1
|
Sagathia V, Patel C, Beladiya J, Patel S, Sheth D, Shah G. Tankyrase: a promising therapeutic target with pleiotropic action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3363-3374. [PMID: 37338576 DOI: 10.1007/s00210-023-02576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) enzymes belong to the poly (ADP-ribose) polymerase (PARP) family participates in process of poly-ADP-ribosylation of different target proteins which leads to ubiquitin-mediated proteasomal degradation. Tankyrases are also involved in the pathophysiology of many diseases, especially cancer. Their functions include cell cycle homeostasis (primarily in mitosis), telomere maintenance, Wnt signaling pathway regulation, and insulin signaling (particularly GLUT4 translocation). Studies have implicated that genetic changes, mutations in the tankyrase coding sequence, or up regulation and down regulation of tankyrase are reflected in the numerous disease conditions. Investigations are pursued to develop putative molecules that target tankyrase in various diseases such as cancer, obesity, osteoarthritis, fibrosis, cherubism, and diabetes, thereby providing a new therapeutic treatment option. In the present review, we described the structure and function of tankyrase along with its role in different disease conditions. Furthermore, we also presented cumulative experimental evidences of different drugs acting on tankyrase.
Collapse
Affiliation(s)
- Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
2
|
Berdiaki A, Thrapsanioti LN, Giatagana EM, K Karamanos N, C Savani R, N Tzanakakis G, Nikitovic D. RHAMM/hyaluronan inhibit β-catenin degradation, enhance downstream signaling, and facilitate fibrosarcoma cell growth. Mol Biol Rep 2023; 50:8937-8947. [PMID: 37710072 DOI: 10.1007/s11033-023-08763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. β-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/β-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/β-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/β-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key β-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of β-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/β-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding β-catenin and Axin-2 at different cellular compartments to increase β-catenin expression, transcriptional activity, and fibrosarcoma growth.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Lydia-Nefeli Thrapsanioti
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | | | - Rashmin C Savani
- Department of Pediatrics, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100296, Gainesville, FL, USA
| | - George N Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
3
|
Jian C, Jing Z, Yinhang W, Jinlong D, Yuefen P, Quan Q, Shuwen H. Colorectal cancer and gut viruses: a visualized analysis based on CiteSpace knowledge graph. Front Microbiol 2023; 14:1239818. [PMID: 37928670 PMCID: PMC10622771 DOI: 10.3389/fmicb.2023.1239818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background Gut microbiome is a complex community of microbes present in the human gut and plays an important role in the occurrence and progression of colorectal cancer (CRC). However, the relationship between virus and CRC has not been fully understood. Objective To explore the hot spots and research trends in the field of CRC and virus. Methods By using the bibliometric analysis tool CiteSpace and based on the articles of the Web of Science Core Collection (WoSCC) database, the country, institution, highly cited literature, keywords and so on were visually analyzed. Results A total of 356 research articles on CRC from 2001 to 2023 were thoroughly analyzed. The USA and China have made the largest contribution in the field of virus and CRC. The Helmholtz Association published the most papers. There were relatively few cooperations among institutions from different countries. The results of keyword cluster analysis proved that the literature on the relationship between human cytomegalovirus (CMV) and CRC was the most widely studied aspect in this field. "Gut microbiota," "inflammatory bowel disease," "hepatitis b virus," and "human papillomavirus infection" are the current research hotspots; "oncolytic virus," "apoptosis," and "gut microbiome" are the recent research frontiers and should be paid closer attention. Conclusion By using CiteSpace bibliometric software, the visual analysis reflected the research trends and hot topics of virus and CRC. In addition, the prevalence and mechanism of specific virus on CRC were also reviewed, which provides valuable references for future CRC research.
Collapse
Affiliation(s)
- Chu Jian
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Zhuang Jing
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Wu Yinhang
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Duan Jinlong
- Huzhou Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Pan Yuefen
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Qi Quan
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| | - Han Shuwen
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Huzhou, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, China
| |
Collapse
|
4
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
5
|
Dong Z, Shi R, Li P, Song X, Dong F, Zhu J, Wu R, Liang Z, Du M, Wang J, Yang Z. Does postcholecystectomy increase the risk of colorectal cancer? Front Microbiol 2023; 14:1194419. [PMID: 37426004 PMCID: PMC10324655 DOI: 10.3389/fmicb.2023.1194419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
With the increasing number of cholecystectomy and the high proportion of colorectal cancer in malignant tumors, the question of whether cholecystectomy is a risk factor for colorectal disease has been widely concerned. After reviewing the literature at home and abroad, the authors will summarize the research progress of the correlation between the occurrence of colorectal tumors after cholecystectomy, in order to provide help for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ruixian Shi
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Pengda Li
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Fan Dong
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jianmin Zhu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Department of General Surgery, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhi Liang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Mingyue Du
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Zhigang Yang
- Department of Urology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
6
|
Zhong L, Jiang W, RutieYin, Liu H, Song L. CTNNB1 p.D32A (c.95A > C) somatic mutation in stage I grade 1 endometrioid endometrial carcinoma with lung metastasis: a case report. BMC Med Genomics 2023; 16:137. [PMID: 37328769 PMCID: PMC10273753 DOI: 10.1186/s12920-023-01570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Most endometrial cancers are of low histological grade and uterine-confined, with a high 5-year survival rate. However, a small subset of women with low-grade and early-stage endometrioid endometrial cancer experience recurrence and death; thus, a more precise risk-stratification is needed. CASE PRESENTATION A 29-year-old woman presented with abnormal vaginal bleeding and was diagnosed with FIGO grade 1 endometrioid endometrial carcinoma by curettage. Comprehensive cancer staging including pelvic and para-aortic lymphadenectomy was then performed. Postoperative pathological findings suggested an FIGO grade 1 endometrioid endometrial carcinoma infiltrating the superficial muscle layer. The patient did not receive adjuvant therapy. After 4 years of follow-up, the patient returned to our institution with lung metastasis. She underwent thoracoscopic resection of the affected lobes, followed by six cycles of combined chemotherapy of paclitaxel and carboplatin. Next-generation sequencing showed that the primary and lung metastatic tumors shared 4 mutations: PTEN (p.P248Lfs*8), CTNNB1 (p.D32A), BCOR (p.N1425S) and CBL (p.S439N). Immunohistochemistry revealed nuclear location of β-catenin in the primary and lung metastatic tumor samples, indicating abnormal activation of β-catenin. CONCLUSION CTNNB1p.D32A (c.95A > C) mutation may be related to lung metastasis in this patient with low-grade early-stage endometrioid endometrial carcinoma.
Collapse
Affiliation(s)
- Lan Zhong
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20 The Third Section of South Renmin Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - RutieYin
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20 The Third Section of South Renmin Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20 The Third Section of South Renmin Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20 The Third Section of South Renmin Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
7
|
Mitroi AF, Leopa N, Dumitru E, Dumitru A, Tocia C, Popescu I, Mitroi A, Popescu RC. TCF7L2, CASC8, and GREM1 polymorphism and colorectal cancer in south-eastern Romanian population. Medicine (Baltimore) 2023; 102:e33056. [PMID: 36800588 PMCID: PMC9936048 DOI: 10.1097/md.0000000000033056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with an increasing trend and with multiple epigenetic alterations and different molecular features, a major cause of mortality and morbidity. The Wnt/β-Catenin pathway is involved in multiple aspects of cell dynamics, architecture of developing gastrointestinal tissues, and intestinal tissue homeostasis in adults, but its aberrant activity plays an important role in every aspect of colorectal carcinogenesis. The aim of our study was to investigate the association of the TCF7L2 rs7903146, CASC8 rs6983267, and Gremlin1 (GREM1) rs16969681 polymorphism in patients with CRC without other pathologies. A case-control study conducted on 31 patients diagnosed with CRC and 30 healthy controls age and sex-matched with the patients. Real time PCR was used to determine the genotypes of rs7903146, rs698267, rs1696981. We observed no association between rs6983267 and rs16969681 polymorphism and risk of CRC and low association between TCF7L2, rs7903146, polymorphism and risk of CRC. The recessive model of the TCF7L2 rs7903146 had an OR of 1.6 (95% CI 0.058-4.414, P < .05) which means that TT genotype increased the risk and possibility of development of CRC. Our study did not confirm a significant association between TCF7L2 rs7903146, CASC8 rs6983267, and GREM1 rs16969681 with CRC, but emphasizes the possibility of existence of a high risk of CRC development in patients with TT genotype of rs7903146.
