1
|
Sun H, Damania A, Mair ML, Otukoya E, Li YD, Polsky K, Zeng Y, Alt JA, Citardi MJ, Corry DB, Luong AU, Knight JM. STAT6 Blockade Abrogates Aspergillus-Induced Eosinophilic Chronic Rhinosinusitis and Asthma, A Model of Unified Airway Disease. Front Immunol 2022; 13:818017. [PMID: 35281012 PMCID: PMC8904741 DOI: 10.3389/fimmu.2022.818017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Unified airway disease, including concurrent asthma and chronic rhinosinusitis (CRS), is a common, but poorly understood disorder with no curative treatment options. To establish a murine model of chronic unified eosinophilic airway inflammation, mice were challenged with Aspergillus niger, and sinonasal mucosa and lung tissue were evaluated by immunohistochemistry, flow cytometry, and gene expression. Inhalation of A niger conidia resulted in a Th2-biased lung and sinus inflammation that typifies allergic asthma and CRS. Gene network and pathway analysis correlated with human disease with upregulation of not only the JAK-STAT and helper T-cell pathways, but also less expected pathways governing the spliceosome, osteoclast differentiation, and coagulation pathways. Utilizing a specific inhibitor and gene-deficient mice, we demonstrate that STAT6 is required for mycosis-induced sinus inflammation. These findings confirm the relevance of this new model and portend future studies that further extend our understanding of the immunopathologic basis of airway mycosis and unified airway disease.
Collapse
Affiliation(s)
- Hua Sun
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ashish Damania
- Department of Pediatrics-Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Megan L Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Eniola Otukoya
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Yi-Dong Li
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Katherine Polsky
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jeremiah A Alt
- Division of Otolaryngology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Michael E. Debakey VA Center for Translational Research in Inflammatory Diseases, Houston, TX, United States
| | - Amber U Luong
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John Morgan Knight
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
3
|
Alessandrini F, Musiol S, Schneider E, Blanco-Pérez F, Albrecht M. Mimicking Antigen-Driven Asthma in Rodent Models-How Close Can We Get? Front Immunol 2020; 11:575936. [PMID: 33101301 PMCID: PMC7555606 DOI: 10.3389/fimmu.2020.575936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Asthma is a heterogeneous disease with increasing prevalence worldwide characterized by chronic airway inflammation, increased mucus secretion and bronchial hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the pathomechanism of this complex disease many animal models have been developed, each trying to mimic specific aspects of the human disease. Rodents have classically been employed in animal models of asthma. The present review provides an overview of currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It further assesses the methods used to simulate disease development and exacerbations as well as to quantify allergic airway inflammation, including lung physiologic, cellular and molecular immunologic responses. Furthermore, the employment of genetically modified animals, which provide an in-depth understanding of the role of a variety of molecules, signaling pathways and receptors implicated in the development of this disease as well as humanized models of allergic inflammation, which have been recently developed to overcome differences between the rodent and human immune systems, are discussed. Nevertheless, differences between mice and humans should be carefully considered and limits of extrapolation should be wisely taken into account when translating experimental results into clinical use.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Blanco-Pérez
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| | - Melanie Albrecht
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
4
|
Abstract
Asthma, chronic rhinosinusitis, and related incurable allergic afflictions of the upper and lower airways are medically important because of their association with the disabling symptom of dyspnea and, at least for asthma, the potential to cause fatal asphyxiation. Extensive research over the past two decades has uncovered both the physiological basis of airway obstruction in asthma and key governing molecular pathways. Exaggerated airway constriction in response to diverse provocative stimuli, termed airway hyperresponsiveness, is mediated through the cytokines interleukin 4 (IL-4) and IL-13 and the transcription factor signal transducer and activator of transcription 6 (STAT6). Overproduction of mucus has long been known to be an essential second component of airway obstruction and is also mediated in part through the IL-4/IL-13/STAT6 pathway. In this review, we discuss a second major signaling pathway which underlies mucus production that is mediated through proteinase-cleaved fibrinogen signaling through Toll-like receptor 4. Unexpectedly, our analysis of human sputum and paranasal sinus fluid indicates that in most cases of severe allergic airway disease, a unique type of airway fungal infection, termed airway mycosis, is pathogenically linked to these conditions. We further discuss how fungal and endogenous proteinases mediate the fibrinogenolysis that is essential to both Toll-like receptor 4 signaling and fibrin deposition that, together with mucus, contribute to airway obstruction.
