1
|
Yan L, Fu K, Li L, Li Q, Zhou X. Potential of sonobiopsy as a novel diagnosis tool for brain cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200840. [PMID: 39077551 PMCID: PMC11284684 DOI: 10.1016/j.omton.2024.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Brain tumors have a poor prognosis. Early, accurate diagnosis and treatment are crucial. Although brain surgical biopsy can provide an accurate diagnosis, it is highly invasive and risky and is not suitable for follow-up examination. Blood-based liquid biopsies have a low detection rate of tumor biomarkers and limited evaluation ability due to the existence of the blood-brain barrier (BBB). The BBB is composed of brain capillary endothelial cells through tight junctions, which prevents the release of brain tumor markers to the human peripheral circulation, making it more difficult to diagnose, predict prognosis, and evaluate therapeutic response through brain tumor markers than other tumors. Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique using FUS to promote the release of tumor markers into the circulatory system and cerebrospinal fluid, thus facilitating tumor detection. The feasibility and safety data from both animal models and clinical trials support sonobiopsy as a great potential in the diagnosis of brain diseases.
Collapse
Affiliation(s)
- Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Kang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qing Li
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| | - Xiaodong Zhou
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| |
Collapse
|
2
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
3
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
McMahon JT, Studer M, Ulrich B, Revuelta Barbero JM, Pradilla I, Palacios-Ariza MA, Pradilla G. Circulating Tumor DNA in Adults With Glioma: A Systematic Review and Meta-Analysis of Biomarker Performance. Neurosurgery 2022; 91:231-238. [PMID: 35535984 DOI: 10.1227/neu.0000000000001982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a promising noninvasive biomarker to capture tumor genetics in patients with brain tumors. Research into its clinical utility, however, has not been standardized because the sensitivity and specificity of ctDNA remain undefined. OBJECTIVE To (1) review the primary literature about ctDNA in adults with glioma to compare the sensitivity and specificity of ctDNA in the cerebrospinal fluid vs the plasma and (2) to evaluate the effect of tumor grade on detection of ctDNA. METHODS PRISMA-guided systematic review and meta-analysis was performed using published studies that assessed ctDNA in either plasma or cerebrospinal fluid among adult patients with confirmed glioma. Summary receiver operating characteristic curves were generated using the Rücker-Schumacher method, and area under the curve (AUC) was calculated. RESULTS Meta-analysis revealed improved biomarker performance for CSF (AUC = 0.947) vs plasma (AUC = 0.741) ctDNA, although this did not reach statistical significance (P = .141). Qualitative analysis revealed greater sensitivities among single-allele PCR and small, targeted next-generation sequencing panels compared with broader panels. It additionally demonstrated higher sensitivity of ctDNA detection in high-grade vs low-grade gliomas, although these analyses were limited by a lack of specificity reporting in many studies. CONCLUSION ctDNA seems to be a highly sensitive and specific noninvasive biomarker among adults with gliomas. To maximize its performance, CSF should be studied with targeted genetic analysis platforms, particularly in high-grade gliomas. Further studies on ctDNA are needed to define its clinical utility in diagnosis, prognostication, glioblastoma pseudoprogression, and other scenarios wherein neoadjuvant therapies may be considered.
Collapse
Affiliation(s)
| | - Matthew Studer
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bryan Ulrich
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Ivan Pradilla
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Gustavo Pradilla
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Kiang KMY, Sun S, Leung GKK. ADD3 Deletion in Glioblastoma Predicts Disease Status and Survival. Front Oncol 2022; 11:717793. [PMID: 34970477 PMCID: PMC8712675 DOI: 10.3389/fonc.2021.717793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Loss of heterozygosity (LOH) on chromosome 10 frequently occurs in gliomas. Whereas genetic loci with allelic deletion often implicate tumor suppressor genes, a putative tumor suppressor Adducin3 (ADD3) mapped to chromosome 10q25.2 was found to be preferentially downregulated in high-grade gliomas compared with low-grade lesions. In this study, we unveil how the assessment of ADD3 deletion provides clinical significance in glioblastoma (GBM). By deletion mapping, we assessed the frequency of LOH in forty-three glioma specimens using five microsatellite markers spanning chromosome 10q23-10qter. Data were validated in The Cancer Genome Atlas (TCGA) cohort with 203 GBM patients. We found that allelic loss in both D10S173 (ADD3/MXI1 locus) and D10S1137 (MGMT locus) were positively associated with tumor grading and proliferative index (MIB-1). However, LOH events at only the ADD3/MXI1 locus provided prognostic significance with a marked reduction in patient survival and appeared to have diagnostic potential in differentiating high-grade gliomas from low-grade ones. Furthermore, we showed progressive loss of ADD3 in six out of seven patient-paired gliomas with malignant progression, as well as in recurrent GBMs. These findings suggest the significance of ADD3/MXI1 locus as a promising marker that can be used to refine the LOH10q assessment. Data further suggest the role of ADD3 as a novel tumor suppressor, whereby the loss of ADD3 is indicative of a progressive disease that may at least partially account for rapid disease progression in GBM. This study revealed for the first time the downregulation of ADD3 on the genetic level resulting from copy number deletion.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Ando K, Ohira M, Takada I, Cázares-Ordoñez V, Suenaga Y, Nagase H, Kobayashi S, Koshinaga T, Kamijo T, Makishima M, Wada S. FGFR2 loss sensitizes MYCN-amplified neuroblastoma CHP134 cells to CHK1 inhibitor-induced apoptosis. Cancer Sci 2021; 113:587-596. [PMID: 34807483 PMCID: PMC8819351 DOI: 10.1111/cas.15205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. In this study, one CHK1i‐sensitive neuroblastoma cell line, CHP134, was investigated, which characteristically carries MYCN amplification and a chromosome deletion within the 10q region. Among several cancer‐related genes in the chromosome 10q region, mRNA expression of fibroblast growth factor receptor 2 (FGFR2) was altered in CHP134 cells and associated with an unfavorable prognosis of patients with neuroblastoma. Induced expression of FGFR2 in CHP134 cells reactivated downstream MEK/ERK signaling and resulted in cells resistant to CHK1i‐mediated cell growth inhibition. Consistently, the MEK1/2 inhibitor, trametinib, potentiated CHK1 inhibitor–mediated cell death in these cells. These results suggested that FGFR2 loss might be prone to highly effective CHK1i treatment. In conclusion, extreme cellular dependency of ERK activation may imply a possible application for the MEK1/2 inhibitor, either as a single inhibitor or in combination with CHK1i in MYCN‐amplified neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Chiba Cancer Center Research Institute, Chiba, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Verna Cázares-Ordoñez
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | | | - Hiroki Nagase
- Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shinichi Kobayashi
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan.,Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| |
Collapse
|
7
|
Molecular and Circulating Biomarkers of Brain Tumors. Int J Mol Sci 2021; 22:ijms22137039. [PMID: 34210107 PMCID: PMC8268709 DOI: 10.3390/ijms22137039] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Brain tumors are the most common malignant primary intracranial tumors of the central nervous system. They are often recognized too late for successful therapy. Minimally invasive methods are needed to establish a diagnosis or monitor the response to treatment of CNS tumors. Brain tumors release molecular information into the circulation. Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a substitute for tumor tissue. Tumor-derived biomarkers include nucleic acids, proteins, and tumor-derived extracellular vesicles that accumulate in blood or cerebrospinal fluid. In recent years, circulating tumor cells have also been identified in the blood of glioblastoma patients. In this review of the literature, the authors highlight the significance, regulation, and prevalence of molecular biomarkers such as O6-methylguanine-DNA methyltransferase, epidermal growth factor receptor, and isocitrate dehydrogenase. Herein, we critically review the available literature on plasma circulating tumor cells (CTCs), cell-free tumors (ctDNAs), circulating cell-free microRNAs (cfmiRNAs), and circulating extracellular vesicles (EVs) for the diagnosis and monitoring of brain tumor. Currently available markers have significant limitations. While much research has been conductedon these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature.
