar S, Lok V, Li L, Liang K, Creech AL, Rashid K, Kim W, Wu N, Cui J, Cho A, Lee HR, Rosser EW, Link JM, Czernin J, Wu TT, Damoiseaux R, Dawson DW, Donahue TR, Radu CG. Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Rep 2022; 38:110236. [PMID: 35021095 PMCID: PMC8893345 DOI: 10.1016/j.celrep.2021.110236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux. In combination with IFN, ATR inhibitors induce lethal DNA damage and downregulate nucleotide biosynthesis. ATR inhibition limits the growth of PDAC tumors in which IFN signaling is driven by stimulator of interferon genes (STING). These results identify a cross talk between IFN, DNA replication stress response networks, and nucleotide metabolism while providing the rationale for targeted therapeutic interventions that leverage IFN signaling in tumors.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda M Dann
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Luyi Li
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Keke Liang
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Amanda L Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Cui
- Department of Pancreatic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hailey Rose Lee
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason M Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Wong CH, Lou UK, Fung FKC, Tong JHM, Zhang CH, To KF, Chan SL, Chen Y. CircRTN4 promotes pancreatic cancer progression through a novel CircRNA-miRNA-lncRNA pathway and stabilizing epithelial-mesenchymal transition protein. Mol Cancer 2022; 21:10. [PMID: 34983537 PMCID: PMC8725379 DOI: 10.1186/s12943-021-01481-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in many biological processes. However, the detailed mechanism underlying the critical roles of circRNAs in cancer remains largely unexplored. We aim to explore the molecular mechanisms of circRTN4 with critical roles in pancreatic ductal adenocarcinoma (PDAC). METHODS CircRTN4 expression level was examined in PDAC primary tumors. The oncogenic roles of circRTN4 in PDAC tumor growth and metastasis were studied in mouse tumor models. Bioinformatics analysis, luciferase assay and miRNA pulldown assay were performed to study the novel circRTN4-miRNA-lncRNA pathway. To identify circRTN4-interacting proteins, we performed circRNA-pulldown and mass spectrometry in PDAC cells. Protein stability assay and 3-Dimensional structure modeling were performed to reveal the role of circRTN4 in stabilizing RAB11FIP1. RESULTS CircRTN4 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional studies revealed that circRTN4 promoted PDAC tumor growth and liver metastasis. Mechanistically, circRTN4 interacted with tumor suppressor miR-497-5p in PDAC cells. CircRTN4 knockdown upregulated miR-497-5p to inhibit the oncogenic lncRNA HOTTIP expression. Furthermore, we identified critical circRTN4-intercting proteins by circRNA-pulldown in PDAC cells. CircRTN4 interacted with important epithelial-mesenchymal transition (EMT)- driver RAB11FIP1 to block its ubiquitination site. We found that circRTN4 knockdown promoted the degradation of RAB11FIP1 by increasing its ubiquitination. Also, circRTN4 knockdown inhibited the expression of RAB11FIP1-regulating EMT-markers Slug, Snai1, Twist, Zeb1 and N-cadherin in PDAC. CONCLUSION The upregulated circRTN4 promotes tumor growth and liver metastasis in PDAC through the novel circRTN4-miR-497-5p-HOTTIP pathway. Also, circRTN4 stabilizes RAB11FIP1 to contribute EMT.
Collapse
Affiliation(s)
- Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ut Kei Lou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Frederic Khe-Cheong Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chang-Hua Zhang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|
19
|
Below CR, Kelly J, Brown A, Humphries JD, Hutton C, Xu J, Lee BY, Cintas C, Zhang X, Hernandez-Gordillo V, Stockdale L, Goldsworthy MA, Geraghty J, Foster L, O'Reilly DA, Schedding B, Askari J, Burns J, Hodson N, Smith DL, Lally C, Ashton G, Knight D, Mironov A, Banyard A, Eble JA, Morton JP, Humphries MJ, Griffith LG, Jørgensen C. A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. NATURE MATERIALS 2022; 21:110-119. [PMID: 34518665 PMCID: PMC7612137 DOI: 10.1038/s41563-021-01085-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/21/2021] [Indexed: 05/09/2023]
Abstract
Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness-a hallmark of pancreatic cancer-was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- Christopher R Below
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Joanna Kelly
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alexander Brown
- Centre for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Life Science, Manchester Metropolitan University, Manchester, UK
| | - Colin Hutton
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Jingshu Xu
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Brian Y Lee
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Celia Cintas
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Xiaohong Zhang
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Victor Hernandez-Gordillo
- Centre for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linda Stockdale
- Centre for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | - Barbara Schedding
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Janet Askari
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jessica Burns
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nigel Hodson
- BioAFM Laboratory, Bioimaging Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Duncan L Smith
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Catherine Lally
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Garry Ashton
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Aleksandr Mironov
- Electron Microscopy Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antonia Banyard
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Linda G Griffith
- Centre for Gynepathology Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Zampetidis CP, Galanos P, Angelopoulou A, Zhu Y, Polyzou A, Karamitros T, Kotsinas A, Lagopati N, Mourkioti I, Mirzazadeh R, Polyzos A, Garnerone S, Mizi A, Gusmao EG, Sofiadis K, Gál Z, Larsen DH, Pefani DE, Demaria M, Tsirigos A, Crosetto N, Maya-Mendoza A, Papaspyropoulos A, Evangelou K, Bartek J, Papantonis A, Gorgoulis VG. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell 2021; 81:4907-4923.e8. [PMID: 34793711 DOI: 10.1016/j.molcel.2021.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/14/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.
Collapse
Affiliation(s)
- Christos P Zampetidis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Yajie Zhu
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timokratis Karamitros
- Unit of Bioinformatics and Applied Genomics, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Reza Mirzazadeh
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Alexandros Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvano Garnerone
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Athanasia Mizi
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eduardo G Gusmao
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Konstantinos Sofiadis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | | | - Marco Demaria
- University of Groningen (RUG), European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), 9713 AV Groningen, the Netherlands
| | | | - Nicola Crosetto
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, M20 4GJ Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK.
| |
Collapse
|
21
|
Hu Q, Qin Y, Ji S, Shi X, Dai W, Fan G, Li S, Xu W, Liu W, Liu M, Zhang Z, Ye Z, Zhou Z, Yang J, Zhuo Q, Yu X, Li M, Xu X. MTAP Deficiency-Induced Metabolic Reprogramming Creates a Vulnerability to Cotargeting De Novo Purine Synthesis and Glycolysis in Pancreatic Cancer. Cancer Res 2021; 81:4964-4980. [PMID: 34385182 DOI: 10.1158/0008-5472.can-20-0414] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Methylthioadenosine phosphorylase (MTAP) is a key enzyme associated with the salvage of methionine and adenine that is deficient in 20% to 30% of pancreatic cancer. Our previous study revealed that MTAP deficiency indicates a poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC). In this study, bioinformatics analysis of The Cancer Genome Atlas (TCGA) data indicated that PDACs with MTAP deficiency display a signature of elevated glycolysis. Metabolomics studies showed that that MTAP deletion-mediated metabolic reprogramming enhanced glycolysis and de novo purine synthesis in pancreatic cancer cells. Western blot analysis revealed that MTAP knockout stabilized hypoxia-inducible factor 1α (HIF1α) protein via posttranslational phosphorylation. RIO kinase 1 (RIOK1), a downstream kinase upregulated in MTAP-deficient cells, interacted with and phosphorylated HIF1α to regulate its stability. In vitro experiments demonstrated that the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) and the de novo purine synthesis inhibitor l-alanosine synergized to kill MTAP-deficient pancreatic cancer cells. Collectively, these results reveal that MTAP deficiency drives pancreatic cancer progression by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for treating MTAP-deficient disease. SIGNIFICANCE: This study demonstrates that MTAP status impacts glucose and purine metabolism, thus identifying multiple novel treatment options against MTAP-deficient pancreatic cancer.