Collapse
Affiliation(s)
- Anca Florentina Mitroi
- Department of Pathology, Emergency Hospital of Constanța, Romania
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
| | - Nicoleta Leopa
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
- Department of General Surgery, Emergency Hospital of Constanța, Romania
| | - Eugen Dumitru
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, Romania
| | - Andrei Dumitru
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, Romania
| | - Cristina Tocia
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, Romania
| | - Ioana Popescu
- Department of Gastroenterology, Emergency Hospital of Constanța, Romania
| | - Adrian Mitroi
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
| | - Răzvan Cătălin Popescu
- Ovidius University, Faculty of Medicine and Pharmacy Constanta, Romania
- Department of General Surgery, Emergency Hospital of Constanța, Romania
| |
Collapse
|
8
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
9
|
Bioactive Vitamin D Attenuates MED28-Mediated Cell Growth and Epithelial–Mesenchymal Transition in Human Colorectal Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2268818. [PMID: 36072467 PMCID: PMC9444419 DOI: 10.1155/2022/2268818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Inadequate vitamin D status may increase the risk of developing multiple types of cancer. Epidemiological studies suggest an inverse association between 25-hydroxyvitamin D3 (25(OH)D3) and malignancy, including colorectal cancer. Previous studies have suggested that MED28, a Mediator subunit involved in transcriptional regulation, is associated with the growth of colorectal cancer cells; however, its role in the progression of metastasis such as epithelial–mesenchymal transition (EMT) and cell migration of colorectal cancer is unclear at present. The aim of this study was to investigate a potentially suppressive effect of calcitriol, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), a bioactive form of vitamin D, and the role of MED28 in the progression of EMT in human colorectal cancer cells. Suppression of MED28 increased the expression of E-cadherin and reduced the expression of several mesenchymal and migration biomarkers and Wnt/β-catenin signaling molecules, whereas overexpression of MED28 enhanced the EMT features. Calcitriol suppressed the expression of MED28, and the effect of calcitriol mirrored that of MED28 silencing. Our data indicate that calcitriol attenuated MED28-mediated cell growth and EMT in human colorectal cancer cells, underlining the significance of MED28 in the progression of colorectal cancer and supporting the potential translational application of calcitriol.
Collapse
|
10
|
Role of the WNT/β-catenin/ZKSCAN3 Pathway in Regulating Chromosomal Instability in Colon Cancer Cell lines and Tissues. Int J Mol Sci 2022; 23:ijms23169302. [PMID: 36012568 PMCID: PMC9409321 DOI: 10.3390/ijms23169302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) acts as an oncogenic transcription factor in human malignant tumors, including colon and prostate cancer. However, most of the ZKSCAN3-induced carcinogenic mechanisms remain unknown. In this study, we identified ZKSCAN3 as a downstream effector of the oncogenic Wnt/β-catenin signaling pathway, using RNA sequencing and ChIP analyses. Activation of the Wnt pathway by recombinant Wnt gene family proteins or the GSK inhibitor, CHIR 99021 upregulated ZKSCAN3 expression in a β-catenin-dependent manner. Furthermore, ZKSCAN3 upregulation suppressed the expression of the mitotic spindle checkpoint protein, Mitotic Arrest Deficient 2 Like 2 (MAD2L2) by inhibiting its promoter activity and eventually inducing chromosomal instability in colon cancer cells. Conversely, deletion or knockdown of ZKSCAN3 increased MAD2L2 expression and delayed cell cycle progression. In addition, ZKSCAN3 upregulation by oncogenic WNT/β-catenin signaling is an early event of the adenoma–carcinoma sequence in colon cancer development. Specifically, immunohistochemical studies (IHC) were performed using normal (NM), hyperplastic polyps (HPP), adenomas (AD), and adenocarcinomas (AC). Their IHC scores were considerably different (61.4 in NM; 88.4 in HPP; 189.6 in AD; 246.9 in AC). In conclusion, ZKSCAN3 could be responsible for WNT/β-catenin-induced chromosomal instability in colon cancer cells through the suppression of MAD2L2 expression.
Collapse
|
11
|
Huang CY, Weng YT, Li PC, Hsieh NT, Li CI, Liu HS, Lee MF. Calcitriol Suppresses Warburg Effect and Cell Growth in Human Colorectal Cancer Cells. Life (Basel) 2021; 11:life11090963. [PMID: 34575112 PMCID: PMC8466965 DOI: 10.3390/life11090963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing lines of evidence indicate that the biologically active form of vitamin D, calcitriol (1,25-dihydroxyvitamin D3), prevents cancer progression by reducing cell proliferation, increasing cell differentiation, and inhibiting angiogenesis, among other potential roles. Cancer cells in solid tumors preferably undergo the “Warburg effect” to support cell growth by upregulating glycolysis, and the glycolytic intermediates further serve as building blocks to generate biomass. The objective of the current study is to investigate whether calcitriol affects glucose metabolism and cell growth in human colorectal cancer cells. Calcitriol reduced the expression of cyclin D1 and c-Myc. In addition, calcitriol reduced the expression of glucose transporter 1 (GLUT1) and key glycolytic enzymes and decreased extracellular acidification rate but increased oxygen consumption rate in human colorectal cancer cells. In a subcutaneous HT29 xenograft NOD/SCID mouse model, the volume and weight of the tumors were smaller in the calcitriol groups as compared with the control group, and the expression levels of GLUT1 and glycolytic enzymes, hexokinase 2 and lactate dehydrogenase A, were also lower in the calcitriol groups in a dose-responsive manner. Our data indicate that calcitriol suppresses glycolysis and cell growth in human colorectal cancer cells, suggesting an inhibitory role of the biologically active form of vitamin D in colorectal cancer progression.
Collapse
Affiliation(s)
- Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan; (C.-Y.H.); (Y.-T.W.); (P.-C.L.); (N.-T.H.)
| | - Yu-Ting Weng
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan; (C.-Y.H.); (Y.-T.W.); (P.-C.L.); (N.-T.H.)
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Po-Chen Li
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan; (C.-Y.H.); (Y.-T.W.); (P.-C.L.); (N.-T.H.)
| | - Nien-Tsu Hsieh
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan; (C.-Y.H.); (Y.-T.W.); (P.-C.L.); (N.-T.H.)
| | - Chun-I Li
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 70101, Taiwan; (C.-I.L.); (H.-S.L.)
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 70101, Taiwan; (C.-I.L.); (H.-S.L.)
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan; (C.-Y.H.); (Y.-T.W.); (P.-C.L.); (N.-T.H.)