Collapse
|
8
|
Georgescu MM, Islam MZ, Li Y, Traylor J, Nanda A. Novel targetable FGFR2 and FGFR3 alterations in glioblastoma associate with aggressive phenotype and distinct gene expression programs. Acta Neuropathol Commun 2021; 9:69. [PMID: 33853673 PMCID: PMC8048363 DOI: 10.1186/s40478-021-01170-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Prognostic molecular subgrouping of glioblastoma is an ongoing effort and the current classification includes IDH-wild-type and IDH-mutant entities, the latter showing significantly better prognosis. We performed a comparative integrated analysis of the FGFR glioblastoma subgroup consisting of 5 cases from a prospective 101-patient-cohort. FGFR alterations included FGFR2-TACC2 and FGFR2 amplifications arising in a multifocal IDH-mutant glioblastoma with unexpected 2.5-month patient survival, novel FGFR3 carboxy-terminal duplication and FGFR3-TLN1 fusion, and two previously described FGFR3-TACC3 fusions. The FGFR2 tumors showed additional mutations in SERPINE1/PAI-1 and MMP16, as part of extensive extracellular matrix remodeling programs. Whole transcriptomic analysis revealed common proliferation but distinct morphogenetic gene expression programs that correlated with tumor histology. The kinase program revealed EPHA3, LTK and ALK receptor tyrosine kinase overexpression in individual FGFR tumors. Paradoxically, all FGFR-fused glioblastomas shared strong PI3K and MAPK pathway suppression effected by SPRY, DUSP and AKAP12 inhibitors, whereas the FGFR2-TACC2 tumor elicited also EGFR suppression by ERRFI1 upregulation. This integrated analysis outlined the proliferation and morphogenetic expression programs in FGFR glioblastoma, and identified four novel, clinically targetable FGFR2 and FGFR3 alterations that confer aggressive phenotype and trigger canonical pathway feedback inhibition, with important therapeutic implications.
Collapse
|
9
|
Oatman N, Dasgupta N, Arora P, Choi K, Gawali MV, Gupta N, Parameswaran S, Salomone J, Reisz JA, Lawler S, Furnari F, Brennan C, Wu J, Sallans L, Gudelsky G, Desai P, Gebelein B, Weirauch MT, D'Alessandro A, Komurov K, Dasgupta B. Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. SCIENCE ADVANCES 2021; 7:eabd7459. [PMID: 33568479 PMCID: PMC7875532 DOI: 10.1126/sciadv.abd7459] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nupur Dasgupta
- Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mruniya V Gawali
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean Lawler
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Furnari
- Ludwig Institute of Cancer Research, University of California, San Diego, CA, USA
| | | | - Jianqiang Wu
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Gary Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Kamson D, Tsien C. Novel Magnetic Resonance Imaging and Positron Emission Tomography in the RT Planning and Assessment of Response of Malignant Gliomas. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
The Role of Liquid Biopsies in Detecting Molecular Tumor Biomarkers in Brain Cancer Patients. Cancers (Basel) 2020; 12:cancers12071831. [PMID: 32650387 PMCID: PMC7408771 DOI: 10.3390/cancers12071831] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal primary central nervous system cancers with a median overall survival of only 12-15 months. The best documented treatment is surgical tumor debulking followed by chemoradiation and adjuvant chemotherapy with temozolomide, but treatment resistance and therefore tumor recurrence, is the usual outcome. Although advances in molecular subtyping suggests GBM can be classified into four subtypes, one concern about using the original histology for subsequent treatment decisions is that it only provides a static snapshot of heterogeneous tumors that may undergo longitudinal changes over time, especially under selective pressure of ongoing therapy. Liquid biopsies obtained from bodily fluids like blood and cerebro-spinal fluid (CSF) are less invasive, and more easily repeated than surgery. However, their deployment for patients with brain cancer is only emerging, and possibly suppressed clinically due to the ongoing belief that the blood brain barrier prevents the egress of circulating tumor cells, exosomes, and circulating tumor nucleic acids into the bloodstream. Although brain cancer liquid biopsy analyses appear indeed challenging, advances have been made and here we evaluate the current literature on the use of liquid biopsies for detection of clinically relevant biomarkers in GBM to aid diagnosis and prognostication.
Collapse
|
12
|
Kiang KMY, Zhang P, Li N, Zhu Z, Jin L, Leung GKK. Loss of cytoskeleton protein ADD3 promotes tumor growth and angiogenesis in glioblastoma multiforme. Cancer Lett 2020; 474:118-126. [PMID: 31958485 DOI: 10.1016/j.canlet.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Adducin 3 (ADD3) is a crucial assembly factor in the actin cytoskeleton and has been found to be aberrantly expressed in various cancers, including glioblastoma multiforme (GBM). It has previously been studied in array-based studies with controversial findings as to its functional role in glioma. In microarray analyses of 452 glioma specimens, we found significant downregulation of ADD3 in GBM, but not in less malignant gliomas, compared to normal brain tissue, which suggests that its downregulation might underlie critical events during malignant progression. We also found that ADD3 was functionally dependent on cell-matrix interaction. In our in vivo study, the proliferative and angiogenic capacity of ADD3-depleted GBM cells was promoted, possibly through PCNA, while p53 and p21 expression was suppressed, and pro-angiogenic signals were induced through VEGF-VEGFR-2-mediated activation in endothelial cells. With correlative in vitro, in vivo, and clinical data, we provide compelling evidence on the putative tumor-suppressive role of ADD3 in modulating GBM growth and angiogenesis. As a preclinical study, our research offers a better understanding of the pathogenesis of glioma malignant progression for the benefit of future investigations.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Pingde Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ning Li
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Lei Jin
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
| |
Collapse
|
13
|
DeCordova S, Abdelgany A, Murugaiah V, Pathan AA, Nayak A, Walker T, Shastri A, Alrokayan SH, Khan HA, Singh SK, De Pennington N, Sim RB, Kishore U. Secretion of functionally active complement factor H related protein 5 (FHR5) by primary tumour cells derived from Glioblastoma Multiforme patients. Immunobiology 2019; 224:625-631. [PMID: 31519376 DOI: 10.1016/j.imbio.2019.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
The complement system is an important humoral immune surveillance mechanism against tumours. However, many malignant tumours are resistant to complement mediated lysis. Here, we report secretion of complement factor H related protein 5 (FHR5) by primary tumour cells derived from Glioblastoma multiforme (GBM) patients. We investigated whether the secreted FHR5 exhibited functional activity similar to factor H, including inhibition of complement mediated lysis, acting as a co-factor for factor I mediated cleavage of C3b, and decay acceleration of C3 convertase. Immunoblotting analysis of primary GBM cells (B30, B31 and B33) supernatant showed the active secretion of FHR5, but not of Factor H. ELISA revealed that the secretion of soluble GBM-FHR5 by cultured GBM cells increased in a time-dependent manner. Primary GBM-FHR5 inhibited complement mediated lysis, possessed co-factor activity for factor I mediated cleavage and displayed decay acceleration of C3 convertase. In summary, we detected the secretion of FHR5 by primary GBM cells B30, B31 and B33. The results demonstrated that GBM-FHR5 shares biological function with FH as a mechanism primary GBM cells potentially use to resist complement mediated lysis.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Amr Abdelgany
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Headington, OX3 9DS, UK; Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ansar A Pathan
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Annapurna Nayak
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Tom Walker
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Headington, OX3 9DS, UK
| | - Abhishek Shastri
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK; Westminster Community Mental Health Team, Central and North-West London NHS Foundation Trust, London SW1V 1DX, UK
| | - Salman H Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shiv K Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre, Goettingen, Germany
| | - Nick De Pennington
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Headington, OX3 9DS, UK
| | - Robert B Sim
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
14
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
15
|
Karnam S, Kottu R, Chowhan AK, Bodepati PC. Expression of p53 & epidermal growth factor receptor in glioblastoma. Indian J Med Res 2018; 146:738-745. [PMID: 29664032 PMCID: PMC5926345 DOI: 10.4103/ijmr.ijmr_1179_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background & objectives: Glioblastoma (GB) is the most frequent brain tumour, manifesting at any age, with a peak incidence between 45 and 75 years. Primary and secondary GBs constitute relatively distinct disease entities in evolution, in expression profiles and in therapeutic response. Histopathologically, primary and secondary GBs are indistinguishable. The aim of this investigation was to study the immunohistochemical (IHC) expression of p53 and epidermal growth factor receptor (EGFR) in GB with the objective of categorizing the morphological variants of GB into primary and secondary based on the presence of low-grade areas and knowing the variable expression of p53 and EGFR in primary and secondary GB. Methods: A total of 28 patients with GB were studied and categorized into primary and secondary based on the presence of low-grade areas, i.e. discernible astrocytic morphology, gemistocyte and oligodendroglia. Tumours with the presence of combination of the above features or any one of the above features were taken as secondary GB, whereas tumours with highly pleomorphic areas were considered as primary GB. IHC was done on the representative tissue blocks for p53 and EGFR. Results: Majority of the patients were in the fifth and sixth decades of life with a mean age of 46.96±13 yr with male preponderance (male:female 2.5:1). Mean age of presentation was 48.93±12 yr in primary and 44.69±15 yr in secondary GB. All cases of GB were classified into primary (53.57%) and secondary (46.43%) based on morphology. EGFR was more frequently expressed than p53. Based on IHC, 50 per cent of cases were classified into primary, three per cent into secondary and 47 per cent as unclassified. Interpretation & conclusions: Histopathological features, i.e. presence of low-grade areas, may play a role in classifying GB into primary and secondary. EGFR has a pivotal role in gliomagenesis. Combination of p53 and EGFR alone may not be sufficient to clarify GB into primary and secondary.