Collapse
Affiliation(s)
- Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiuhui Shi
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Weixing Dai
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhijun Zhou
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Min Li
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Sharbeen G, McCarroll JA, Akerman A, Kopecky C, Youkhana J, Kokkinos J, Holst J, Boyer C, Erkan M, Goldstein D, Timpson P, Cox TR, Pereira BA, Chitty JL, Fey SK, Najumudeen AK, Campbell AD, Sansom OJ, Ignacio RMC, Naim S, Liu J, Russia N, Lee J, Chou A, Johns A, Gill AJ, Gonzales-Aloy E, Gebski V, Guan YF, Pajic M, Turner N, Apte MV, Davis TP, Morton JP, Haghighi KS, Kasparian J, McLean BJ, Setargew YF, Phillips PA. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Res 2021; 81:3461-3479. [PMID: 33980655 DOI: 10.1158/0008-5472.can-20-2496] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - Anouschka Akerman
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Chantal Kopecky
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - John Kokkinos
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Jeff Holst
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Mert Erkan
- Koc University Research Centre for Translational Medicine and Department of Surgery, Koc University, School of Medicine, Istanbul, Turkey
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Sigrid K Fey
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | | | | | - Owen J Sansom
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Angela Chou
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Johns
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, New South Wales, Australia
| | - Yi Fang Guan
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University New South Wales and Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute of Bioengineering & Nanotechnology, University of Queensland, Queensland, Australia
| | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Koroush S Haghighi
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Jorjina Kasparian
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Benjamin J McLean
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | | | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol 2021; 23:631-641. [PMID: 34108659 PMCID: PMC9290189 DOI: 10.1038/s41556-021-00693-y] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment that are potentially involved in intercellular communication. Here, we found that frequently used biomarkers of exosomes are heterogeneous, and do not exhibit universal utility across different cell types. To uncover ubiquitous and abundant proteins, we used an unbiased and quantitative proteomic approach based on super-stable isotope labeling with amino acids in cell culture (super-SILAC), coupled to high-resolution mass spectrometry. In total, 1,212 proteins were quantified in the proteome of exosomes, irrespective of the cellular source or isolation method. A cohort of 22 proteins was universally enriched. Fifteen proteins were consistently depleted in the proteome of exosomes compared to cells. Among the enriched proteins, we identified biogenesis-related proteins, GTPases and membrane proteins, such as CD47 and ITGB1. The cohort of depleted proteins in exosomes was predominantly composed of nuclear proteins. We identified syntenin-1 as a consistently abundant protein in exosomes from different cellular origins. Syntenin-1 is also present in exosomes across different species and biofluids, highlighting its potential use as a putative universal biomarker of exosomes. Our study provides a comprehensive quantitative atlas of core proteins ubiquitous to exosomes that can serve as a resource for the scientific community.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xunian Zhou
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Hendley AM, Rao AA, Leonhardt L, Ashe S, Smith JA, Giacometti S, Peng XL, Jiang H, Berrios DI, Pawlak M, Li LY, Lee J, Collisson EA, Anderson MS, Fragiadakis GK, Yeh JJ, Ye CJ, Kim GE, Weaver VM, Hebrok M. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. eLife 2021; 10:e67776. [PMID: 34009124 PMCID: PMC8184217 DOI: 10.7554/elife.67776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.
Collapse
Affiliation(s)
- Audrey M Hendley
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Arjun A Rao
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Leonhardt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Smith
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Simone Giacometti
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Xianlu L Peng
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - David I Berrios
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Lucia Y Li
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jonghyun Lee
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, Division of Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Surgery, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chun Jimmie Ye
- Parker Institute for Cancer ImmunotherapySan FranciscoUnited States
| | - Grace E Kim
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
25
|
Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sui Z, Ding L, Zhang Y, Lu C, Fei YH, Liu N, Chen R, Wu M, Wang L, Zhong Z, Wang T, Liu Y, Wang Y, Liu J, Xu H, Guo F, Wang W. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy 2021; 17:4401-4422. [PMID: 33890549 DOI: 10.1080/15548627.2021.1917132] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is elevated to ensure the high demand for nutrients for the growth of cancer cells. Here we demonstrated that MCOLN1/TRPML1 is a pharmaceutical target of oncogenic autophagy in cancers such as pancreatic cancer, breast cancer, gastric cancer, malignant melanoma, and glioma. First, we showed that activating MCOLN1, by increasing expression of the channel or using the MCOLN1 agonists, ML-SA5 or MK6-83, arrests autophagic flux by perturbing fusion between autophagosomes and lysosomes. Second, we demonstrated that MCOLN1 regulates autophagy by mediating the release of zinc from the lysosome to the cytosol. Third, we uncovered that zinc influx through MCOLN1 blocks the interaction between STX17 (syntaxin 17) in the autophagosome and VAMP8 in the lysosome and thereby disrupting the fusion process that is determined by the two SNARE proteins. Furthermore, we demonstrated that zinc influx originating from the extracellular fluid arrests autophagy by the same mechanism as lysosomal zinc, confirming the fundamental function of zinc as a participant in membrane trafficking. Last, we revealed that activating MCOLN1 with the agonists, ML-SA5 or MK6-83, triggers cell death of a number of cancer cells by evoking autophagic arrest and subsequent apoptotic response and cell cycle arrest, with little or no effect observed on normal cells. Consistent with the in vitro results, administration of ML-SA5 in Patu 8988 t xenograft mice profoundly suppresses tumor growth and improves survival. These results establish that a lysosomal cation channel, MCOLN1, finely controls oncogenic autophagy in cancer by mediating zinc influx into the cytosol.