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711301, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 7510)
| |
Collapse
|
12
|
Chen Y, Qin Y, Dai M, Liu L, Ni Y, Sun Q, Li L, Zhou Y, Qiu C, Jiang Y. IBSP, a potential recurrence biomarker, promotes the progression of colorectal cancer via Fyn/β-catenin signaling pathway. Cancer Med 2021; 10:4030-4045. [PMID: 33987980 PMCID: PMC8209559 DOI: 10.1002/cam4.3959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a frequently occurring digestive system cancer and postoperative tumor metastasis and recurrence are the main reasons for the failure of CRC treatment. The aim of this study was to identifying and validating key genes associated with metastatic recurrence of CRC. RNA expression of three datasets (GSE17538, GSE32323, and GSE29623) was used for biomarker discovery. We identified integrin-binding sialoprotein (IBSP) as a candidate biomarker which was validated in three clinical cohorts (GSE41258, GSE21510, and GSE39582) and our clinical specimens. The results suggested that IBSP expression significantly increased at mRNA and protein levels among CRC cases, which was associated with metastatic recurrence, metastasis, high risk of recurrence, and poor survival in CRC. Consistent results were obtained in CRC cells. The relative level of serum IBSP evidently increased among CRC patients relative to normal controls, and downregulated after operation. As suggested by gene set enrichment analysis (GSEA), the IBSP level was associated with cell-matrix adhesion in CRC. Functional experiments in vitro showed that IBSP promoted the growth and aggressiveness of CRC, and the potential mechanism by which IBSP promoted carcinogenesis of CRC was the abnormal activation of Fyn/β-catenin signaling pathway. To sum up, findings in the present work indicate that IBSP can serve as the candidate biomarker for the diagnosis, treatment, and prognosis of CRC.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China.,National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Mengmeng Dai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Liping Liu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China.,National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yaoyao Zhou
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Cheng Qiu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
14
|
Mabrouk AA, Tadros MI, El-Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: Insights into the implementation of nanotechnology and mucoadhesion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yan L, Gao S, Shui S, Liu S, Qu H, Liu C, Zheng L. Small interfering RNA-loaded chitosan hydrochloride/carboxymethyl chitosan nanoparticles for ultrasound-triggered release to hamper colorectal cancer growth in vitro. Int J Biol Macromol 2020; 162:1303-1310. [DOI: 10.1016/j.ijbiomac.2020.06.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/06/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
|
16
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
Evolution of placental invasion and cancer metastasis are causally linked. Nat Ecol Evol 2019; 3:1743-1753. [PMID: 31768023 PMCID: PMC7340496 DOI: 10.1038/s41559-019-1046-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (e.g. humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of Evolved Levels of Invasibility: the evolution of invasibility of stromal tissue affects both, placental and cancer invasion. We provide evidence for this hypothesis using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide significant insights to develop rational anti-metastatic therapeutics.
Collapse
|
18
|
Induction of growth cessation by acacetin via β-catenin pathway and apoptosis by apoptosis inducing factor activation in colorectal carcinoma cells. Mol Biol Rep 2019; 47:987-1001. [PMID: 31734898 DOI: 10.1007/s11033-019-05191-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Acacetin, a bioflavanoid, contains anti-inflammatory and anti-cancer activities as shown in different experimental models. However, its anticancer potential and mechanism of action against colorectal cancer cells is largely unknown. Here, we have investigated the efficacy of acacetin using two colorectal adenocarcinoma SW480 and HCT-116 cell lines. Cell survival was examined by Trypan-blue exclusion and MTT assays, cell cycle analysis by FACS, apoptosis was assessed using Annexin V FITC assay and nuclear condensation by Hoechst staining, ROS level by DCFDA and Mitosox, and protein expression level by Western blotting. Acacetin reduced the cell survival and proliferation of both types of cells, and induced S- and G2-M phase arrest and also reduced the levels of β-catenin and its downstream target c-myc. Further, acacetin induced apoptosis as examined by Annexin-V FITC and nuclear condensation. It increased intracellular ROS production, especially mitochondrial ROS. Acacetin increased mitochondrial membrane potential depolarization and Bax:Bcl-2 ratio. Although significant changes in caspases -8 and -9 and PARP level was not observed, acacetin could induce the truncation and subsequent translocation of activated AIF from mitochondria to cytosol, which could further induce chromosomal breakage leading to apoptosis. In conclusion, Acacetin induces mitochondrial ROS-mediated cell death in a caspase-independent manner in SW480 and HCT-116 colon carcinoma cells by inducing apoptosis inducing factor (AIF), which may potentiate its anticancer and chemotherapeutic prospects against colorectal carcinoma.
Collapse
|
19
|
|
20
|
Huang CY, Velmurugan BK, Chen MC, Day CH, Chien WS, Padma VV, Wu HC, Lin TH, Hsu HH, Shen CH. KHC-4 inhibits β-catenin expression in prostate cancer cells. Biotech Histochem 2019; 94:374-380. [PMID: 30819007 DOI: 10.1080/10520295.2019.1574026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- C-Y Huang
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan.,b Graduate Institute of Chinese Medical Science, China Medical University , Taichung , Taiwan.,c Department of Health and Nutrition Biotechnology, Asia University , Taichung , Taiwan.,d Medical Research Center for Exosomes and Mitochondria Related Diseases, China Medical University Hospital , Taichung , Taiwan
| | - B K Velmurugan
- e Toxicology and Biomedicine Research group, Faculty of Applied Sciences, Ton Duc Thang University , Ho Chi Minh City , Vietnam
| | - M-C Chen
- f Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital , Taichung , Taiwan
| | - C H Day
- g Department of Nursing, MeiHo University , Pingtung , Taiwan
| | - W-S Chien
- a Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - V V Padma
- h Department of Biotechnology, Bharathiar University , Coimbatore , India
| | - H-C Wu
- i School of medicine, China Medical University , Taichung , Taiwan
| | - T-H Lin
- j Division of Urology, Buddhist Tzu-Chi General Hospital , Taichung , Taiwan
| | - H-H Hsu
- k Division of Colorectal Surgery, Mackay Memorial Hospital , Taipei , Taiwan
| | - C-H Shen
- c Department of Health and Nutrition Biotechnology, Asia University , Taichung , Taiwan.,l Ditmanson Medical Foundation, Chia-Yi Christian Hospital , Chiayi City , Taiwan
| |
Collapse
|
21
|
Sun J, Zhang T, Cheng M, Hong L, Zhang C, Xie M, Sun P, Fan R, Wang Z, Wang L, Zhong J. TRIM29 facilitates the epithelial-to-mesenchymal transition and the progression of colorectal cancer via the activation of the Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:104. [PMID: 30813948 PMCID: PMC6391790 DOI: 10.1186/s13046-019-1098-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Background Tripartite Motif 29 (TRIM29) has been newly identified as being implicated in cancer progression. However, the biological role and molecular mechanism of TRIM29 in the invasion and metastasis of colorectal cancer (CRC) remain to be determined. Methods The expression levels of TRIM29 and β-catenin in CRC patient specimens were detected by immunohistochemistry. Recombinant lentivirus vectors containing the TRIM29 gene and its small hairpin interfering RNAs were constructed and transduced into CRC cells. Wound-healing and Transwell assays were performed to evaluate the migration and invasion abilities of CRC cells in vitro. Hepatic metastasis models in nude mice were established to validate the function of TRIM29 in vivo. Moreover, the expressions of epithelial-to-mesenchymal transition (EMT)-associated proteins were detected by qRT-PCR and Western blotting in CRC cells. Finally, Western blotting, qRT-PCR, luciferase reporter assays, and immunofluorescence assays were used to explore the molecular mechanisms of TRIM29 in CRC progression. Results Increased TRIM29 expression positively correlated with lymph node metastasis and β-catenin expression in patient CRC tissues. Overexpression of TRIM29 promoted invasion and metastasis of CRC cells in vitro and in vivo by regulating EMT, whereas the knockdown of TRIM29 had the opposite effect. Further mechanistic studies suggest that TRIM29 can activate the Wnt/β-catenin signaling pathway via up-regulating CD44 expression in colorectal cancer. Conclusions TRIM29 induces EMT through activating the Wnt/β-catenin signaling pathway via up-regulating CD44 expression, thus promoting invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Juntao Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengfan Xie