Collapse
Affiliation(s)
- Sameera Karnam
- Department of Pathology & Neurosurgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Radhika Kottu
- Department of Pathology & Neurosurgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Amit Kumar Chowhan
- Department of Pathology & Neurosurgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | | |
Collapse
|
16
|
Mesti T, Ocvirk J. Malignant gliomas: old and new systemic treatment approaches. Radiol Oncol 2016; 50:129-38. [PMID: 27247544 PMCID: PMC4852970 DOI: 10.1515/raon-2015-0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background Malignant (high-grade) gliomas are rapidly progressive brain tumours with very high morbidity and mortality. Until recently, treatment options for patients with malignant gliomas were limited and mainly the same for all subtypes of malignant gliomas. The treatment included surgery and radiotherapy. Chemotherapy used as an adjuvant treatment or at recurrence had a marginal role. Conclusions Nowadays, the treatment of malignant gliomas requires a multidisciplinary approach. The treatment includes surgery, radiotherapy and chemotherapy. The chosen approach is more complex and individually adjusted. By that, the effect on the survival and quality of life is notable higher.
Collapse
Affiliation(s)
- Tanja Mesti
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
17
|
Hassler MR, Sax C, Flechl B, Ackerl M, Preusser M, Hainfellner JA, Woehrer A, Dieckmann KU, Rössler K, Prayer D, Marosi C. Thalidomide as palliative treatment in patients with advanced secondary glioblastoma. Oncology 2015; 88:173-9. [PMID: 25427949 DOI: 10.1159/000368903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND For its numerous abilities including sedation, we have been using thalidomide (TH) as the 'last therapeutic option' in patients with advanced gliomas. We noticed that a small subgroup, i.e. patients with secondary glioblastoma (GBM, whose GBM has evolved over several months or years from a less malignant glioma), survived for prolonged periods. Therefore, we retrospectively evaluated the outcomes of patients with secondary GBM treated with TH at our centre. PATIENTS AND METHODS Starting in the year 2000, we have studied 23 patients (13 females, 10 males, with a median age of 31.5 years) with secondary GBM who have received palliative treatment with TH 100 mg at bedtime. All patients had previously undergone radiotherapy and received at least 1 and up to 5 regimens of chemotherapy. RESULTS The median duration of TH administration was 4.0 months (range 0.8-32). The median duration of overall survival after the start of TH therapy was 18.3 months (range 0.8-57). Eleven patients with secondary GBM survived longer than 1 year. Symptomatic improvement was most prominent in the restoration of a normal sleep pattern. CONCLUSION The palliative effects of TH, especially the normalization of a sleep pattern, were highly valued by patients and families. The prolongation of survival of patients with secondary GBM has not been reported previously.
Collapse
|
18
|
Alterations of the RRAS and ERCC1 genes at 19q13 in gemistocytic astrocytomas. J Neuropathol Exp Neurol 2014; 73:908-15. [PMID: 25192052 DOI: 10.1097/nen.0000000000000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gemistocytic astrocytoma (World Health Organization grade II) is a rare variant of diffuse astrocytoma that is characterized by the presence of neoplastic gemistocytes and has a significantly less favorable prognosis. Other than frequent TP53 mutations (>80%), little is known about its molecular profile. Here, we show that gemistocytic astrocytomas carry a lower frequency of IDH mutations than fibrillary astrocytomas (74% vs 92%; p = 0.0255) but have profiles similar to those of fibrillary astrocytomas with respect to TERT promoter mutations (5% vs 0%), 1p/19q loss (10% vs 8%), and loss of heterozygosity 10q (10% vs 12%). Exome sequencing in 5 gemistocytic astrocytomas revealed homozygous deletion of genes at 19q13 (i.e. RRAS [related RAS viral oncogene homolog; 2 cases] and ERCC1 [excision repair cross-complementing rodent repair deficiency, complementation group 1; 1 case]). Further screening showed RRAS homozygous deletion in 7 of 42 (17%) gemistocytic astrocytomas and in 3 of 24 (13%) IDH1 mutated secondary glioblastomas. Patients with gemistocytic astrocytoma and secondary glioblastoma with an RRAS deletion tended to have shorter survival rates than those without deletion. Differential polymerase chain reaction and methylation-specific polymerase chain reaction revealed an ERCC1 homozygous deletion or promoter methylation in 10 of 42 (24%) gemistocytic astrocytomas and in 8 of 24 (33%) secondary glioblastomas. Alterations in RRAS and ERCC1 appear to be typical in gemistocytic astrocytomas and secondary glioblastomas, since they were not present in 49 fibrillary astrocytomas or 30 primary glioblastomas.