Collapse
Affiliation(s)
- Jiansong Qi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yucheng Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, The Sleep Medicine Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangqing Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhongheng Sui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lin Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Hui Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Nan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Rong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengmei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lijuan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yifan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Zhu X, Oguh A, Gingerich MA, Soleimanpour SA, Stoffers DA, Gannon M. Cell Cycle Regulation of the Pdx1 Transcription Factor in Developing Pancreas and Insulin-Producing β-Cells. Diabetes 2021; 70:903-916. [PMID: 33526589 PMCID: PMC7980191 DOI: 10.2337/db20-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Current evidence indicates that proliferating β-cells express lower levels of some functional cell identity genes, suggesting that proliferating cells are not optimally functional. Pdx1 is important for β-cell specification, function, and proliferation and is mutated in monogenic forms of diabetes. However, its regulation during the cell cycle is unknown. Here we examined Pdx1 protein expression in immortalized β-cells, maternal mouse islets during pregnancy, and mouse embryonic pancreas. We demonstrate that Pdx1 localization and protein levels are highly dynamic. In nonmitotic cells, Pdx1 is not observed in constitutive heterochromatin, nucleoli, or most areas containing repressive epigenetic marks. At prophase, Pdx1 is enriched around the chromosomes before Ki67 coating of the chromosome surface. Pdx1 uniformly localizes in the cytoplasm at prometaphase and becomes enriched around the chromosomes again at the end of cell division, before nuclear envelope formation. Cells in S phase have lower Pdx1 levels than cells at earlier cell cycle stages, and overexpression of Pdx1 in INS-1 cells prevents progression toward G2, suggesting that cell cycle-dependent regulation of Pdx1 is required for completion of mitosis. Together, we find that Pdx1 localization and protein levels are tightly regulated throughout the cell cycle. This dynamic regulation has implications for the dichotomous role of Pdx1 in β-cell function and proliferation.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexis Oguh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Morgan A Gingerich
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Program in the Biological Sciences, University of Michigan, Ann Arbor, MI
| | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Health Care System, Ann Arbor, MI
| | - Doris A Stoffers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
27
|
Arnold F, Gout J, Wiese H, Weissinger SE, Roger E, Perkhofer L, Walter K, Scheible J, Prelli Bozzo C, Lechel A, Ettrich TJ, Azoitei N, Hao L, Fürstberger A, Kaminska EK, Sparrer KMJ, Rasche V, Wiese S, Kestler HA, Möller P, Seufferlein T, Frappart PO, Kleger A. RINT1 Regulates SUMOylation and the DNA Damage Response to Preserve Cellular Homeostasis in Pancreatic Cancer. Cancer Res 2021; 81:1758-1774. [PMID: 33531371 DOI: 10.1158/0008-5472.can-20-2633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) still presents with a dismal prognosis despite intense research. Better understanding of cellular homeostasis could identify druggable targets to improve therapy. Here we propose RAD50-interacting protein 1 (RINT1) as an essential mediator of cellular homeostasis in PDAC. In a cohort of resected PDAC, low RINT1 protein expression correlated significantly with better survival. Accordingly, RINT1 depletion caused severe growth defects in vitro associated with accumulation of DNA double-strand breaks (DSB), G2 cell cycle arrest, disruption of Golgi-endoplasmic reticulum homeostasis, and cell death. Time-resolved transcriptomics corroborated by quantitative proteome and interactome analyses pointed toward defective SUMOylation after RINT1 loss, impairing nucleocytoplasmic transport and DSB response. Subcutaneous xenografts confirmed tumor response by RINT1 depletion, also resulting in a survival benefit when transferred to an orthotopic model. Primary human PDAC organoids licensed RINT1 relevance for cell viability. Taken together, our data indicate that RINT1 loss affects PDAC cell fate by disturbing SUMOylation pathways. Therefore, a RINT1 interference strategy may represent a new putative therapeutic approach. SIGNIFICANCE: These findings provide new insights into the aggressive behavior of PDAC, showing that RINT1 directly correlates with survival in patients with PDAC by disturbing the SUMOylation process, a crucial modification in carcinogenesis.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | | | - Elodie Roger
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Karolin Walter
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Jeanette Scheible
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | | | - André Lechel
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Li Hao
- Center for Translational Imaging (MoMAN), Ulm University, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Ewa K Kaminska
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Rasche
- Center for Translational Imaging (MoMAN), Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Medical Centre Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | | | - Alexander Kleger
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany.
| |
Collapse
|
28
|
Seimiya T, Otsuka M, Iwata T, Tanaka E, Sekiba K, Shibata C, Moriyama M, Nakagawa R, Maruyama R, Koike K. Aberrant expression of a novel circular RNA in pancreatic cancer. J Hum Genet 2021; 66:181-191. [PMID: 32879441 DOI: 10.1038/s10038-020-00826-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are produced from pre-mRNAs through a process known as back-splicing. Although circRNAs are expressed under specific conditions, current understanding of their comprehensive expression status is still limited. Here, we performed a large-scale circRNA profiling analysis in human pancreatic ductal adenocarcinoma (PDAC) tissues, using circular RNA-specific RNA sequencing. We identified more than 40,000 previously unknown circRNAs, some of which were upregulated in PDAC tissues, compared with normal pancreatic tissues. We determined the full-length sequence of a circRNA upregulated in PDAC, which was derived from two noncoding RNA loci on chromosome 12. The novel circRNA, named circPDAC RNA, was not expressed in normal human cells, but was expressed in PDAC and other carcinoma cells. While postulated biological functions, such as peptide production from the circPDAC RNA, were not detected, its aberrant expression was confirmed in other PDAC tissues and in serum from a PDAC patient. These results demonstrate that comprehensive studies are necessary to reveal the expression status of circRNAs and that the circPDAC RNA identified here might serve as a novel biomarker for cancers, including PDAC.
Collapse
Affiliation(s)
- Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | | | | | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
29
|
Labib PL, Yaghini E, Davidson BR, MacRobert AJ, Pereira SP. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl Oncol 2021; 14:100886. [PMID: 33059124 PMCID: PMC7566921 DOI: 10.1016/j.tranon.2020.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a potential contrast agent for fluorescence-guided surgery in pancreatic ductal adenocarcinoma (PDAC). However, factors influencing ALA uptake in PDAC have not been adequately assessed. We investigated ALA-induced porphyrin fluorescence in PDAC cell lines CFPAC-1 and PANC-1 and pancreatic ductal cell line H6c7 following incubation with 0.25-1.0 mM ALA for 4-48 h. Fluorescence was assessed qualitatively by microscopy and quantitatively by plate reader and flow cytometry. Haem biosynthesis enzymes and transporters were measured by quantitative polymerase chain reaction (qPCR). CFPAC-1 cells exhibited intense fluorescence under microscopy at low concentrations whereas PANC-1 cells and pancreatic ductal cell line H6c7 showed much lower fluorescence. Quantitative fluorescence studies demonstrated fluorescence saturation in the two PDAC cell lines at 0.5 mM ALA, whereas H6c7 cells showed increasing fluorescence with increasing ALA. Based on the PDAC:H6c7 fluorescence ratio studies, lower ALA concentrations provide better contrast between PDAC and benign pancreatic cells. Studies with qPCR showed upregulation of ALA influx transporter PEPT1 in CFPAC-1, whereas PANC-1 upregulated the efflux transporter ABCG2. We conclude that PEPT1 and ABCG2 expression may be key contributory factors for variability in ALA-induced fluorescence in PDAC.