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peijun Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
22
|
Adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention recommendations and WNT-pathway-related markers of bowel cancer risk. Br J Nutr 2018; 122:509-517. [PMID: 30255827 DOI: 10.1017/s0007114518002520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bowel cancer risk is strongly influenced by lifestyle factors including diet and physical activity. Several studies have investigated the effects of adherence to the World Cancer Research Fund (WCRF)/American Institute for Cancer Research (AICR) cancer prevention recommendations on outcomes such as all-cause and cancer-specific mortality, but the relationships with molecular mechanisms that underlie the effects on bowel cancer risk are unknown. This study aimed to investigate the relationships between adherence to the WCRF/AICR cancer prevention recommendations and wingless/integrated (WNT)-pathway-related markers of bowel cancer risk, including the expression of WNT pathway genes and regulatory microRNA (miRNA), secreted frizzled-related protein 1 (SFRP1) methylation and colonic crypt proliferative state in colorectal mucosal biopsies. Dietary and lifestyle data from seventy-five healthy participants recruited as part of the DISC Study were used. A scoring system was devised including seven of the cancer prevention recommendations and smoking status. The effects of total adherence score and scores for individual recommendations on the measured outcomes were assessed using Spearman's rank correlation analysis and unpaired t tests, respectively. Total adherence score correlated negatively with expression of Myc proto-oncogene (c-MYC) (P=0·039) and WNT11 (P=0·025), and high adherers had significantly reduced expression of cyclin D1 (CCND1) (P=0·042), WNT11 (P=0·012) and c-MYC (P=0·048). Expression of axis inhibition protein 2 (AXIN2), glycogen synthase kinase (GSK3β), catenin β1 (CTNNB1) and WNT11 and of the oncogenic miRNA miR-17 and colonic crypt kinetics correlated significantly with scores for individual recommendations, including body fatness, red meat intake, plant food intake and smoking status. The findings from this study provide evidence for positive effects of adherence to the WCRF/AICR cancer prevention recommendations on WNT-pathway-related markers of bowel cancer risk.
Collapse
|
23
|
PRSS8 suppresses colorectal carcinogenesis and metastasis. Oncogene 2018; 38:497-517. [DOI: 10.1038/s41388-018-0453-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
24
|
Raji RJ, Sasikumar R, Jacob E. Multiple roles of Adenomatous Polyposis Coli gene in Wnt Signalling - a Computational Model. Biosystems 2018; 172:26-36. [PMID: 30110600 DOI: 10.1016/j.biosystems.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
The Adenomatous Polyposis Coli (APC) gene is a multifunctional gene that plays a major role in regulating the Wnt signalling pathway. The Wnt pathway, when activated by Wnt signalling molecules, initiates cell division. Mutation of APC disrupts the regulation and causes continuous activation of the Wnt pathway even in the absence of Wnt signals, thus causing uncontrolled cell proliferation. APC regulates the Wnt pathway by controlling the formation of the nuclear complex β-catenin/TCF that initiates the transcription of the Wnt target genes. There are at least five mechanisms by which APC can regulate the formation of the β-catenin/TCF complex: This paper presents a computational model for the Wnt pathway that explicitly includes the above five roles of APC in regulating β-catenin/TCF formation. We use this computational model to perform in-silico experiments to study the effect of different functional losses of APC on the level of β-catenin/TCF complex. The simulations also demonstrate the different outcomes that could be expected when the system is governed by different hypotheses.
Collapse
Affiliation(s)
- Rejitha John Raji
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India.
| | - Roschen Sasikumar
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| | - Elizabeth Jacob
- CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Trivandrum 695019, India
| |
Collapse
|
25
|
Duan J, Zhen T, Liang J, Tang J, Zhou Y, Gao H, Zhang F, Li H, Shi H, Han A. The clinicopathological significance of ZNF10 in invasive ductal carcinoma of the breast. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2968-2979. [PMID: 31938422 PMCID: PMC6958087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 06/10/2023]
Abstract
The aim of this study was to clarify the clinicopathological features and role of zinc finger protein 10 (ZNF10) in breast invasive ductal cancer (IDC). Our data first showed that ZNF10 expression was higher in 8 pairs of fresh breast IDC and breast cancer cell lines compared with their respective adjacent non-tumor breast tissues. ZNF10 expression was significantly higher in IDC compared with DCIS and fibroadenoma of the breast. ZNF10 expression was significantly associated with patients' age, tumor stage, and breast cancer molecular subtype. ZNF10 knockdown inhibited breast cancer cell proliferation, colony formation, cell cycle progression, cell migration, and invasion but induced apoptosis. ZNF10 knockdown also suppressed the tumorigenicity of breast cancer in vivo. The underlying mechanism study showed that ZNF10 regulated the β-catenin signaling pathway in breast cancer. ZNF10 might bind to the region (nucleotides -300 to +100) of the β-catenin promoter. In conclusion, our results first suggest that ZNF10 promotes the carcinogenesis and progression of breast IDC via the β-catenin signaling pathway. Targeting ZNF10 might be a novel treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Jing Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jianming Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Yu Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Fenfen Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
26
|
Wang C, Ruan P, Zhao Y, Li X, Wang J, Wu X, Liu T, Wang S, Hou J, Li W, Li Q, Li J, Dai F, Fang D, Wang C, Xie S. Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis via AKT/β-catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget 2018; 8:1092-1109. [PMID: 27901475 PMCID: PMC5352037 DOI: 10.18632/oncotarget.13582] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/12/2016] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Therefore, identifying the potential molecular mechanisms that promote HCC and CRC progression and metastasis are urgently needed. Spermidine/spermine N1-acetyltransferase (SSAT) is a catabolic enzyme that acetylates the high-order polyamines spermine and spermidine, thus decreasing the cellular content of polyamines. Several publications have suggested that depletion of intracellular polyamines inhibited tumor progression and metastasis in various cancer cells. However, whether and how SSAT regulates cell growth, migration and invasion in hepatocellular and colorectal carcinoma cells remains unclear. In this study, depletion of polyamines mediated by SSAT not only attenuated the tumor cell proliferation but also dramatically inhibited cell migration and invasion in hepatocellular and colorectal carcinoma cells. Subsequent investigations revealed introduction of SSAT into HepG2, SMMC7721 hepatocellular carcinoma cells and HCT116 colorectal carcinoma cells significantly suppressed p-AKT, p-GSK3β expression as well as β-catenin nuclear translocation, while inhibition of GSK3β activity or exogenous polyamines could restore SSAT-induced decreases in the protein expression of p-AKT, p-GSK3β and β-catenin. Conversely, knockdown of SSAT in Bel7402 hepatocellular carcinoma cells and HT-29 colorectal carcinoma cells which expressed high levels of SSAT endogenously significantly promoted the expression of p-AKT, p-GSK3β as well as β-catenin nuclear translocation. Taken together, our results indicated depletion of polyamines by SSAT significantly inhibited cell proliferation, migration and invasion through AKT/GSK3β/β-catenin signaling pathway in hepatocellular carcinoma and colorectal cancer cells.