Collapse
|
19
|
Chamberlain MC, Chowdhary SA, Glantz MJ. Anaplastic astrocytomas: biology and treatment. Expert Rev Neurother 2014; 8:575-86. [DOI: 10.1586/14737175.8.4.575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Inoue R, Isono M, Abe M, Abe T, Kobayashi H. A genotype of the polymorphic DNA repair gene MGMT is associated withde novoglioblastoma. Neurol Res 2013; 25:875-9. [PMID: 14669534 DOI: 10.1179/016164103771954005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Glioblastoma is one of the most malignant tumors in humans. This tumor is thought to develop as a result of the accumulation of genetic abnormalities, mainly focused on the loss of heterozygosity on chromosome 10. O6-methylguanine-DNA methyltransferase (MGMT), which is one of the most important DNA repair proteins, has also been reported that enzymatic activity, as well as the methylation status of the promoter region of the MGMT gene, contributes to the therapeutic response of alkylating agents. We previously found three allelic variants in the MGMT gene and assayed the characteristics of these polymorphic proteins. We designed a case-control study to investigate the role of MGMT genotypic risk factors for primary brain tumors. We compared the distributions of MGMT genotypes in primary brain tumors and normal controls. The frequencies of MGMT genotypes in examined primary brain tumors were not different from normal subjects. However, the combined heterozygote of V1 and a wild allele (V1/W) was frequently detected in de novo glioblastoma group with significant difference. Interestingly, among glial tumors, the V1/W genotype was dominantly detected in the patients with de novo glioblastoma. This study suggests that the V1/W genotype of the MGMT gene may contribute to the de novo occurrence of glioblastoma.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Neurosurgery, Oita Medical University, 1-1 Idaigaoka, Hasama, Oita 879-5593, Japan.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The vast majority of glioblastomas (~90%) develop rapidly de novo in elderly patients, without clinical or histologic evidence of a less malignant precursor lesion (primary glioblastomas). Secondary glioblastomas progress from low-grade diffuse astrocytoma or anaplastic astrocytoma. They manifest in younger patients, have a lesser degree of necrosis, are preferentially located in the frontal lobe, and carry a significantly better prognosis. Histologically, primary and secondary glioblastomas are largely indistinguishable, but they differ in their genetic and epigenetic profiles. Decisive genetic signposts of secondary glioblastoma are IDH1 mutations, which are absent in primary glioblastomas and which are associated with a hypermethylation phenotype. IDH1 mutations are the earliest detectable genetic alteration in precursor low-grade diffuse astrocytomas and in oligodendrogliomas, indicating that these tumors are derived from neural precursor cells that differ from those of primary glioblastomas. In this review, we summarize epidemiologic, clinical, histopathologic, genetic, and expression features of primary and secondary glioblastomas and the biologic consequences of IDH1 mutations. We conclude that this genetic alteration is a definitive diagnostic molecular marker of secondary glioblastomas and more reliable and objective than clinical criteria. Despite a similar histologic appearance, primary and secondary glioblastomas are distinct tumor entities that originate from different precursor cells and may require different therapeutic approaches.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- Molecular Pathology Section, International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
22
|
DMBT1Homozygous Deletion in Diffuse Astrocytomas Is Associated With Unfavorable Clinical Outcome. J Neuropathol Exp Neurol 2012; 71:702-7. [DOI: 10.1097/nen.0b013e31825f2e5d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
23
|
Abstract
This chapter focuses on the three-dimensional organization of the nucleus in normal, early genomically unstable, and tumor cells. A cause-consequence relationship is discussed between nuclear alterations and the resulting genomic rearrangements. Examples are presented from studies on conditional Myc deregulation, experimental tumorigenesis in mouse plasmacytoma, nuclear remodeling in Hodgkin's lymphoma, and in adult glioblastoma. A model of nuclear remodeling is proposed for cancer progression in multiple myeloma. Current models of nuclear remodeling are described, including our model of altered nuclear architecture and the onset of genomic instability.
Collapse
|
24
|
Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, Forrest WF, Pujara K, Carrillo JA, Pandita A, Ellingson BM, Bowers CW, Soriano RH, Schmidt NO, Mohan S, Yong WH, Seshagiri S, Modrusan Z, Jiang Z, Aldape KD, Mischel PS, Liau LM, Escovedo CJ, Chen W, Nghiemphu PL, James CD, Prados MD, Westphal M, Lamszus K, Cloughesy T, Phillips HS. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 2011; 29:4482-90. [PMID: 22025148 DOI: 10.1200/jco.2010.33.8715] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Mutation in isocitrate dehydrogenase 1 (IDH1) at R132 (IDH1(R132MUT)) is frequent in low-grade diffuse gliomas and, within glioblastoma (GBM), has been proposed as a marker for GBMs that arise by transformation from lower-grade gliomas, regardless of clinical history. To determine how GBMs arising with IDH1(R132MUT) differ from other GBMs, we undertook a comprehensive comparison of patients presenting clinically with primary GBM as a function of IDH1(R132) mutation status. PATIENTS AND METHODS In all, 618 treatment-naive primary GBMs and 235 lower-grade diffuse gliomas were sequenced for IDH1(R132) and analyzed for demographic, radiographic, anatomic, histologic, genomic, epigenetic, and transcriptional characteristics. RESULTS Investigation revealed a constellation of features that distinguishes IDH1(R132MUT) GBMs from other GBMs (including frontal location and lesser extent of contrast enhancement and necrosis), relates them to lower-grade IDH1(R132MUT) gliomas, and supports the concept that IDH1(R132MUT) gliomas arise from a neural precursor population that is spatially and temporally restricted in the brain. The observed patterns of DNA sequence, methylation, and copy number alterations support a model of ordered molecular evolution of IDH1(R132MUT) GBM in which the appearance of mutant IDH1 protein is an initial event, followed by production of p53 mutant protein, and finally by copy number alterations of PTEN and EGFR. CONCLUSION Although histologically similar, GBMs arising with and without IDH1(R132MUT) appear to represent distinct disease entities that arise from separate cell types of origin as the result of largely nonoverlapping sets of molecular events. Optimal clinical management should account for the distinction between these GBM disease subtypes.
Collapse
Affiliation(s)
- Albert Lai
- David Geffen School of Medicine at theUniversity of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arvind S, Arivazhagan A, Santosh V, Chandramouli BA. Differential expression of a novel voltage gated potassium channel – Kv 1.5 in astrocytomas and its impact on prognosis in glioblastoma. Br J Neurosurg 2011; 26:16-20. [DOI: 10.3109/02688697.2011.583365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Mizoguchi M, Kuga D, Guan Y, Hata N, Nakamizo A, Yoshimoto K, Sasaki T. Loss of heterozygosity analysis in malignant gliomas. Brain Tumor Pathol 2011; 28:191-6. [PMID: 21629980 DOI: 10.1007/s10014-011-0038-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/01/2011] [Indexed: 12/15/2022]
Abstract
Despite recent advances in the diagnosis and treatment of glioblastomas, patient outcomes for these highly malignant tumors remain poor. Research into the molecular pathology of glioblastoma has uncovered various genetic changes that contribute to malignancy. Some of the identified molecular markers--such as loss of heterozygosity (LOH) on chromosome 1p/19q and chromosome 10, O6-methylguanine methyltransferase promoter hypermethylation, and mutation of isocitrate dehydrogenase-1--may help to predict patient outcomes. Indeed, LOH analysis is an effective approach to classify malignant gliomas. Genome-wide analyses have revealed that the extent and pattern of LOH regions may have important implications for the clinical course of the disease. As the genetic underpinnings of malignant gliomas are complex and varied, careful selection of the methods for genetic analysis in the clinic is important. The fundamental principles of each assay need to be understood to allow careful selection of practically useful methods. This review summarizes recent developments in the molecular analysis of malignant glioma.
Collapse
Affiliation(s)
- Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 2011; 28:177-83. [DOI: 10.1007/s10014-011-0029-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 01/06/2023]
|
29
|
Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 2010; 16:387-97. [PMID: 20692206 DOI: 10.1016/j.molmed.2010.07.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 01/17/2023]
Abstract
The systematic sequencing of glioblastoma multiforme (GBM) genomes has identified the recurrent mutation of IDH1, a gene encoding NADP(+)-dependent isocitrate dehydrogenase 1 (IDH1) that catalyzes the oxidative decarboxylation of isocitrate yielding alpha-ketoglutarate (alpha-KG). Subsequent studies have confirmed recurrent IDH1 and IDH2 mutations in up to 70% of low-grade glioma and secondary GBM, as well as in 10% of acute myeloid leukemia (AML) cases. The heterozygous somatic mutations at arginine R132 (IDH1) and at R140 or R172 (IDH2) in the enzyme active site confer a gain of function to the enzymes, which can both produce the metabolite 2-hydroxyglutarate. This review surveys the prevalence of IDH mutations in cancer and explores current mechanistic understanding of IDH mutations with implications for diagnostic and therapeutic development for the treatment of gliomas and AML.