Collapse
Affiliation(s)
- P L Labib
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - E Yaghini
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - B R Davidson
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - A J MacRobert
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - S P Pereira
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
30
|
Shibayama Y, Takahashi K, Yamaguchi H, Yasuda J, Yamazaki D, Rahman A, Fujimori T, Fujisawa Y, Takai S, Furukawa T, Nakagawa T, Ohsaki H, Kobara H, Wong JH, Masaki T, Yuzawa Y, Kiyomoto H, Yachida S, Fujimoto A, Nishiyama A. Aberrant (pro)renin receptor expression induces genomic instability in pancreatic ductal adenocarcinoma through upregulation of SMARCA5/SNF2H. Commun Biol 2020; 3:724. [PMID: 33247206 PMCID: PMC7695732 DOI: 10.1038/s42003-020-01434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
(Pro)renin receptor [(P)RR] has a role in various diseases, such as cardiovascular and renal disorders and cancer. Aberrant (P)RR expression is prevalent in pancreatic ductal adenocarcinoma (PDAC) which is the most common pancreatic cancer. Here we show whether aberrant expression of (P)RR directly leads to genomic instability in human pancreatic ductal epithelial (HPDE) cells. (P)RR-expressing HPDE cells show obvious cellular atypia. Whole genome sequencing reveals that aberrant (P)RR expression induces large numbers of point mutations and structural variations at the genome level. A (P)RR-expressing cell population exhibits tumour-forming ability, showing both atypical nuclei characterised by distinctive nuclear bodies and chromosomal abnormalities. (P)RR overexpression upregulates SWItch/Sucrose Non-Fermentable (SWI/SNF)-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (SMARCA5) through a direct molecular interaction, which results in the failure of several genomic stability pathways. These data reveal that aberrant (P)RR expression contributes to the early carcinogenesis of PDAC. Yuki Shibayama et al. find that high expression of (pro)renin receptor [(P)RR] in human pancreatic ductal cells causes increased genomic instability, leading to the development of pancreatic ductal adenocarcinoma. They show that (P)RR exerts its carcinogenic effects through direct binding and activation of the chromatin regulator SMARCA5.
Collapse
Affiliation(s)
- Yuki Shibayama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, 470-1192, Japan
| | - Hisateru Yamaguchi
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University School of Medicine, Aichi, 470-1192, Japan.,Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Mie, 512-8045, Japan
| | - Jun Yasuda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, 980-8573, Japan.,Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Miyagi, 981-1293, Japan
| | - Daisuke Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Takayuki Fujimori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Fujimori Clinic for Internal Medicine and Gastroenterology, Kagawa, 761-8075, Japan
| | - Yoshihide Fujisawa
- Health Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Osaka, 569-8686, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Miyagi, 980-8575, Japan
| | - Tsutomu Nakagawa
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, Hyogo, 654-0142, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Jing Hao Wong
- Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Tokyo, 113-0033, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, 470-1192, Japan
| | - Hideyasu Kiyomoto
- Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, 980-8573, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Faculty of Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Tokyo, 113-0033, Japan.
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| |
Collapse
|
31
|
Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M, Safavi M, Weisenburger S, Klein C, Vogel V, Falcone M, Insua-Rodríguez J, Reitberger M, Thiel V, Kossi SO, Muckenhuber A, Sarai K, Lee AYL, Backx E, Zarei S, Gaida MM, Rodríguez-Paredes M, Donato E, Yen HY, Eils R, Schlesner M, Pfarr N, Hackert T, Plass C, Brors B, Steiger K, Weichenhan D, Arda HE, Rooman I, Kopp JL, Strobel O, Weichert W, Sprick MR, Trumpp A. Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discov 2020; 11:638-659. [PMID: 33060108 DOI: 10.1158/2159-8290.cd-20-1202] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Elisa Espinet
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Büscher
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mariam Safavi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Weisenburger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Corinna Klein
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Vanessa Vogel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Mattia Falcone
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Manuel Reitberger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Thiel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Steffi O Kossi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | | | - Karnjit Sarai
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Y L Lee
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyne Backx
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soheila Zarei
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias M Gaida
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medical Center JGU Mainz, Mainz, Germany
| | | | - Elisa Donato
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany.,Digital Health Centre, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, University Hospital and University of Heidelberg, Heidelberg, Germany
| | | | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Thilo Hackert
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Benedikt Brors
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Dieter Weichenhan
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center of Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilse Rooman
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oliver Strobel
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,National Center of Tumor Diseases, NCT, Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Martin R Sprick
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
32
|
Huang B, Trujillo MA, Fujikura K, Qiu M, Chen F, Felsenstein M, Zhou C, Skaro M, Gauthier C, Macgregor-Das A, Hutchings D, Hong SM, Hruban RH, Eshleman JR, Thompson ED, Klein AP, Goggins M, Wood LD, Roberts NJ. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. J Pathol 2020; 252:252-262. [PMID: 32696980 DOI: 10.1002/path.5515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are commonly identified non-invasive cyst-forming pancreatic neoplasms with the potential to progress into invasive pancreatic adenocarcinoma. There are few in vitro models with which to study the biology of IPMNs and their progression to invasive carcinoma. Therefore, we generated a living biobank of organoids from seven normal pancreatic ducts and ten IPMNs. We characterized eight IPMN organoid samples using whole genome sequencing and characterized five IPMN organoids and seven normal pancreatic duct organoids using transcriptome sequencing. We identified an average of 11,344 somatic mutations in the genomes of organoids derived from IPMNs, with one sample harboring 61,537 somatic mutations enriched for T→C transitions and T→A transversions. Recurrent coding somatic mutations were identified in 15 genes, including KRAS, GNAS, RNF43, PHF3, and RBM10. The most frequently mutated genes were KRAS, GNAS, and RNF43, with somatic mutations identified in six (75%), four (50%), and three (37.5%) IPMN organoid samples, respectively. On average, we identified 36 structural variants in IPMN derived organoids, and none had an unstable phenotype (> 200 structural variants). Transcriptome sequencing identified 28 genes differentially expressed between normal pancreatic duct organoid and IPMN organoid samples. The most significantly upregulated and downregulated genes were CLDN18 and FOXA1. Immunohistochemical analysis of FOXA1 expression in 112 IPMNs, 113 mucinous cystic neoplasms, and 145 pancreatic ductal adenocarcinomas demonstrated statistically significant loss of expression in low-grade IPMNs (p < 0.0016), mucinous cystic neoplasms (p < 0.0001), and pancreatic ductal adenocarcinoma of any histologic grade (p < 0.0001) compared to normal pancreatic ducts. These data indicate that FOXA1 loss of expression occurs early in pancreatic tumorigenesis. Our study highlights the utility of organoid culture to study the genetics and biology of normal pancreatic duct and IPMNs. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Maria A Trujillo
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miaozhen Qiu
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Fei Chen
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthäus Felsenstein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cancan Zhou
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Skaro
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Gauthier
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle Hutchings
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Bioinformatics Data Mining Repurposes the JAK2 (Janus Kinase 2) Inhibitor Fedratinib for Treating Pancreatic Ductal Adenocarcinoma by Reversing the KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog)-Driven Gene Signature. J Pers Med 2020; 10:jpm10030130. [PMID: 32947833 PMCID: PMC7563462 DOI: 10.3390/jpm10030130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive and lethal cancer types due to the late diagnosis, high metastatic potential, and drug resistance. The development of novel therapeutic strategies is urgently needed. KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) is the major driver mutation gene for PDAC tumorigenesis. In this study, we mined cancer genomics data and identified a common KRAS-driven gene signature in PDAC, which is related to cell–cell and cell–extracellular matrix (ECM) interactions. Higher expression of this gene signature was associated with poorer overall survival of PDAC patients. Connectivity Map (CMap) analysis and drug sensitivity profiling predicted that a clinically approved JAK2 (Janus kinase 2)-selective inhibitor, fedratinib (also known as TG-101348), could reverse the KRAS-driven gene signature and exhibit KRAS-dependent anticancer activity in PDAC cells. As an approved treatment for myelofibrosis, the pharmacological and toxicological profiles of fedratinib have been well characterized. It may be repurposed for treating KRAS-driven PDAC in the future.