Collapse
Affiliation(s)
- Cong Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ping Ruan
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaoxiao Wu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jinghua Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Fujun Dai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Songqiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
27
|
Upregulation of SOX2-activated lncRNA ANRIL promotes nasopharyngeal carcinoma cell growth. Sci Rep 2018; 8:3333. [PMID: 29463902 PMCID: PMC5820328 DOI: 10.1038/s41598-018-21708-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/07/2018] [Indexed: 01/24/2023] Open
Abstract
Recent molecularly targeted approaches have gained advances in nasopharyngeal carcinoma treatment. However, the estimated five-year survival rate has not met the desired degree of improvement. Here, we report that upregulation of the expression of the SOX2-activated lncRNA ANRIL is involved in nasopharyngeal carcinoma. ANRIL has been found to be upregulated in clinical nasopharyngeal carcinoma. Using genetic approaches targeting ANRIL in nasopharyngeal carcinoma cells, we found that the knockdown of ANRIL inhibits cell proliferation in vitro and in vivo. Mechanistically, SOX2 binds with ANRIL and increases its RNA level, which upregulates β-catenin signalling, resulting in enhanced nasopharyngeal carcinoma tumourigenesis. Expression levels of ANRIL are positively correlated with SOX2 and β-catenin in clinical nasopharyngeal carcinoma samples. Our findings demonstrate that the SOX2-ANRIL-β-catenin axis plays a critical role in nasopharyngeal carcinoma proliferation and provide a potential therapeutic approach for nasopharyngeal carcinoma patients.
Collapse
|
28
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
29
|
Beta-catenin and p53 expression in topographic compartments of colorectal cancer and its prognostic value following surgery. Ann Diagn Pathol 2017; 31:1-8. [DOI: 10.1016/j.anndiagpath.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/18/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023]
|
30
|
The role of vitamin D in hepatic metastases from colorectal cancer. Clin Transl Oncol 2017; 20:259-273. [PMID: 28801869 DOI: 10.1007/s12094-017-1735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) represents a significant health burden worldwide, comprising approximately 10% of annual cancer cases globally. Hepatic metastases are the most common site of CRC metastasis, and are the leading cause of death in CRC patients. There is strong epidemiologic evidence for an inverse association between vitamin D status and risk of CRC; however, the role of vitamin D in the natural history of liver metastases has not yet been investigated. Several researchers have proposed hallmarks of metastases; crucially, metastases can be blocked by interrupting just one rate-limiting step. Vitamin D status has been implicated in each proposed hallmark of metastasis. The aim of this review is to examine the potential role for vitamin D in reducing the development of hepatic metastases from CRC and outline the candidate mechanisms by which vitamin D may mediate these effects. The results of ongoing randomised intervention trials are eagerly awaited to determine whether addressing vitamin D insufficiency in CRC patients could reduce the occurrence of liver metastases, and the consequent morbidity and mortality.
Collapse
|
31
|
Yin L, Tagde A, Gali R, Tai YT, Hideshima T, Anderson K, Avigan D, Kufe D. MUC1-C is a target in lenalidomide resistant multiple myeloma. Br J Haematol 2017. [PMID: 28643330 DOI: 10.1111/bjh.14801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lenalidomide (LEN) acts directly on multiple myeloma (MM) cells by inducing cereblon-mediated degradation of interferon regulatory factor 4, Ikaros (IKZF)1 and IKZF3, transcription factors that are essential for MM cell survival. The mucin 1 (MUC1) C-terminal transmembrane subunit (MUC1-C) oncoprotein is aberrantly expressed by MM cells and protects against reactive oxygen species (ROS)-mediated MM cell death. The present studies demonstrate that targeting MUC1-C with GO-203, a cell-penetrating peptide inhibitor of MUC1-C homodimerization, is more than additive with LEN in downregulating the WNT/β-catenin pathway, suppressing MYC, and inducing late apoptosis/necrosis. We show that the GO-203/LEN combination acts by synergistically increasing ROS and, in turn, suppressing β-catenin. LEN resistance has been linked to activation of the WNT/β-catenin→CD44 pathway. In this regard, our results further demonstrate that targeting MUC1-C is effective against LEN-resistant MM cells. Moreover, GO-203 resensitized LEN-resistant MM cells to LEN treatment in association with suppression of β-catenin and CD44. Targeting MUC1-C also resulted in downregulation of CD44 on the surface of primary MM cells. These findings, and the demonstration that expression of MUC1 and CD44 significantly correlate in microarrays from primary MM cells, provide support for combining GO-203 with LEN in the treatment of MM and in LEN-resistance.
Collapse
Affiliation(s)
- Li Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashujit Tagde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reddy Gali
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
32
|
Wang W, Yi M, Chen S, Li J, Zhang H, Xiong W, Li G, Li X, Xiang B. NOR1 Suppresses Cancer Stem-Like Cells Properties of Tumor Cells via the Inhibition of the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 Signal Circuit. J Cell Physiol 2017; 232:2829-2840. [PMID: 27891591 DOI: 10.1002/jcp.25706] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) play a key role in tumor radiotherapy and chemotherapy resistance, relapse, and metastasis, and are primarily maintained in a resting state in vivo. The failure of conventional therapies to target CSCs is the main cause of treatment failure. The discovery of CSCs in nasopharyngeal carcinoma (NPC) tumors is becoming more prevalent; however, the understanding of the mechanisms underlying the maintenance of tumor stemness is still limited. We previously cloned NOR1, a tumor suppressor gene downregulated in NPC cell lines and tissues. In this study, we demonstrate that Wnt/β-catenin and ALDH1A1 form a signal circuit and that NOR1 antagonizes the tumor stem cell-like phenotype in NPC cell lines: the ectopic overexpression of NOR1 reduced β-catenin and ALDH1A1 expression; β-catenin/TCF4 targeted the regulation of ALDH1A1 transcription in NPC cells; silencing ALDH1A1 reduced AKT (total and phosphorylated) and GSK-3β (phosphorylated) expression; and eventually feedback decreased β-catenin expression levels. We also found that NOR1 expression decreased cancer stem-like cell properties of NPC cells, reduced their ability to form tumor spheroids in vitro, reduced tumorigenicity in nude mice in vivo, and increased sensitivity to chemotherapy agents. Taken together, our findings illustrated a new function of NOR1 that suppresses cancer stem-like cell properties in tumor cells by inhibiting the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 signal circuit. The study suggests that NOR1 deletion expression in NPC cells may be a potential molecular target for cancer stem cell therapy. J. Cell. Physiol. 232: 2829-2840, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Shengnan Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junjun Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Shim HJ, Lee R, Shin MH, Kim HN, Kweon SS. Association between the TCF7L2 polymorphism and colorectal cancer does not differ by diabetes and obesity statuses. Cancer Epidemiol 2016; 45:108-111. [PMID: 27792933 DOI: 10.1016/j.canep.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
This study evaluated the association between polymorphism in a newly identified locus, rs11196172, located in transcription factors 7-like 2 (TCF7L2) and colorectal cancer (CRC) risk according to diabetes and obesity statuses. A study enrolled 6138 CRC patients and 4367 community controls. The adjusted odds ratios (aORs) with age, sex, smoking, and body mass index of the A allele, compared with the G allele, was 1.08 (95% CI 1.01-1.16). The significantly higher risk of CRC with the A allele remained after adjusting for diabetic status (aOR 1.07, 95% CI 1.01-1.15). When stratified by diabetic or obesity status, significant associations between TCF7L2 polymorphism and CRC risk were limited to non-diabetic or normal-weight subjects. No significant interactions between the A/G allele and diabetes status or the A/G allele and overweight status were found. The results indicated that the TCF7L2 rs11196172 polymorphism increases the risk of CRC independently, with no evidence of an interaction with diabetes or obesity.