Collapse
Affiliation(s)
- Lenny Dang
- Agios Pharmaceuticals, 38 Sidney Street, Suite 200, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
30
|
Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, Yan H, Adamson DC. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 2009; 13:701-18. [PMID: 19409033 DOI: 10.1517/14728220902942348] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glioblastoma is the commonest primary brain tumor, as well as the deadliest. Malignant gliomas such as glioblastoma multiforme (GBM) present some of the greatest challenges in the management of cancer patients worldwide, despite notable recent achievements in oncology. Even with aggressive surgical resections using state-of-the-art preoperative and intraoperative neuroimaging, along with recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal: survival after diagnosis is about 1 year. Established prognostic factors are limited, but include age, Karnofsky performance status, mini-mental status examination score, O6-methylguanine methyltransferase promoter methylation and extent of surgery. Standard treatment includes resection of > 95% of the tumor, followed by concurrent chemotherapy and radiotherapy. Nevertheless, GBM research is being conducted worldwide at a remarkable pace, in the laboratory and at the bedside, with some of the more recent promising studies focused on identification of aberrant genetic events and signaling pathways to develop molecular-based targeted therapies, tumor stem cell identification and characterization, modulation of tumor immunological responses and understanding of the rare long-term survivors. With this universally fatal disease, any small breakthrough will have a significant impact on survival and provide hope to the thousands of patients who receive this diagnosis annually. This review describes the epidemiology, clinical presentation, pathology and tumor immunology, with a focus on understanding the molecular biology that underlies the current targeted therapeutics being tested.
Collapse
Affiliation(s)
- Okezie O Kanu
- Duke and Durham VAMC, Neurosurgery, DUMC Box 2624, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu J, Lu H, Ohgaki H, Merlo A, Shen Z. Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas. BMC Cancer 2009; 9:268. [PMID: 19653894 PMCID: PMC2736977 DOI: 10.1186/1471-2407-9-268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 08/04/2009] [Indexed: 11/29/2022] Open
Abstract
Background Loss of heterozygosity of chromosome 10q26 has been shown to be associated with the aggressiveness of astrocytic tumors (or astrocytomas), but the responsible gene(s) residing in this region has not been fully identified. The BCCIP gene is located at chromosome 10q26. It encodes a BRCA2 and CDKN1A (p21) interacting protein. Previous studies have shown that down-regulation of BCCIP impairs recombinational DNA repair, G1/S cell cycle checkpoint, p53 trans-activation activity, cytokinesis, and chromosome stability, suggesting a potential role of BCCIP in cancer etiology. In this study, we investigated whether BCCIP is altered in astrocytomas. Methods Genomic DNA from 45 cases of grade IV astrocytic tumor (glioblastoma) tissues and 12 cases of normal tissues were analyzed by quantitative PCR. The BCCIP protein expression in 96 cases of grade II–IV astrocytic tumors was detected by immunohistochemistry (IHC). IHC staining of glial fibrillary acid protein (GFAP), a marker for astrocytic cells, was used to identify cells of the astrocytic lineage. Results We found that BCCIP protein is expressed in normal cells with positive staining of GFAP. However, BCCIP protein expression was not detectable in ~45% of all astrocytic tumors, and in > 60% in the grade IV glioblastoma. About 45% glioblastoma have significant (p < 0.01) reduction of BCCIP gene copy number when compared to normal DNA. Furthermore, the frequency of lacking BCCIP expression is associated with the aggressiveness of astrocytic tumors. Conclusion Our data implicate a role of BCCIP in astrocytic tumorigenesis, and lack of BCCIP may be used as a marker for astrocytomas.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Radiation Oncology, The Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | | | | | | | |
Collapse
|
32
|
Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9:639-51. [PMID: 19508171 DOI: 10.2174/156800909789057006] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | |
Collapse
|
33
|
Rickert CH, Riemenschneider MJ, Schachenmayr W, Richter H, Bockhorn J, Reifenberger G, Paulus W. Glioblastoma with adipocyte-like tumor cell differentiation--histological and molecular features of a rare differentiation pattern. Brain Pathol 2009; 19:431-8. [PMID: 18691268 PMCID: PMC8094827 DOI: 10.1111/j.1750-3639.2008.00199.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/05/2008] [Indexed: 11/29/2022] Open
Abstract
We report on three adult patients with primary glioblastomas showing prominent adipocytic (lipomatous) differentiation, hence referred to as "glioblastomas with adipocyte-like tumor cell differentiation." Histologically, the tumors demonstrated typical features of glioblastoma but additionally contained areas consisting of glial fibrillary acidic protein (GFAP)-positive astrocytic tumor cells resembling adipocytes, that is, containing large intracellular lipid vacuoles. Comparative genomic hybridization (CGH) and focused molecular genetic analyses demonstrated gains of chromosomes 7, losses of chromosomes 9 and 10, as well as homozygous deletion of p14(ARF) in one of the tumors. The second tumor showed gains of chromosomes 3, 4, 8q and 12 as well as losses of chromosomes 10, 13, 15q, 19 and 22. In addition, this tumor carried homozygous deletions of CDKN2A and p14(ARF) as well as point mutations in the TP53 and PTEN genes. The third tumor also had a mutation in the PTEN gene. None of the tumors demonstrated EGFR, CDK4 or MDM2 amplification. Taken together, our results define a rare glioblastoma differentiation pattern and indicate that glioblastomas with adipocyte-like tumor cell differentiation share common molecular genetic features with other primary glioblastomas.
Collapse
Affiliation(s)
- Christian H. Rickert
- Department of Anatomical Pathology, Royal Children's Hospital, Melbourne, Australia
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
- These two authors contributed equally to this paper
| | - Markus J. Riemenschneider
- Department of Neuropathology, Heinrich‐Heine University, Düsseldorf, Germany
- These two authors contributed equally to this paper
| | | | | | - Jürgen Bockhorn
- Department of Neurosurgery, Hospital Hohe Warte, Bayreuth, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich‐Heine University, Düsseldorf, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
34
|
Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H, Adamson C. Glioblastoma Multiforme Oncogenomics and Signaling Pathways. Clin Med Oncol 2009; 3:39-52. [PMID: 19777070 PMCID: PMC2748278 DOI: 10.4137/cmo.s1008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the adult population, glioblastoma multiforme is one of the most common primary brain tumors encountered. Unfortunately, this highly malignant tumor represents over 50% of all types of primary central nervous system gliomas. The vast majority of GBMs develops quite rapidly without clinical, radiological, or morphologic evidence of a less malignant precursor lesion (primary or de novo GBMs), as compared to secondary GBMs that develop slowly by progression from diffuse low-grade astrocytomas. These GBM subtypes must be kept in mind because they may constitute distinct disease entities. Even though they look histologically quite similar, they likely involve different genetic alterations and signaling pathways. Decades of surgical therapy, radiotherapy, and chemotherapy have failed to drastically change survival. Clearly, we do not fully understand this tumor; however, the exciting genetic revolution in glioma research over the past decade is providing a promising outlook for exploring this tumor at the genetic level. Science has begun to elucidate the numerous genetic alterations and critical signaling pathways, and it has opened new exciting areas of research such as glioma stem cell biology and neoangiogenesis. This work has already begun to improve our understanding of GBM cell proliferation, migration, and invasion. Indeed, exciting novel targeted therapies are making their way to clinical trials based on this increased knowledge. This review provides the current understanding of GBM oncogenomics, signaling pathways, and glioma stem cell biology and discusses the potential new therapeutic targets on the horizon.
Collapse
|
35
|
Machado CML, Ikemori RY, Zorzeto TQ, Nogueira ACMA, Barbosa SDS, Savino W, Schenka AA, Vassallo J, Heinrich JK, Boetcher-Luiz F, Verinaud L. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro. BMC Cancer 2008; 8:291. [PMID: 18840301 PMCID: PMC2572634 DOI: 10.1186/1471-2407-8-291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 10/08/2008] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS) and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. METHODS This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. RESULTS Results showed that NG97(ht) had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP) and vimentin. In addition, beta1 integrins were present in intermediate levels while alpha5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht) revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells with stromal murine cells in the xenotransplant. CONCLUSION In this study the NG97(ht) cells were characterized to embryonic recovery patterns of intermediate filaments, adhesion molecules expression, chromosomal imbalances and murine chromosomes. In the latter case, these presumably chromosomes were originated as fusions between murine stroma cells and NG97 cell lineage in the xenotransplant. Our results emphasize important queries about astrocytomas tumor progression.