Collapse
|
34
|
Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Res 2020; 80:4932-4945. [PMID: 32816911 DOI: 10.1158/0008-5472.can-20-1255] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Abstract
Oncogene-induced metabolic reprogramming is a hallmark of pancreatic cancer (PDAC), yet the metabolic drivers of metastasis are unclear. In PDAC, obesity and excess fatty acids accelerate tumor growth and increase metastasis. Here, we report that excess lipids, stored in organelles called lipid droplets (LD), are a key resource to fuel the energy-intensive process of metastasis. The oncogene KRAS controlled the storage and utilization of LD through regulation of hormone-sensitive lipase (HSL), which was downregulated in human PDAC. Disruption of the KRAS-HSL axis reduced lipid storage, reprogrammed tumor cell metabolism, and inhibited invasive migration in vitro and metastasis in vivo. Finally, microscopy-based metabolic analysis revealed that migratory cells selectively utilize oxidative metabolism during the process of migration to metabolize stored lipids and fuel invasive migration. Taken together, these results reveal a mechanism that can be targeted to attenuate PDAC metastasis. SIGNIFICANCE: KRAS-dependent regulation of HSL biases cells towards lipid storage for subsequent utilization during invasion of pancreatic cancer cells, representing a potential target for therapeutic intervention.See related commentary by Man et al., p. 4886.
Collapse
Affiliation(s)
- Cody N Rozeveld
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Katherine M Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Lizhi Zhang
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota. .,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Xie VK, He J, Xie K. Protein arginine methylation promotes therapeutic resistance in human pancreatic cancer. Cytokine Growth Factor Rev 2020; 55:58-69. [PMID: 32739260 DOI: 10.1016/j.cytogfr.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.
Collapse
Affiliation(s)
- Victoria Katie Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jie He
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
36
|
Felsenstein M, Trujillo MA, Huang B, Nanda N, Jiang Z, Jeong YJ, Pflüger M, Goggins MG, Hruban RH, Thompson ED, Heaphy CM, Roberts NJ, Wood LD. Generation and characterization of a cell line from an intraductal tubulopapillary neoplasm of the pancreas. J Transl Med 2020; 100:1003-1013. [PMID: 32005909 PMCID: PMC7316603 DOI: 10.1038/s41374-020-0372-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Intraductal tubulopapillary neoplasm (ITPN) is a distinct precancerous lesion in the pancreas with unique clinical and molecular features. Although in vitro studies in two-dimensional culture have led to numerous important insights in pancreatic cancer, such models are currently lacking for precancerous lesions. In this study, we report the generation and characterization of a cell line from a human pancreatic ITPN. Neoplastic cells were initially cultured in a three-dimensional organoid system, followed by transfer to two-dimensional culture. RNA sequencing revealed a gene expression profile consistent with pancreatic ductal origin, and whole genome sequencing identified many somatic mutations (including in genes involved in DNA repair and Wnt signaling) and structural rearrangements. In vitro characterization of the tumorigenic potential demonstrated a phenotype between that of normal pancreatic ductal cells and cancer cell lines. This cell line represents a valuable resource for interrogation of unique ITPN biology, as well as precancerous pancreatic lesions more generally.
Collapse
Affiliation(s)
- Matthäus Felsenstein
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maria A. Trujillo
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bo Huang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Neha Nanda
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Zhengdong Jiang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yea Ji Jeong
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Michael Pflüger
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael G. Goggins
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ralph H. Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Elizabeth D. Thompson
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Christopher M. Heaphy
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Nicholas J. Roberts
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,To whom correspondence should be addressed: Nicholas J. Roberts, PhD, VetMB, CRB2 Room 342, 1550 Orleans Street, Baltimore, MD 21231, (410) 955-3511, ; Laura D. Wood, MD, PhD, CRB2 Room 345, 1550 Orleans Street, Baltimore, MD 21231, (410) 955-3511,
| | - Laura D. Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21287,To whom correspondence should be addressed: Nicholas J. Roberts, PhD, VetMB, CRB2 Room 342, 1550 Orleans Street, Baltimore, MD 21231, (410) 955-3511, ; Laura D. Wood, MD, PhD, CRB2 Room 345, 1550 Orleans Street, Baltimore, MD 21231, (410) 955-3511,
| |
Collapse
|
37
|
Malinda RR, Zeeberg K, Sharku PC, Ludwig MQ, Pedersen LB, Christensen ST, Pedersen SF. TGFβ Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Front Oncol 2020; 10:687. [PMID: 32457840 PMCID: PMC7221161 DOI: 10.3389/fonc.2020.00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related death, with a 5-year survival of <10% and severely limited treatment options. PDAC hallmarks include profound metabolic acid production and aggressive local proliferation and invasiveness. This phenotype is supported by upregulated net acid extrusion and epithelial-to-mesenchymal transition (EMT), the latter typically induced by aberrant transforming growth factor-β (TGFβ) signaling. It is, however, unknown whether TGFβ-induced EMT and upregulation of acid extrusion are causally related. Here, we show that mRNA and protein expression of the net acid extruding transporters Na+/H+ exchanger 1 (NHE1, SLC9A1) and Na+, HCO3- cotransporter 1 (NBCn1, SLC4A7) are increased in a panel of human PDAC cell lines compared to immortalized human pancreatic ductal epithelial (HPDE) cells. Treatment of Panc-1 cells (which express SMAD4, required for canonical TGFβ signaling) with TGFβ-1 for 48 h elicited classical EMT with down- and upregulation of epithelial and mesenchymal markers, respectively, in a manner inhibited by SMAD4 knockdown. Accordingly, less pronounced EMT was induced in BxPC-3 cells, which do not express SMAD4. TGFβ-1 treatment elicited a SMAD4-dependent increase in NHE1 expression, and a smaller, SMAD4-independent increase in NBCn1 in Panc-1 cells. Consistent with this, TGFβ-1 treatment led to elevated intracellular pH and increased net acid extrusion capacity in Panc-1 cells, but not in BxPC-3 cells, in an NHE1-dependent manner. Proliferation was increased in Panc-1 cells and decreased in BxPC-3 cells, upon TGFβ-1 treatment, and this, as well as EMT per se, was unaffected by NHE1- or NBCn1 inhibition. TGFβ-1-induced EMT was associated with a 4-fold increase in Panc-1 cell invasiveness, which further increased ~10-fold upon knockdown of the tumor suppressor Merlin (Neurofibromatosis type 2). Knockdown of NHE1 or NBCn1 abolished Merlin-induced invasiveness, but not that induced by TGFβ-1 alone. In conclusion, NHE1 and NBCn1 expression and NHE-dependent acid extrusion are upregulated during TGFβ-1-induced EMT of Panc-1 cells. NHE1 upregulation is SMAD4-dependent, and SMAD4-deficient BxPC-3 cells show no change in pHi regulation. NHE1 and NBCn1 are not required for EMT per se or EMT-associated proliferation changes, but are essential for the potentiation of invasiveness induced by Merlin knockdown.