Collapse
Affiliation(s)
- Hyun-Jeong Shim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Ran Lee
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Korea
| | - Hee-Nam Kim
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea; Jeonnam Regional Cancer center, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea.
| |
Collapse
|
34
|
Hsieh CH, Hsu HH, Shibu MA, Day CH, Bau DT, Ho CC, Lin YM, Chen MC, Wang SH, Huang CY. Down-regulation of β-catenin and the associated migration ability by Taiwanin C in arecoline and 4-NQO-induced oral cancer cells via GSK-3β activation. Mol Carcinog 2016; 56:1055-1067. [PMID: 27648737 DOI: 10.1002/mc.22570] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/24/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
Cancer is one of the leading causes of death worldwide, and oral squamous cell carcinoma (OSCC) accounts for almost a sixth of all reported cancers. Arecoline, from areca nut is known to enhance carcinogenesis in oral squamous cells. The objective of this study is to determine the effect of Taiwanin C, from Taiwania cryptomerioides Hayata against Arecoline-associated carcinogenesis. An OSCC model was created in C57BL/6J Narl mice by administrating 0.5 mg mL-1 arecoline with 0.2 mg mL-1 4-NQO carcinogen for 8 and 28 wk to mimic the etiology of oral cancer patients in Asia. Mice were sacrificed and two cell lines, T28 from the tumor and N28 cancerous cell line from the surrounding non tumor area, were established. Taiwanin C showed effective anti-tumor activity in nude mice models. Taiwanin C significantly inhibited the cell viability of T28 cells in a dose dependent manner, but did not inflict any effect on N28 normal cells. Taiwanin C treatment inhibited the migration ability of T28 cells in a dose dependent manner as determined by wound healing and migration assays. Taiwanin C also reduced the levels of β-catenin and its downstream metastatic proteins, Tbx3 and c-Myc. Besides, Taiwanin C inhibited the nuclear accumulation of β-catenin and induced β-catenin degradation via proteasome-mediated pathway. Moreover, Taiwanin C enhanced GSK-3β and reduced the p-ser9 GSK-3β protein level to inactivate Wnt signaling. Taken together, Taiwanin C blocked the cell migration effects of T28 cells mediated through the activation of GSK-3β to enhance protein degradation and reduce nuclear accumulation of β-catenin. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Hong Hsieh
- Department of Health and Nutritional Biotechnology, Asia University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | | | | | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Chu Ho
- HK. Zen Heart Group Biopharmaceutical Co., Limited, Wanchai, Hong Kong.,Zen Transmission Foundation of Medical Culture and Education, Taichung, Taiwan, ROC
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shu-Huai Wang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Health and Nutritional Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Jin Y, Cui D, Ren J, Wang K, Zeng T, Gao L. CACNA2D3 is downregulated in gliomas and functions as a tumor suppressor. Mol Carcinog 2016; 56:945-959. [PMID: 27583705 DOI: 10.1002/mc.22548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
Abstract
CACNA2D3, an auxiliary member of the alpha-2/delta subunit three family of the voltage-dependent calcium channel complex, plays a critical role in tumor suppression. However, its role in glioma carcinogenesis remains largely unknown. Here, we investigated the putative tumor suppressive role of CACNA2D3 in gliomas. Downregulation of CACNA2D3 was frequently detected in glioma tissues and cells compared with their non-tumorigenic counterparts, and correlated with poor survival. To investigate the underlying mechanism of CACNA2D3 in the development and progression of glioma, we performed CACNA2D3 ectopic expression in glioma cells (U87 and U251) and knockdown of CACNA2D3 in LN229 cells and conducted in vitro and in vivo functional assays. Our findings showed that increased intracellular calcium (Ca2+ ) mediated by overexpression of CACNA2D3 induced mitochondrial-mediated apoptosis, upregulation of NLK (through the Wnt/Ca2+ pathway) and inhibition of the epithelial-to-mesenchymal transition. Ectopic expression of CACNA2D3 inhibited cell proliferation, migration, invasion, and tumor growth in vitro and in vivo, whereas CACNA2D3 depletion inhibited cell viability and invasion. Furthermore, we confirmed that CACNA2D3 increased NLK expression in vitro by immunostaining and found that downregulation of CACNA2D3 in glioma cells and high-grade glioma tissue was accompanied by increased methylation. A reporter assay showed increased luciferase activity in NLK knockdown glioma cells and transcriptional activity of β-cantenin/TCF was remarkably enhanced, which further confirmed that NLK antagonizes Wnt signaling-mediated anchorage-dependent and independent cell proliferation and invasion. This mechanism may contribute to a better understanding of glioma cancer pathogenesis and facilitate the development of new therapeutic strategies for the treatment of this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Jin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Ren
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Wangpu X, Yang X, Zhao J, Lu J, Guan S, Lu J, Kovacevic Z, Liu W, Mi L, Jin R, Sun J, Yue F, Ma J, Lu A, Richardson DR, Wang L, Zheng M. The metastasis suppressor, NDRG1, inhibits "stemness" of colorectal cancer via down-regulation of nuclear β-catenin and CD44. Oncotarget 2016; 6:33893-911. [PMID: 26418878 PMCID: PMC4741810 DOI: 10.18632/oncotarget.5294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target.
Collapse
Affiliation(s)
- Xiongzhi Wangpu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Jiaoyang Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Shaopei Guan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Mi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runsen Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lishun Wang
- The Division of Translational Medicine, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
37
|
Lian J, Tang J, Shi H, Li H, Zhen T, Xie W, Zhang F, Yang Y, Han A. Positive feedback loop of hepatoma-derived growth factor and β-catenin promotes carcinogenesis of colorectal cancer. Oncotarget 2016; 6:29357-74. [PMID: 26296979 PMCID: PMC4745732 DOI: 10.18632/oncotarget.4982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023] Open
Abstract
To clarify the role of hepatoma-derived growth factor (HDGF) and β-catenin in carcinogenesis of colorectal cancer (CRC), our results showed that high HDGF expression was found in CRC cells and tissues and significantly related to histological differentiation (p = 0.035) and lymph node metastasis (p = 0.000). Significant positive correlation between HDGF expression and β-catenin abnormal expression was found in CRC tissues. High HDGF and lymph node metastasis were the strong independent prognostic indicators for reduced overall survival in CRC patients. HDGF knockdown dramatically inhibited cellular proliferation, migration, invasion, and tumorigenesis, both in vitro and in vivo, but induced G1 phase arrest and apoptosis in CRC cells. HDGF knock-down dramatically suppressed β-catenin and its down-stream genes expression in CRC cells. Intriguingly, β-catenin knock-down dramatically suppressed HDGF expression in CRC cells. Human recombinant Wnt3a and DKK1 treatment increased and decreased HDGF, β-catenin, c-Myc, cyclin D1, MMP9, and phos-GSK-3β (Ser9) protein expression in nuclear and cytoplasmic fraction of CRC cells upon β-catenin knock-down, respectively. Three HDGF-binding elements in β-catenin promoter were found and specific for transcriptional activation of β-catenin in CRC cells. In conclusion, our results first suggest that HDGF and β-catenin interacts as a positive feedback loop, which plays an important role in carcinogenesis and progression of CRC.
Collapse
Affiliation(s)
- Jiayan Lian
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianming Tang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenlin Xie
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
38
|
Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, Häfner H, Gasser M, Waaga-Gasser AM, Walles H, Dandekar G. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods 2016; 22:621-35. [PMID: 27137941 PMCID: PMC4943469 DOI: 10.1089/ten.tec.2015.0557] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures—especially in consideration of drug testing—is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context—especially for substances targeting tumor–stroma interactions.