Collapse
Affiliation(s)
- Camila ML Machado
- Department of Microbiology and Immunology, Institute of Biology, UNICAMP – Campinas, São Paulo, Brazil
| | - Rafael Y Ikemori
- Department of Microbiology and Immunology, Institute of Biology, UNICAMP – Campinas, São Paulo, Brazil
| | - Tatiana Q Zorzeto
- Department of Microbiology and Immunology, Institute of Biology, UNICAMP – Campinas, São Paulo, Brazil
| | - Ana CMA Nogueira
- Department of Immunology, National Institute of Quality Control and Health, INCQS, FIOCRUZ – Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suse DS Barbosa
- Laboratory on Thymus Research – FIOCRUZ – Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research – FIOCRUZ – Rio de Janeiro, Rio de Janeiro, Brazil
| | - André A Schenka
- Laboratory of Investigative and Molecular Pathology-CIPED, Faculty of Medical Sciences, UNICAMP – Campinas, São Paulo, Brazil
| | - José Vassallo
- Laboratory of Investigative and Molecular Pathology-CIPED, Faculty of Medical Sciences, UNICAMP – Campinas, São Paulo, Brazil
| | - Juliana K Heinrich
- Clinical Specialized Laboratories, Centre of Integral Service to the Health of the Woman-CAISM, UNICAMP – Campinas, São Paulo, Brazil
| | - Fátima Boetcher-Luiz
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, UNICAMP – Campinas, São Paulo, Brazil
| | - Liana Verinaud
- Department of Microbiology and Immunology, Institute of Biology, UNICAMP – Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Wager M, Fontaine D, Karayan-Tapon L. Biologie moléculaire des gliomes de l’adulte : quelques repères pour le neurochirurgien. Neurochirurgie 2008; 54:529-44. [DOI: 10.1016/j.neuchi.2008.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
|
37
|
Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study. Br J Cancer 2008; 98:1830-8. [PMID: 18506188 PMCID: PMC2410116 DOI: 10.1038/sj.bjc.6604378] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study assessed the prognostic value of several markers involved in gliomagenesis, and compared it with that of other clinical and imaging markers already used. Four-hundred and sixteen adult patients with newly diagnosed glioma were included over a 3-year period and tumour suppressor genes, oncogenes, MGMT and hTERT expressions, losses of heterozygosity, as well as relevant clinical and imaging information were recorded. This prospective study was based on all adult gliomas. Analyses were performed on patient groups selected according to World Health Organization histoprognostic criteria and on the entire cohort. The endpoint was overall survival, estimated by the Kaplan–Meier method. Univariate analysis was followed by multivariate analysis according to a Cox model. p14ARF, p16INK4A and PTEN expressions, and 10p 10q23, 10q26 and 13q LOH for the entire cohort, hTERT expression for high-grade tumours, EGFR for glioblastomas, 10q26 LOH for grade III tumours and anaplastic oligodendrogliomas were found to be correlated with overall survival on univariate analysis and age and grade on multivariate analysis only. This study confirms the prognostic value of several markers. However, the scattering of the values explained by tumour heterogeneity prevents their use in individual decision-making.
Collapse
|
38
|
Khwaja FW. Prognostic markers of astrocytoma: how to predict the unpredictable? ACTA ACUST UNITED AC 2007; 1:463-79. [PMID: 23496354 DOI: 10.1517/17530059.1.4.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Astrocytomas are the most frequent tumors originating in the human nervous system. They carry a dismal prognosis as high-grade astroctyoma patients (World Health Organization [WHO] grade III and IV) rarely live beyond 5 years. At present, these tumors are mainly diagnosed through the difficult task of histologic examination of tissue obtained through stereotactic biopsy or tumor resection. In addition to determining the malignancy grade through histologic studies, the only other prognostic factors used in clinical setting are patient age and performance status. To overcome current limitations, research is underway to develop molecular approaches for glioma classification. These include identification, characterization and expansion of clinical (patient characteristics and imaging variables), histologic (WHO classification criteria) and molecular (genetic and proteomic) factors with prognostic potential. In this review the established classification characteristics, along with recent advances that may lead to the addition of new parameters and thus improve patient management and survival, are discussed.
Collapse
Affiliation(s)
- Fatima W Khwaja
- Shaukat Khanum Memorial Cancer Hospital and Research Center, Basic Science Lab, Abdul Hafeez Research Wing, 77A, Block R/8, Lahore, 54000, Pakistan +92 042 5180727 ext. 2523 ; +92 042 5945207 ;
| |
Collapse
|
39
|
Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1445-53. [PMID: 17456751 PMCID: PMC1854940 DOI: 10.2353/ajpath.2007.070011] [Citation(s) in RCA: 960] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most frequent and most malignant human brain tumor. The prognosis remains very poor, with most patients dying within 1 year after diagnosis. Primary and secondary glioblastoma constitute distinct disease subtypes, affecting patients of different age and developing through different genetic pathways. The majority of cases (>90%) are primary glioblastomas that develop rapidly de novo, without clinical or histological evidence of a less malignant precursor lesion. They affect mainly the elderly and are genetically characterized by loss of heterozygosity 10q (70% of cases), EGFR amplification (36%), p16(INK4a) deletion (31%), and PTEN mutations (25%). Secondary glioblastomas develop through progression from low-grade diffuse astrocytoma or anaplastic astrocytoma and manifest in younger patients. In the pathway to secondary glioblastoma, TP53 mutations are the most frequent and earliest detectable genetic alteration, already present in 60% of precursor low-grade astrocytomas. The mutation pattern is characterized by frequent G:C-->A:T mutations at CpG sites. During progression to glioblastoma, additional mutations accumulate, including loss of heterozygosity 10q25-qter ( approximately 70%), which is the most frequent genetic alteration in both primary and secondary glioblastomas. Primary and secondary glioblastomas also differ significantly in their pattern of promoter methylation and in expression profiles at RNA and protein levels. This has significant implications, particularly for the development of novel, targeted therapies, as discussed in this review.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | |
Collapse
|
40
|
Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1618-28. [PMID: 17456767 PMCID: PMC1854956 DOI: 10.2353/ajpath.2007.061111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2007] [Indexed: 01/07/2023]
Abstract
Four members of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases transduce signals of a diverse group of more than 23 fibroblast growth factor (FGF) ligands. Each prototypic receptor is composed of three immunoglobulin-like extracellular domains, two of which are involved in ligand binding. Alternative RNA splicing of one of two exons results in two different forms of the second half of the third immunoglobulin-like domain, the IIIb or IIIc isoforms. The contribution of each receptor and their isoforms in tumorigenesis remains unknown. In the pituitary, FGFR2 is expressed primarily as the IIIb isoform in normal adenohypophysial cells. In contrast, FGFR2 is significantly down-regulated in mouse corticotroph AtT20 tumor cells where the 5' promoter is methylated. Treatment of AtT20 cells with 5'-azacytidine resulted in FGFR2 re-expression, mainly as the FGFR2-IIIb isoform. Chromatin immunoprecipitation revealed evidence of histone methylation, but not of deacetylation, in the silencing of FGFR2 in AtT20 cells. Exposure of these cells to the cognate FGFR2-IIIb ligand FGF-7 resulted in diminished Rb phosphorylation and accumulation of p21 and p27, indicating diminished cell cycle progression. Examination of primary human pituitary adenomas revealed FGFR2 down-regulation in 52% (11 of 21) of samples and FGFR2 promoter DNA methylation in 45% (10 of 22) of samples. These data highlight the contribution from DNA and histone methylation as epigenetic mechanisms responsible for FGFR2 silencing in pituitary neoplasia.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | | | |
Collapse
|
41
|
Lázcoz P, Muñoz J, Nistal M, Pestaña A, Encío IJ, Castresana JS. Loss of heterozygosity and microsatellite instability on chromosome arm 10q in neuroblastoma. ACTA ACUST UNITED AC 2007; 174:1-8. [PMID: 17350460 DOI: 10.1016/j.cancergencyto.2006.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 07/31/2006] [Accepted: 08/07/2006] [Indexed: 01/12/2023]
Abstract
Tumor suppressor genes can be inactivated by various mechanisms, including promoter hypermethylation and loss of heterozygosity. We screened the 10q locus for loss of heterozygosity and the promoter methylation status of PTEN, MGMT, MXI1, and FGFR2 in neuroblastic tumors and neuroblastoma cell lines. Expression of these genes in cell lines was analyzed with reverse transcriptase-polymerase chain reaction. Loss of heterozygosity at 10q was detected in 18% of tumors and microsatellite instability in 14%. Promoter hypermethylation of MGMT appeared in 8% of tumors and 25% of cell lines. Correlation between methylation status and lack of expression was evident for PTEN, FGFR2, and MXI1 and was less clear for MGMT. No associations between these alterations and MYCN amplification, 1p deletion, or aggressive tumor histology could be demonstrated, singly or in combination. These data suggest that 10q alterations might be implicated in the development of a small number of neuroblastomas.