Collapse
Affiliation(s)
- Raj R Malinda
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zeeberg
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Patricia C Sharku
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Q Ludwig
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren T Christensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis 2020; 9:43. [PMID: 32366853 PMCID: PMC7198506 DOI: 10.1038/s41389-020-0227-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.
Collapse
|
39
|
Wong CH, Li CH, He Q, Chan SL, Tong JHM, To KF, Lin LZ, Chen Y. Ectopic HOTTIP expression induces noncanonical transactivation pathways to promote growth and invasiveness in pancreatic ductal adenocarcinoma. Cancer Lett 2020; 477:1-9. [PMID: 32120024 DOI: 10.1016/j.canlet.2020.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
HOXA transcript at the distal tip (HOTTIP), a long noncoding RNA, is upregulated in pancreatic ductal adenocarcinoma (PDAC), but the HOTTIP-mediated oncogenic pathway is not fully understood. We identified canonical HOTTIP-HOXA13 targets, CYP26B1, CLIC5, CHI3L1 and UCP2-responsible for cell growth and cell invasion. Genome-wide analysis revealed that 38% of HOTTIP-regulated genes contain H3K4me3 and HOTTIP enrichment at their promoters, without HOXA13 binding. HOTTIP complexes with WDR5-MLL1 to trans-activate oncogenic proteins CYB5R2, SULT1A1, KIF26A, SLC1A4, and TSC22D1 by directly inducing H3K4me3 at their promoters. The WDR5, MLL1, and H3K4me3 levels at their promoters and their expression levels are sensitive to HOTTIP expression. These results indicate the importance of the noncanonical trans-acting HOTTIP-WDR5-MLL1 pathway in the HOTTIP regulatory mechanism by promoting oncogenic protein expression. Furthermore, HOTTIP is regulated by miR-497 in PDAC cells, but HOTTIP is negatively correlated with miR-497 levels in PDAC tissues. In conclusion, HOTTIP is upregulated in PDAC due to the loss of the inhibitory miR-497; HOTTIP promotes PDAC progression through the canonical HOTTIP-HOXA13 axis. A novel noncanonical trans-acting HOTTIP-WDR5-MLL1-H3K4me3 pathway is also delineated.
Collapse
Affiliation(s)
- Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qifang He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joanna Hung-Man Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|
40
|
Wu C, Yang P, Liu B, Tang Y. Is there a CDKN2A-centric network in pancreatic ductal adenocarcinoma? Onco Targets Ther 2020; 13:2551-2562. [PMID: 32273725 PMCID: PMC7108878 DOI: 10.2147/ott.s232464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has a high mortality rate and its incidence has risen rapidly in recent years. Meanwhile, the diagnosis and treatment of this cancer remain challenging. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, but, currently, no sufficiently effective modalities for its treatment exist. The early diagnosis rate of pancreatic cancer is low and most patients have reached an advanced stage at the time of diagnosis. PDAC evolves from precancerous lesions and is highly aggressive and metastatic. It is essential to understand how the disease progresses and metastasizes. CDKN2A mutations are very common in PDAC. Therefore, here, we have performed a literature review and discuss the role of CDKN2A and some related genes in the development of PDAC, as well as the basis of gene targeting with a correlation coefficient of CDKN2A above 0.9 on the STRING website. It is noteworthy that the interaction of CDKN2A with each gene has been reported in the literature. The role of these genes and CDKN2A in PDAC may provide new directions that will advance the current knowledge base and treatment options since cancer progression is realized through interactions among cells. Our findings provide new insights into the treatment of PADC that can, to some extent, improve the diagnosis rate and quality of life of patients.
Collapse
Affiliation(s)
- Chu Wu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ping Yang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Bingxue Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunlian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
41
|
Wong CH, Lou UK, Li Y, Chan SL, Tong JH, To KF, Chen Y. CircFOXK2 Promotes Growth and Metastasis of Pancreatic Ductal Adenocarcinoma by Complexing with RNA-Binding Proteins and Sponging MiR-942. Cancer Res 2020; 80:2138-2149. [PMID: 32217695 DOI: 10.1158/0008-5472.can-19-3268] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/04/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
The detailed biological functions of circular RNA (circRNA) are largely unexplored. Using circRNA sequencing, we identified 169 differentially expressed circRNA in pancreatic ductal adenocarcinoma (PDAC) cells compared with nontumor human pancreatic ductal epithelial cells. Among them, circFOXK2 was validated with significant upregulation in PDAC cells and 63% of primary tumors (53 of 84). circFOXK2 promoted cell growth, migration, and invasion and was involved in cell-cycle progression and apoptosis. circFOXK2 contained multiple miRNA binding sites, functioning as a sponge for miR-942, which in turn promoted expression of ANK1, GDNF, and PAX6. A novel and highly specific circRNA-pulldown followed by mass spectrometry analysis identified 94 circFOXK2-interacting proteins, which were involved in cell adhesion, mRNA splicing, and structural molecule activity. Of these, circFOKX2 interactions with YBX1 and hnRNPK enhanced expression of oncogenes NUF2 and PDXK. Knockdown of circFOXK2 reduced binding of YBX1 and hnRNPK to NUF2 and PDXK, in turn decreasing their expression. Collectively, our findings demonstrate that circFOXK2 in complex with YBX1 and hnRNPK promotes expression of oncogenic proteins that contribute to PDAC progression. SIGNIFICANCE: This study reveals a prominent role for the circRNA circFOXK2 in PDAC progression, suggesting that circFOXK2 might be a novel diagnostic marker for PDAC.