Collapse
Affiliation(s)
- Sarah Nietzer
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Florentin Baur
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Stefan Sieber
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Jan Hansmann
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Thomas Schwarz
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Carolin Stoffer
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Heide Häfner
- 2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| | - Martin Gasser
- 3 Department of Surgery I, Molecular Oncology and Immunology, University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Ana Maria Waaga-Gasser
- 3 Department of Surgery I, Molecular Oncology and Immunology, University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Heike Walles
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany .,2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| | - Gudrun Dandekar
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany .,2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| |
Collapse
|
39
|
Tao Y, Messer JS, Goss KH, Hart J, Bissonnette M, Chang EB. Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis 2016; 37:731-739. [PMID: 27207671 DOI: 10.1093/carcin/bgw056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) develops from colonic epithelial cells that lose expression of key tumor suppressor genes and/or gain expression of proproliferative and antiapoptotic genes like heat shock protein 70 (Hsp70). Heat shock protein 70 is overexpressed in CRC, but it is not known whether this is in response to the proteotoxic stress induced by transformation, or if it contributes to the process of transformation itself. Here, using the Apc (Min/+) mouse model of CRC, we show that Hsp70 regulates mitogenic signaling in intestinal epithelial cells through stabilization of proteins involved in the receptor tyrosine kinase (RTK) and WNT signaling pathways. Loss of Hsp70 reduced tumor size with decreased proliferation and increased tumor cell death. Hsp70 loss also led to decreased expression of ErbB2, Akt, ERK and β-catenin along with decreased β-catenin transcriptional activity as measured by c-myc and axin2 expression. Upregulation of RTK or WNT signals are frequent oncogenic events in CRC and many other cancers. Thus, in addition to the role of Hsp70 in cell-survival after transformation, Hsp70 stabilization of β-catenin, Akt, ERK and ErbB2 are predicted to contribute to transformation. This has important implications not only for understanding the pathophysiology of these cancers, but also for treatment since anti-EGFR antibodies are in clinical use for CRC and EGFR is a major ErbB2 heterodimeric partner. Targeting Hsp70, therefore, might provide an alternative or complementary strategy for achieving better outcomes for CRC and other related cancer types.
Collapse
Affiliation(s)
| | | | | | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
40
|
Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym 2016; 147:323-332. [PMID: 27178938 DOI: 10.1016/j.carbpol.2016.04.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/29/2016] [Accepted: 04/09/2016] [Indexed: 12/13/2022]
Abstract
Small interfering RNA (siRNA) molecules specifically target messenger RNA species, decreasing intracellular protein levels. β-Catenin protein concentrations are increased in 70-80% of colon tumors, promoting tumor progression. Chitosan exhibits low levels of toxicity and can be transported across mucosal membranes; therefore, our objective was to develop chitosan and poly(ethylene glycol)-grafted (PEGylated) chitosan nanoparticles, 100-150nm in diameter, encapsulating anti-β-catenin siRNA for transfection into colon cancer cells. Encapsulation efficiencies up to 97% were observed. Confocal microscopy visualized the entry of fluorescently-tagged siRNA into cells. Western blot analysis showed that both chitosan and PEGylated chitosan nanoparticles containing anti-β-catenin siRNA decreased β-catenin protein levels in cultured colon cancer cells. These results indicate that nanoparticles made with chitosan and PEGylated chitosan can successfully enter colon cancer cells and decrease the level of a protein that promotes tumor progression. These or similar nanoparticles may prove beneficial for the treatment of colon cancer in humans.
Collapse
Affiliation(s)
- Walter E Rudzinski
- Texas State University, Department of Chemistry and Biochemistry, San Marcos, TX 78666, USA.
| | - Adriana Palacios
- Texas State University, Department of Chemistry and Biochemistry, San Marcos, TX 78666, USA.
| | - Abuzar Ahmed
- Texas State University, Department of Chemistry and Biochemistry, San Marcos, TX 78666, USA.
| | - Michelle A Lane
- Texas State University, School of Family and Consumer Sciences, Nutrition and Foods Program, San Marcos, TX 78666, USA.
| | | |
Collapse
|
41
|
Viennois E, Ingersoll SA, Ayyadurai S, Zhao Y, Wang L, Zhang M, Han MK, Garg P, Xiao B, Merlin D. Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. Cell Mol Gastroenterol Hepatol 2016; 2:340-357. [PMID: 27458604 PMCID: PMC4957955 DOI: 10.1016/j.jcmgh.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The human intestinal peptide transporter 1, hPepT1, is expressed in the small intestine at low levels in the healthy colon and upregulated during inflammatory bowel disease. hPepT1 plays a role in mouse colitis and human studies have demonstrated that chronic intestinal inflammation leads to colorectal cancer (colitis-associated cancer; CAC). Hence, we assessed here the role of PepT1 in CAC. METHODS Mice with hPepT1 overexpression in intestinal epithelial cells (TG) or PepT1 (PepT1-KO) deletion were used and CAC was induced by AOM/DSS. RESULTS TG mice had larger tumor sizes, increased tumor burdens, and increased intestinal inflammation compared to WT mice. Conversely, tumor number and size and intestinal inflammation were significantly decreased in PepT1-KO mice. Proliferating crypt cells were increased in TG mice and decreased in PepT1-KO mice. Analysis of human colonic biopsies revealed an increased expression of PepT1 in patients with colorectal cancer, suggesting that PepT1 might be targeted for the treatment of CAC. The use of an anti-inflammatory tripeptide KPV (Lys-Pro-Val) transported by PepT1 was able to prevent carcinogenesis in WT mice. When administered to PepT1-KO mice, KPV did not trigger any of the inhibitory effect on tumorigenesis observed in WT mice. CONCLUSIONS The observations that pepT1 was highly expressed in human colorectal tumor and that its overexpression and deletion in mice increased and decreased colitis associated tumorigenesis, respectively, suggest that PepT1 is a potential therapeutic target for the treatment of colitis associated tumorigenesis.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
- Correspondence Address correspondence to: Emilie Viennois, PhD, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 757, Atlanta, Georgia 30303. fax: (404) 413-3580.Institute for Biomedical SciencesGeorgia State University100 Piedmont AvenuePSC 757AtlantaGeorgia 30303
| | - Sarah A. Ingersoll
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Saravanan Ayyadurai
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Yuan Zhao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Lixin Wang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Moon K. Han
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Bo Xiao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
42
|
Tang J, Shi H, Li H, Zhen T, Dong Y, Zhang F, Yang Y, Han A. The interaction of hepatoma-derived growth factor and β-catenin promotes tumorigenesis of synovial sarcoma. Tumour Biol 2016; 37:10287-301. [DOI: 10.1007/s13277-016-4905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/14/2023] Open
|
43
|
Datta K, Suman S, Kumar S, Fornace AJ. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway. J Cancer 2016; 7:174-83. [PMID: 26819641 PMCID: PMC4716850 DOI: 10.7150/jca.13387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/01/2015] [Indexed: 12/12/2022] Open
Abstract
Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression.