Collapse
Affiliation(s)
- Paula Lázcoz
- Department of Health Sciences, Public University of Navarra, 31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Spiegl-Kreinecker S, Pirker C, Marosi C, Buchroithner J, Pichler J, Silye R, Fischer J, Micksche M, Berger W. Dynamics of chemosensitivity and chromosomal instability in recurrent glioblastoma. Br J Cancer 2007; 96:960-9. [PMID: 17342095 PMCID: PMC2360110 DOI: 10.1038/sj.bjc.6603652] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme is characterised by invasive growth and frequent recurrence. Here, we have analysed chromosomal changes in comparison to tumour cell aggressiveness and chemosensitivity of three cell lines established from a primary tumour and consecutive recurrences (BTL1 to BTL3) of a long-term surviving glioblastoma patient together with paraffin-embedded materials of five further cases with recurrent disease. Following surgery, the BTL patient progressed under irradiation/ lomustine but responded to temozolomide after re-operation to temozolomide. The primary tumour -derived BTL1 cells showed chromosomal imbalances typical of highly aggressive glioblastomas. Interestingly, BTL2 cells established from the first recurrence developed under therapy showed signs of enhanced chromosomal instability. In contrast, BTL3 cells from the second recurrence resembled a less aggressive subclone of the primary tumour. Although BTL2 cells exhibited a highly aggressive phenotype, BTL3 cells were characterised by reduced proliferative and migratory potential. Despite persistent methylation of the O6-methylguanine-DNA methyltransferase promoter, BTL3 cells exhibited the highest temozolomide sensitivity. A comparable situation was found in two out of five glioblastoma patients, both characterised by enhanced survival time, who also relapsed after surgery/chemotherapy with less aggressive recurrences. Taken together, our data suggest that pretreated glioblastoma patients may relapse with highly chemosensitive tumours confirming the feasibility of temozolomide treatment even in case of repeated recurrence.
Collapse
Affiliation(s)
| | - C Pirker
- Departments of Neurosurgery, Wagner Jauregg Hospital, Linz, Austria
| | - C Marosi
- Clinical Division of Oncology, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - J Buchroithner
- Departments of Neurosurgery, Wagner Jauregg Hospital, Linz, Austria
| | - J Pichler
- Department of Internal Medicine, Wagner Jauregg Hospital, Linz, Austria
| | - R Silye
- Institute of Pathology, Wagner Jauregg Hospital, Linz, Austria
| | - J Fischer
- Departments of Neurosurgery, Wagner Jauregg Hospital, Linz, Austria
| | - M Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - W Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
- E-mail:
| |
Collapse
|
43
|
|
44
|
Wagner S, Csatary CM, Gosztonyi G, Koch HC, Hartmann C, Peters O, Hernáiz-Driever P, Théallier-Janko A, Zintl F, Längler A, Wolff JEA, Csatary LK. Combined treatment of pediatric high-grade glioma with the oncolytic viral strain MTH-68/H and oral valproic acid. APMIS 2006; 114:731-43. [PMID: 17004977 DOI: 10.1111/j.1600-0463.2006.apm_516.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The case of a 12-year-old boy with anaplastic astrocytoma of the left thalamus is reported. Postoperative irradiation and chemotherapy could not repress tumor progression; therefore, treatment was undertaken with an oncolytic virus, MTH-68/H, an attenuated strain of Newcastle disease virus (NDV), and valproic acid (VPA), an antiepileptic drug, which also has antineoplastic properties. This treatment resulted in a far-reaching regression of the thalamic glioma, but 4 months later a new tumor manifestation, an extension of the thalamic tumor, appeared in the wall of the IVth ventricle, which required a second neurosurgical intervention. Under continuous MTH-68/H - VPA administration the thalamic tumor remained under control, but the rhombencephalic one progressed relentlessly and led to the fatal outcome. In the final stage, a third tumor manifestation appeared in the left temporal lobe. The possible reasons for the antagonistic behavior of the three manifestations of the same type of glioma to the initially most successful therapy are discussed. The comparative histological study of the thalamic and rhombencephalic tumor manifestations revealed that MTH-68/H treatment induces, similar to in vitro observations, a massive apoptotic tumor cell decline. In the rhombencephalic tumor, in and around the declining tumor cells, NDV antigen could be demonstrated immunohistochemically, and virus particles have been found in the cytoplasm of tumor cells at electron microscopic investigation. These findings document that the oncolytic effect of MTH-68/H treatment is the direct consequence of virus presence and replication in the neoplastic cells. This is the first demonstration of NDV constituents in an MTH-68/H -treated glioma.
Collapse
Affiliation(s)
- Sabine Wagner
- Dept. of Pediatric Oncology, Krankenhaus der Barmherzigen Brüder, Klinik St. Hedwig, University of Regensburg
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mohin G, Madajewicz S, Manzione J, Franceschi D. Glioblastoma multiforme: advances in postsurgical management. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1548-5315(11)70921-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Kamakura Y, Hasegawa M, Minamoto T, Yamashita J, Fujisawa H. C-kit gene mutation: common and widely distributed in intracranial germinomas. J Neurosurg 2006; 104:173-80. [PMID: 16572634 DOI: 10.3171/ped.2006.104.3.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Of the intracranial germ cell tumors (IGCTs), 10% of germinomas and most nongerminomatous tumors remain refractory to multimodality therapy. The authors investigated the mutation of c-kit and the expression of its product KIT in IGCTs to identify tumors susceptible to imatinib mesylate, a synthetic agent targeting KIT. METHODS The authors investigated 26 IGCTs, including 13 germinomas, five mixed germ cell tumors (MGCTs), four immature teratomas (ITs), and two each of yolk sac tumors and choriocarcinomas. These tumors were examined for the expression of KIT and CD34 by immunohistochemical analysis, and for mutations in exons 2, 8 to 11, 13, and 17 of c-kit. Strong KIT expression was found in the cell membrane of germinomas (100%) and germinomatous cells of MGCTs (80%), as well as in the cytoplasm of epithelial and smooth-muscle cells of ITs. The membranous expression of CD34 was found in the nongerminomatous tumor cells and the chondrocytes of MGCTs (60%), ITs (100%), and a choriocarcinoma (50%), but not in germinomas and germinomatous cells. A total of five missense mutations distributed in exons 2, 11, 13, and 17 of c-kit were detected in three (23%) of the 13 germinomas. The novel mutations E73K, T96M (both in exon 2), and A636V (in exon 13) were detected in a single tumor. The presence or type of c-kit mutation was not correlated with patient prognosis. CONCLUSIONS Immunohistochemical analysis of KIT expression is useful for the diagnosis of germinoma. This study may help in clarifying the pathogenesis of IGCTs and in identifying tumors susceptible to drugs targeting KIT.