Collapse
Affiliation(s)
- Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Ut Kei Lou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Youjia Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Stephen L Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joanna Hm Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
42
|
Yang J, Dong Z, Ren A, Fu G, Zhang K, Li C, Wang X, Cui H. Antibiotic tigecycline inhibits cell proliferation, migration and invasion via down-regulating CCNE2 in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:4245-4260. [PMID: 32141702 PMCID: PMC7171345 DOI: 10.1111/jcmm.15086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, many researches have reported that antibiotic tigecycline has significant effect on cancer treatment. However, biomedical functions and molecular mechanisms of tigecycline in human pancreatic ductal adenocarcinoma (PDAC) remain unclear. In the current study, we tried to assess the effect of tigecycline in PDAC cells. AsPC‐1 and HPAC cells were treated with indicated concentrations of tigecycline for indicated time, and then, MTT, BrdU and soft agar assay were used to test cell proliferation. The effect of tigecycline on cell cycle and cellular apoptosis was tested by cytometry. Migration and invasion were detected by wound healing assay and transwell migration/invasion assay. Expressions of cell cycle‐related and migration/invasion‐related protein were determined by using Western blot. The results revealed that tigecycline observably suppressed cell proliferation by inducing cell cycle arrest at G0/G1 phase and blocked cell migration/invasion via holding back the epithelial‐mesenchymal transition (EMT) process in PDAC. In addition, tigecycline also remarkably blocked tumorigenecity in vivo. Furthermore, the effects of tigecycline alone or combined with gemcitabine in vitro or on PDAC xenografts were also performed. The results showed that tigecycline enhanced the chemosensitivity of PDAC cells to gemcitabine. Interestingly, we found CCNE2 expression was declined distinctly after tigecycline treatment. Then, CCNE2 was overexpressed to rescue tigecycline‐induced effect. The results showed that CCNE2 overexpression significantly rescued tigecycline‐inhibited cell proliferation and migration/invasion. Collectively, we showed that tigecycline inhibits cell proliferation, migration and invasion via down‐regulating CCNE2, and tigecycline might be used as a potential drug for PDAC treatment alone or combined with gemcitabine.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Aishu Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Gang Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiangwei Wang
- Department of Urology, Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
43
|
Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, Stock C, Pedersen SF. The Vacuolar H + ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells 2020; 9:E465. [PMID: 32085585 PMCID: PMC7072798 DOI: 10.3390/cells9020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.
Collapse
Affiliation(s)
- Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Sofie Hagelund
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Christian Stock
- Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| |
Collapse
|
44
|
Turner A, Bond DR, Vuong QV, Chalmers A, Beckett EL, Weidenhofer J, Scarlett CJ. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 2020; 47:2073-2084. [PMID: 32065323 DOI: 10.1007/s11033-020-05307-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Abstract
Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines (≥ 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
| | - Danielle R Bond
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Anita Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Emma L Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.,Hunter Medical Research Institute, New Lambton Heights, 2305, Australia
| | - Judith Weidenhofer
- Hunter Medical Research Institute, New Lambton Heights, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, 2258, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| |
Collapse
|
45
|
Induction of apoptosis and ferroptosis by a tumor suppressing magnetic field through ROS-mediated DNA damage. Aging (Albany NY) 2020; 12:3662-3681. [PMID: 32074079 PMCID: PMC7066880 DOI: 10.18632/aging.102836] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Magnetic field (MF) is being used in antitumor treatment; however, the underlying biological mechanisms remain unclear. In this study, the potency and mechanism of a previously published tumor suppressing MF exposure protocol were further investigated. This protocol, characterized as a 50 Hz electromagnetic field modulated by static MF with time-average intensity of 5.1 mT, when applied for 2 h daily for over 3 consecutive days, selectively inhibited the growth of a broad spectrum of tumor cell lines including lung cancer, gastric cancer, pancreatic cancer and nephroblastoma. The level of intracellular reactive oxygen species (ROS) increased shortly after field exposure and persisted. Subsequently, pronounced DNA damage and activation of DNA repair pathways were identified both in vitro and in vivo. Furthermore, use of free radical scavenger alleviated DNA damage and partially reduced cell death. Finally, this field was found to inhibit cell proliferation, and simultaneously induced two types of programmed cell death, apoptosis and ferroptosis. In conclusion, this tumor suppressing MF could determine cell fate through ROS-induced DNA damage, inducing oxidative stress and activation of the DNA damage repair pathways, eventually lead to apoptosis and ferroptosis, as well as inhibition of tumor growth.
Collapse
|
46
|
A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020; 31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.
Collapse
|
47
|
Fuentes-Baile M, Bello-Gil D, Pérez-Valenciano E, Sanz JM, García-Morales P, Maestro B, Ventero MP, Alenda C, Barberá VM, Saceda M. CLytA-DAAO, Free and Immobilized in Magnetic Nanoparticles, induces Cell Death in Human Cancer Cells. Biomolecules 2020; 10:biom10020222. [PMID: 32028649 PMCID: PMC7072168 DOI: 10.3390/biom10020222] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids generating hydrogen peroxide, a potential producer of reactive oxygen species. In this study, we used a CLytA-DAAO chimera, both free and bound to magnetic nanoparticles, against colon carcinoma, pancreatic adenocarcinoma, and glioblastoma cell lines. We found that the enzyme induces cell death in most of the cell lines tested and its efficiency increases significantly when it is immobilized in nanoparticles. We also tested this enzyme therapy in non-tumor cells, and we found that there is not cell death induction, or it is significantly lower than in tumor cells. The mechanism triggering cell death is apparently a classical apoptosis pathway in the glioblastoma cell lines, while in colon and pancreatic carcinoma cell lines, CLytA-DAAO-induced cell death is a necrosis. Our results constitute a proof of concept that an enzymatic therapy, based on magnetic nanoparticles-delivering CLytA-DAAO, could constitute a useful therapy against cancer and besides it could be used as an enhancer of other treatments such as epigenetic therapy, radiotherapy, and treatments based on DNA repair.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), C/Maestro Alonso, 10, 03005 Alicante, Spain; (M.F.-B.); (M.P.V.); (C.A.)
- Unidad de Investigación. Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (P.G.-M.); (V.M.B.)
| | - Daniel Bello-Gil
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
| | - Elizabeth Pérez-Valenciano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
| | - Jesús M. Sanz
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
- Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Pilar García-Morales
- Unidad de Investigación. Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (P.G.-M.); (V.M.B.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
| | - Beatriz Maestro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
- Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - María P. Ventero
- Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), C/Maestro Alonso, 10, 03005 Alicante, Spain; (M.F.-B.); (M.P.V.); (C.A.)
| | - Cristina Alenda
- Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), C/Maestro Alonso, 10, 03005 Alicante, Spain; (M.F.-B.); (M.P.V.); (C.A.)
| | - Víctor M. Barberá
- Unidad de Investigación. Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (P.G.-M.); (V.M.B.)