Collapse
|
5
|
Taitano SH, van der Vlugt LEPM, Shea MM, Yang J, Lukacs NW, Lundy SK. Differential Influence on Regulatory B Cells by T H2 Cytokines Affects Protection in Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:1865-1874. [PMID: 30127086 DOI: 10.4049/jimmunol.1800206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
The role of regulatory B cells (Bregs) in modulating immune responses and maintaining tolerance are well established. However, how cytokines present during immune responses affect Breg growth and function are not as well defined. Previously, our laboratory reported IL-5- and mCD40L-expressing fibroblast (mCD40L-Fb) stimulation induced IL-10 production from murine B cells. The current study investigated the phenotype and functional relevance of IL-10- producing B cells from this culture. We found IL-5/mCD40L-Fb stimulation induced IL-10 production exclusively from CD5+ splenic B cells of naive mice. After stimulation, the resulting IL-10+ B cells displayed markers of multiple reported Breg phenotypes. Interestingly, when investigating effects of IL-4 (a critical TH2 cytokine) on IL-5/mCD40L-Fb-induced IL-10 production, we found IL-4 inhibited IL-10 production in a STAT6-dependent manner. Upon adoptive transfer, CD5+ B cells previously stimulated with IL-5/mCD40L-Fb were able to reduce development of OVA-induced allergic airway disease in mice. Using B cells from IL-10 mutant mice differentiated by IL-5/mCD40L-Fb, we found protection from allergic airway disease development was dependent on the IL-10 production from the transferred B cells. Bregs have been shown to play crucial roles in the immune tolerance network, and understanding stimuli that modulate their growth and function may be key in development of future treatments for diseases of immune dysregulation.
Collapse
Affiliation(s)
- Sophina H Taitano
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Luciën E P M van der Vlugt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Molly M Shea
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer Yang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; .,Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
6
|
Bracken SJ, Adami AJ, Rafti E, Schramm CM, Matson AP. Regulation of IgE activity in inhalational tolerance via formation of IgG anti-IgE/IgE immune complexes. Clin Mol Allergy 2018; 16:13. [PMID: 29796009 PMCID: PMC5960149 DOI: 10.1186/s12948-018-0091-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Allergic asthma is an inflammatory disorder of the airways that results from inappropriate production of IgE against harmless, environmental antigens. Sequestration of free IgE using humanized IgG anti-IgE is an effective therapy for asthma and other atopic disorders. However, the status of free IgE in subjects who have naturally developed immune tolerance to inhaled antigens has not been well studied. Methods C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) for 7 days to induce allergic airway disease (AAD) or 6 weeks to induce a state of local inhalational tolerance (LIT). Serum from AAD or LIT mice, diluted to achieve equivalent levels of total OVA-specific IgE, was used to sensitize rat basophil leukemia cells for allergen-mediated degranulation. Levels of degranulation were measured in relation to serum concentrations of free IgE and IgG anti-IgE/IgE immune complexes. Results Serum from AAD animals induced a greater degree of basophil degranulation than serum from LIT animals. These results correlated with higher levels of free IgE in AAD animals, whereas LIT mice demonstrated a significant increase in IgG anti-IgE/IgE immune complexes relative to their diseased counterparts. Conclusions Sequestration of free IgE by naturally occurring IgG anti-IgE may aid in the development of immune tolerance against inhaled allergens. The decrease in bioavailability of free IgE may, in turn, contribute to the overall reduction of asthma symptoms via a mechanism that mimics the therapeutic effects of humanized IgG anti-IgE.