Collapse
Affiliation(s)
- Yayoi Kamakura
- Department of Neurosurgery, Kanazawa University Hospital, Japan
| | | | | | | | | |
Collapse
|
47
|
Castellano-Sanchez AA, Ohgaki H, Yokoo H, Scheithauer BW, Burger PC, Hamilton RL, Finkelstein SD, Brat DJ. Granular cell astrocytomas show a high frequency of allelic loss but are not a genetically defined subset. Brain Pathol 2006; 13:185-94. [PMID: 12744472 PMCID: PMC8095818 DOI: 10.1111/j.1750-3639.2003.tb00018.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Granular cell astrocytomas (GCA) are an uncommon morphologic variant of infiltrative glioma that contains a prominent population of atypical granular cells. As a rule, they are biologically aggressive compared to similar tumors without granular features. We sought to determine whether GCAs possess distinct genotypic alterations that might reflect their unique morphology or clinical behavior. Eleven GCAs occurring in 7 men and 4 women ranging in age from 46 to 75 years were investigated for genetic alterations of known significance in glial tumorigenesis, including LOH at 1p, 9p, 10q, 17p, and 19q, point mutations of TP53, deletions of p16(CDKN2A) and p14ARF, as well as EGFR amplifications. Tumors included had an infiltrative growth pattern and consisted of large, round cells packed with eosinophilic, PAS-positive granules that varied in quantity, ranging from 30 to 100% of tumor cells. Three tumors were of WHO grade II, one was grade III, and 7 were grade IV lesions. Overall, the tumors showed higher frequencies of LOH at 1p, 9p, 10q, 17p, and 19q than typical infiltrating astrocytomas of similar grades. Losses on 9p and 10q occurred in nearly all cases, including low grade lesions. TP53 mutations were identified in 2 grade IV GCAs, while combined p14ARF and p16(CDKN2A) homozygous deletions were noted in only one grade IV lesion. None showed EGFR amplification. We found no genetic alterations specific for GCA. Instead, it appears that granular cell change occurs across genetic subsets. The high frequency of allelic loss, especially on 9p and 10q, may confer aggressive growth potential and be related to their rapid clinical progression.
Collapse
|
48
|
Abstract
Treatment of pediatric brain tumors remains a challenge because of the toxicity associated with conventional treatment and the relative resistance of tumors at the time of recurrence. The traditional approach of administering cytotoxic agents at the maximum tolerated dose is being supplanted by the development of molecularly targeted agents aimed at critical cellular changes that are responsible for the growth and spread of cancer cells. These agents theoretically should be more specific for tumor cells and less toxic to normal cells. While the idea of targeted therapy has generated much excitement in the oncology community, the degree of benefit to patients with central nervous system (CNS) tumors remains unclear. Numerous challenges remain in the development of these agents, including identification of meaningful targets, delivery of agents in sufficient quantity at the target site, and determination of any biologic response to these agents. This article discusses the rationale behind several of these agents and their use in pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Warren K E
- National Cancer Institute, Neuro-Oncology Branch, Bloch Bldg, 82, Rm 224, 9030 Old Georgetown Road, Bethesda, Maryland 20892-8200, USA.
| |
Collapse
|
49
|
Misaki K, Marukawa K, Hayashi Y, Fukusato T, Minamoto T, Hasegawa M, Yamashita J, Fujisawa H. Correlation of gamma-catenin expression with good prognosis in medulloblastomas. J Neurosurg 2005; 102:197-206. [PMID: 16156230 DOI: 10.3171/jns.2005.102.2.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Medulloblastoma is a malignant cerebellar tumor of childhood and is difficult to cure due to frequent cerebrospinal fluid dissemination. Amplification of the c-myc gene (4%) and messenger (mRNA) overexpression (50%) are known to be adverse prognostic indicators. Because mRNA overexpression cannot be explained by gene amplification alone, mechanisms other than gene amplification are postulated. Molecules on the Wnt signal pathway in primary tumors were examined. METHODS Immunohistochemical and cytogenetic examinations of beta- and gamma-catenin, c-myc, N-myc, and cyclin D1 in 24 primary medulloblastomas were conducted, and their clinical relevance was evaluated. Cytoplasmic/membranous staining of beta- and gamma-catenin was detected in 19 (79%) and nine (37%) cases, respectively, and nuclear expression of cyclin D1 and c-myc was detected in six (25%) and 21 (83%) cases, respectively. The expression levels of gamma-catenin in Western blot analysis and immunohistochemistry were similar. By differential polymerase chain reaction, c-myc and N-myc were amplified separately in two large cell/anaplastic medulloblastomas. No cyclin D1 amplification, or beta- or gamma-catenin mutations were found. Kaplan-Meier analysis revealed no dissemination at diagnosis (Chang Grade M0) and gamma-catenin expression was correlated with good prognosis (p = 0.0002 and 0.003, respectively). Expression of gamma-catenin was also significant in the M0 group (p = 0.022). Expression of cyclin D1 showed a trend toward adverse outcome (p = 0.057) and all patients in whom cyclin D1 expression was found died of disease. CONCLUSIONS Expression of gamma-catenin is of great prognostic value and its immunohistochemistry may be useful for further stratification of treatment. Cyclin D expression may have the potential to be an adverse prognostic indicator.
Collapse
Affiliation(s)
- Koichi Misaki
- Department of Neurosurgery, Graduate School of Medical Science, Division of Diagnostic Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ohgaki H, Kleihues P. Population-Based Studies on Incidence, Survival Rates, and Genetic Alterations in Astrocytic and Oligodendroglial Gliomas. J Neuropathol Exp Neurol 2005; 64:479-89. [PMID: 15977639 DOI: 10.1093/jnen/64.6.479] [Citation(s) in RCA: 881] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Published data on prognostic and predictive factors in patients with gliomas are largely based on clinical trials and hospital-based studies. This review summarizes data on incidence rates, survival, and genetic alterations from population-based studies of astrocytic and oligodendrogliomas that were carried out in the Canton of Zurich, Switzerland (approximately 1.16 million inhabitants). A total of 987 cases were diagnosed between 1980 and 1994 and patients were followed up at least until 1999. While survival rates for pilocytic astrocytomas were excellent (96% at 10 years), the prognosis of diffusely infiltrating gliomas was poorer, with median survival times (MST) of 5.6 years for low-grade astrocytoma WHO grade II, 1.6 years for anaplastic astrocytoma grade III, and 0.4 years for glioblastoma. For oligodendrogliomas the MSTwas 11.6 years for grade II and 3.5 years for grade III. TP53 mutations were most frequent in gemistocytic astrocytomas (88%), followed by fibrillary astrocytomas (53%) and oligoastrocytomas (44%), but infrequent (13%) in oligodendrogliomas. LOH 1p/19q typically occurred in tumors without TP53 mutations and were most frequent in oligodendrogliomas (69%), followed by oligoastrocytomas (45%), but were rare in fibrillary astrocytomas (7%) and absent in gemistocytic astrocytomas. Glioblastomas were most frequent (3.55 cases per 100,000 persons per year) adjusted to the European Standard Population, amounting to 69% of total incident cases. Observed survival rates were 42.4% at 6 months, 17.7% at one year, and 3.3% at 2 years. For all age groups, survival was inversely correlated with age, ranging from an MST of 8.8 months (<50 years) to 1.6 months (>80 years). In glioblastomas, LOH 10q was the most frequent genetic alteration (69%), followed by EGFR amplification (34%), TP53 mutations (31%), p16INK4a deletion (31%), and PTEN mutations (24%). LOH 10q occurred in association with any of the other genetic alterations, and was the only alteration associated with shorter survival of glioblastoma patients. Primary (de novo) glioblastomas prevailed (95%), while secondary glioblastomas that progressed from low-grade or anaplastic gliomas were rare (5%). Secondary glioblastomas were characterized by frequent LOH 10q (63%) and TP53 mutations (65%). Of the TP53 mutations in secondary glioblastomas, 57% were in hot-spot codons 248 and 273, while in primary glioblastomas, mutations were more evenly distributed. G:C-->A:T mutations at CpG sites were more frequent in secondary than primary glioblastomas, suggesting that the acquisition of TP53 mutations in these glioblastoma subtypes may occur through different mechanisms.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- Pathology Group, International Agency for Research on Cancer (HO), F-69372, Lyon, France.
| | | |
Collapse
|