- Unidad de Genética Molecular. Hospital General Universitario de Elche. Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain
| | - Miguel Saceda
- Unidad de Investigación. Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (P.G.-M.); (V.M.B.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (D.B.-G.); (E.P.-V.); (J.M.S.); (B.M.)
- Correspondence: ; Tel.: +34-966658432
| |
Collapse
|
48
|
Kim SS, Xu S, Cui J, Poddar S, Le TM, Hayrapetyan H, Li L, Wu N, Moore AM, Zhou L, Yu AC, Dann AM, Elliott IA, Abt ER, Kim W, Dawson DW, Radu CG, Donahue TR. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics 2020; 10:829-840. [PMID: 31903153 PMCID: PMC6929997 DOI: 10.7150/thno.40195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/05/2019] [Indexed: 01/10/2023] Open
Abstract
Arginine (Arg) deprivation is a promising therapeutic approach for tumors with low argininosuccinate synthetase 1 (ASS1) expression. However, its efficacy as a single agent therapy needs to be improved as resistance is frequently observed. Methods: A tissue microarray was performed to assess ASS1 expression in surgical specimens of pancreatic ductal adenocarcinoma (PDAC) and its correlation with disease prognosis. An RNA-Seq analysis examined the role of ASS1 in regulating the global gene transcriptome. A high throughput screen of FDA-approved oncology drugs identified synthetic lethality between histone deacetylase (HDAC) inhibitors and Arg deprivation in PDAC cells with low ASS1 expression. We examined HDAC inhibitor panobinostat (PAN) and Arg deprivation in a panel of human PDAC cell lines, in ASS1-high and -knockdown/knockout isogenic models, in both anchorage-dependent and -independent cultures, and in multicellular complex cultures that model the PDAC tumor microenvironment. We examined the effects of combined Arg deprivation and PAN on DNA damage and the protein levels of key DNA repair enzymes. We also evaluated the efficacy of PAN and ADI-PEG20 (an Arg-degrading agent currently in Phase 2 clinical trials) in xenograft models with ASS1-low and -high PDAC tumors. Results: Low ASS1 protein level is a negative prognostic indicator in PDAC. Arg deprivation in ASS1-deficient PDAC cells upregulated asparagine synthetase (ASNS) which redirected aspartate (Asp) from being used for de novo nucleotide biosynthesis, thus causing nucleotide insufficiency and impairing cell cycle S-phase progression. Comprehensively validated, HDAC inhibitors and Arg deprivation showed synthetic lethality in ASS1-low PDAC cells. Mechanistically, combined Arg deprivation and HDAC inhibition triggered degradation of a key DNA repair enzyme C-terminal-binding protein interacting protein (CtIP), resulting in DNA damage and apoptosis. In addition, S-phase-retained ASS1-low PDAC cells (due to Arg deprivation) were also sensitized to DNA damage, thus yielding effective cell death. Compared to single agents, the combination of PAN and ADI-PEG20 showed better efficacy in suppressing ASS1-low PDAC tumor growth in mouse xenograft models. Conclusion: The combination of PAN and ADI-PEG20 is a rational translational therapeutic strategy for treating ASS1-low PDAC tumors through synergistic induction of DNA damage.
Collapse
|
49
|
Plant-derived saccharides and their inhibitory potential on metastasis associated cellular processes of pancreatic ductal adenocarcinoma cells. Carbohydr Res 2019; 490:107903. [PMID: 32171073 DOI: 10.1016/j.carres.2019.107903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
This study intends to investigate the inhibitory potential of different plant derived saccharides on cell migration and adhesion of pancreatic ductal adenocarcinoma (PDAC) cells to microvascular liver endothelium, particularly considering the role of transmembranous galectin-3. PDAC cell lines PancTu1 and Panc1 were characterized by considerable (transmembranous) galectin-3 (Gal3) expression. SiRNA mediated Gal3 knockdown as well as treatment with differentially processed pectins and arabinogalactan-proteins (AGPs) did not impact on cell migration of either PDAC cell line. In contrast, Gal3 knockdown reduced adhesion of PDAC cells to the liver endothelial cell line TMNK-1 being more pronounced in Panc1 cells. Similarly, plant derived substances did not impact cell adhesion of PancTu1 cells while partially hydrolyzed citrus pectin (MCP), pectinase-treated MCP (MCPPec) and partially hydrolized AGP (AGPTFA) clearly diminished adhesive properties of Panc1 cells. MCPPec or AGPTFA could not further intensify the adhesion reducing effect of galectin-3 knockdown, indicating that these plant derived polysaccharides are able to inhibit PDAC cell adhesion to liver endothelial cells in a galectin-3 dependent manner. Overall, these data suggest an inhibitory potential of plant derived processed saccharides which have undergone chemical modification in impairing PDAC cell adhesion to liver endothelium.
Collapse
|
50
|
Song HY, Zhou L, Hou XF, Lian H. Anoctamin 5 regulates cell proliferation and migration in pancreatic cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4263-4270. [PMID: 31933826 PMCID: PMC6949878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Pancreatic cancer (PC) has one of the worst survival rates of all cancers. Anoctamin (ANO) inlcudes a family of Ca2+-activated Cl- channels (CaCCs) that participate in tumorigenesis and progression. However, the exact role of ANO5 in PC has not yet been clarified. Our previous study showed that ANO5 is highly expressed in the epithelial cells of the digestive tract, but there have been no reports of ANO5 expression in normal pancreatic tissue and in PC tissue. In the present study, we investigated the expression of ANO5 in normal pancreatic tissues and PC tissues using immunohistochemistry. The results indicated that ANO5 expression was significantly elevated in PC tissues compared with normal pancreatic tissues. Next, we investigated the expression of ANO5 in pancreatic ductal epithelial cells and PC cells using western blotting and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). The results indicated that ANO5 expression was significantly elevated in PC cells compared with pancreatic ductal epithelial cells. The impact of siRNA-mediated ANO5 knockdown on PC cell proliferation and migration was detected using CCK-8 assays and scratch experiments. The results indicated that ANO5 siRNA reduced the proliferation and migration of PC cells. Collectively, the results suggest that downregulation of ANO5 inhibits the proliferation and migration of PC cells. Therefore, ANO5 is potentially a novel therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Hai-Yan Song
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan Province, China
- Xinxiang Key Laboratory of Molecular NeurologyXinxiang 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang 453003, Henan Province, China
| | - Li Zhou
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan Province, China
- Xinxiang Key Laboratory of Molecular NeurologyXinxiang 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang 453003, Henan Province, China
| | - Xin-Fang Hou
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhou 450008, Henan Province, China
| | - Hui Lian
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan Province, China
- Xinxiang Key Laboratory of Molecular NeurologyXinxiang 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang 453003, Henan Province, China
| |
Collapse
|