Collapse
Affiliation(s)
- Kamal Datta
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Shubhankar Suman
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Santosh Kumar
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Albert J Fornace
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA.; 2. Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Lee MF, Hsieh NT, Huang CY, Li CI. AllTrans-Retinoic Acid Mediates MED28/HMG Box-Containing Protein 1 (HBP1)/β-Catenin Signaling in Human Colorectal Cancer Cells. J Cell Physiol 2015; 231:1796-803. [DOI: 10.1002/jcp.25285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ming-Fen Lee
- Department of Nutrition and Health Sciences; Chang Jung Christian University; Tainan Taiwan, R.O.C
| | - Nien-Tsu Hsieh
- Department of Nutrition; China Medical University; Taichung Taiwan, R.O.C
| | - Chun-Yin Huang
- Department of Nutrition; China Medical University; Taichung Taiwan, R.O.C
| | - Chun-I Li
- Department of Nutrition and Health Sciences; Chang Jung Christian University; Tainan Taiwan, R.O.C
| |
Collapse
|
45
|
TRPM4 protein expression in prostate cancer: a novel tissue biomarker associated with risk of biochemical recurrence following radical prostatectomy. Virchows Arch 2015; 468:345-55. [DOI: 10.1007/s00428-015-1880-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/20/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022]
|
46
|
Hibler EA, Klimentidis YC, Jurutka PW, Kohler LN, Lance P, Roe DJ, Thompson PA, Jacobs ET. CYP24A1 and CYP27B1 Polymorphisms, Concentrations of Vitamin D Metabolites, and Odds of Colorectal Adenoma Recurrence. Nutr Cancer 2015; 67:1131-41. [PMID: 26241700 DOI: 10.1080/01635581.2015.1068818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Development of colorectal adenoma and cancer are associated with low circulating 25-hydroxyvitamin D [25(OH)D] levels. However, less is known regarding colorectal neoplasia risk and variation in CYP27B1 or CYP24A1, genes encoding the enzymes responsible for the synthesis and catabolism of 1α,25-hydroxyvitamin D [1,25(OH)2D]. This study examined associations between CYP27B1 and CYP24A1 polymorphisms, circulating 25(OH)D and 1,25(OH)2D concentrations, and colorectal adenoma recurrence in a pooled sample from 2 clinical trials (n = 1,188). Nominal associations were observed between increasing copies of the T allele in CYP24A1 rs927650 and 25(OH)D concentrations (P = 0.02); as well as colorectal adenoma recurrence, with odds ratios (95% confidence intervals) of 1.30 (0.99-1.70) and 1.38 (1.01-1.89) for heterozygotes and minor allele homozygotes, respectively (P = 0.04). In addition, a statistically significant relationship between CYP24A1 rs35051736, a functional polymorphism, and odds for advanced colorectal adenoma recurrence was observed (P < 0.001). Further, nominally statistically significant interactions were observed between rs2296241 and 25(OH)D as well as rs2762939 and 1,25(OH)2D (P(interaction) = 0.10, respectively). Overall, CYP24A1 polymorphisms may influence the development of advanced lesions, and modify the effect of vitamin D metabolites on adenoma recurrence. Further study is necessary to characterize the differences between circulating vitamin D metabolite measurements compared to cellular level activity in relation to cancer risk.
Collapse
Affiliation(s)
- Elizabeth A Hibler
- a Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville , Tennessee , USA
| | - Yann C Klimentidis
- b Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson , Arizona , USA
| | - Peter W Jurutka
- c School of Mathematical and Natural Sciences, Arizona State University , Phoenix , Arizona , USA
| | - Lindsay N Kohler
- b Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson , Arizona , USA
| | - Peter Lance
- d University of Arizona Cancer Center , Tucson , Arizona , USA
| | - Denise J Roe
- e Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson , Arizona , USA and University of Arizona Cancer Center , Tucson , Arizona , USA
| | | | - Elizabeth T Jacobs
- e Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson , Arizona , USA and University of Arizona Cancer Center , Tucson , Arizona , USA
| |
Collapse
|
47
|
Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624627. [PMID: 25879031 PMCID: PMC4387950 DOI: 10.1155/2015/624627] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022]
Abstract
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy.
Collapse
|
48
|
Is resistant starch protective against colorectal cancer via modulation of the WNT signalling pathway? Proc Nutr Soc 2015; 74:282-91. [DOI: 10.1017/s002966511500004x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Epidemiological and experimental evidence suggests that non-digestible carbohydrates (NDC) including resistant starch are protective against colorectal cancer. These anti-neoplastic effects are presumed to result from the production of the SCFA, butyrate, by colonic fermentation, which binds to the G-protein-coupled receptor GPR43 to regulate inflammation and other cancer-related processes. The WNT pathway is central to the maintenance of homeostasis within the large bowel through regulation of processes such as cell proliferation and migration and is frequently aberrantly hyperactivated in colorectal cancers. Abnormal WNT signalling can lead to irregular crypt cell proliferation that favours a hyperproliferative state. Butyrate has been shown to modulate the WNT pathway positively, affecting functional outcomes such as apoptosis and proliferation. Butyrate's ability to regulate gene expression results from epigenetic mechanisms, including its role as a histone deacetylase inhibitor and through modulating DNA methylation and the expression of microRNA. We conclude that genetic and epigenetic modulation of the WNT signalling pathway may be an important mechanism through which butyrate from fermentation of resistant starch and other NDC exert their chemoprotective effects.
Collapse
|
49
|
Abstract
Familial adenomatous polyposis (FAP) is caused by germ line mutations in the APC gene. Barrett's esophagus (BE) and Barrett's adenocarcinoma are intestinal type lesions of the esophagus characterized by an early loss of heterozygosity at the APC locus. We hypothesized that patients with FAP are at risk for the early development of BE due to the inherited mutations in the APC gene (haploinsufficiency). Upper gastrointestinal (UGI) tract biopsies from 36 patients with FAP were reviewed to determine the incidence and characteristics of BE in these patients. Twenty-four patients were confirmed carriers of a deleterious germline APC mutation. The other 12 patients were from FAP families with known APC gene mutations and had clinical manifestations of FAP. The control group consisted of patients who did not have a personal or family history of FAP undergoing UGI endoscopic examination in our institution over a 30 month period of time. The difference in expression of Wnt pathway proteins (APC, β-catenin, E-cadherin and cyclin D1) in BE between BE(+)/FAP(+), BE(-)/FAP(+) and age-matched BE(+)/FAP(-) groups was studied using immunohistochemistry. BE was found in 6 of 36 (6/36 or 16%) patients with FAP and in 266 of 1662 patients (16%) in the control group of symptomatic patients. The average age at the first diagnosis of BE in FAP patients was 37.8 versus 57.5 years in the control group (sporadic BE). When compared to age matched BE(+)/FAP- group (7/334), patients with FAP had a significantly (p = 0.005843, odds ratio 9.2; Fisher exact test) higher incidence of BE. Both classic FAP and attenuated FAP phenotypes were associated with BE .Two types of germ line mutations in APC gene were identified in BE(+)/FAP(+) patients: Five patients had 2-base deletion in exon 4 (426delAT) and one patient had 4-base deletion in exon 15 (3202del4). No difference in Wnt signaling pathway proteins expression was detected between BE(+)/FAP(+) and the age matched group of patients with sporadic BE (BE(+)/FAP(-)). Patients with FAP appear to have increased risk for the development of BE, which on average develops some 20 years earlier than in patients without FAP. This association needs to be taken in account when caring for the patients with FAP.
Collapse
|
50
|
Colorectal cancer and basement membranes: clinicopathological correlations. Gastroenterol Res Pract 2014; 2014:580159. [PMID: 25614736 PMCID: PMC4295340 DOI: 10.1155/2014/580159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/16/2014] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second in females. In 2008, an estimated 1.2 million people were diagnosed with and 608,700 people died of CRC. Besides diagnosis and treatment, prognosis is an important matter for cancer patients. Today, clinicopathological correlations have many applications in cancer prognostication. Examples include the prediction of the medium patient survival and the screening for patients suitable for specific therapeutic approaches. Apart from traditional prognostic factors, such as tumor stage and grade, new markers may be useful in clinical practice. Possible markers may result from the study of basement membranes (BMs). BM seems to play a role in the pathogenesis of colorectal cancer, so BM alterations may have prognostic significance as well. The purpose of this review is to briefly describe BMs and their relationship with CRC, in the aspect of clinicopathological correlations.
Collapse
|