Collapse
Affiliation(s)
- Sonali J Bracken
- 1Department of Immunology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030 USA
| | - Alexander J Adami
- 1Department of Immunology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030 USA
| | - Ektor Rafti
- 2Department of Pediatrics, Connecticut Children's Medical Center, Hartford, CT USA
| | - Craig M Schramm
- 2Department of Pediatrics, Connecticut Children's Medical Center, Hartford, CT USA
| | - Adam P Matson
- 1Department of Immunology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030 USA.,2Department of Pediatrics, Connecticut Children's Medical Center, Hartford, CT USA
| |
Collapse
|
7
|
Tharakan A, Dobzanski A, London NR, Khalil SM, Surya N, Lane AP, Ramanathan M. Characterization of a novel, papain-inducible murine model of eosinophilic rhinosinusitis. Int Forum Allergy Rhinol 2018; 8:513-521. [PMID: 29341450 DOI: 10.1002/alr.22072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a disease characterized by eosinophilic inflammatory infiltrate and a local type 2 cytokine milieu. Current animal models fail to recapitulate many of the innate and adaptive immunologic hallmarks of the disease, thus hindering the development of effective therapeutics. In the present study, mice were exposed intranasally to the cysteine protease papain, which shares functional similarities with parasitic proteases and aeroallergens, to generate a rapidly inducible murine model of eosinophilic rhinosinusitis. METHODS C57BL/6 mice were intranasally instilled with 20 μg papain or heat-inactivated papain (HP) on days 0-2 and days 7-10, and then euthanized on day 11. Nasal lavage fluid (NALF) was analyzed to quantify eosinophils and inflammatory cytokine secretion. Sinonasal tissue was sectioned and stained for goblet cells or homogenized to analyze cytokine levels. Serum samples were assayed for immunoglobulin E (IgE) by enzyme-linked immunoassay. Sinonasal mucosal tissue was dissociated and analyzed by flow cytometry. RESULTS Compared with HP treatment, papain induced significant eosinophilia in NALF, goblet cell hyperplasia, innate and adaptive immune cell infiltration, type 2 cytokine production, and IgE responses. Flow cytometric analysis of sinonasal tissues revealed significant inflammatory cell infiltration and interleukin-13-producing cell populations. CONCLUSION In this study, we demonstrated that the cysteine protease papain induces allergic sinonasal eosinophilic rhinosinusitis and resembles T-helper 2 cell inflammation and innate immune characteristics of ECRS. This model permits further study into the molecular mechanisms underlying ECRS pathology and provides a model system for the evaluation of potential pharmacologic interventions.
Collapse
Affiliation(s)
- Anuj Tharakan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alex Dobzanski
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Syed M Khalil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nitya Surya
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Doras C, Petak F, Bayat S, Baudat A, Von Garnier C, Eigenmann P, Habre W. Lung responses in murine models of experimental asthma: Value of house dust mite over ovalbumin sensitization. Respir Physiol Neurobiol 2017; 247:43-51. [PMID: 28890402 DOI: 10.1016/j.resp.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 11/25/2022]
Abstract
Ovalbumin (OVA) sensitization has limitations in modelling asthma. Thus, we examined the value of allergic sensitization using a purified natural allergen, house dust mite (HDM), over the sensitization performed with OVA. Mice were sham-treated, or sensitized with OVA- or HDM with identical chronology. Airway resistance, tissue damping and elastance were assessed under control conditions and after challenging the animals with methacholine (MCh) and the specific allergen. Inflammatory profile of the bronchoalveolar lavage fluid was characterized and lung histology was performed. While no difference in the lung responsiveness to the specific allergen was noted, hyperresponsiveness to MCh was observed only in the HDM-sensitized animals in the lung peripheral parameters. Lung inflammation differed between the models, but excessive bronchial smooth muscle remodelling occurred only with OVA. In conclusion, we demonstrate that a purified natural allergen offers a more relevant murine model of human allergic asthma by expressing the key features of this chronic inflammatory disease both in the lung function and structure.
Collapse
Affiliation(s)
- Camille Doras
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Sam Bayat
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Aurélie Baudat
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Philippe Eigenmann
- Department of Paediatrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Walid Habre
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Does seasonal allergic rhinitis increase sensitivity to ammonia exposure? Int J Hyg Environ Health 2017; 220:840-848. [DOI: 10.1016/j.ijheh.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022]
|
10
|
Mathias CB, Schramm CM, Guernsey LA, Wu CA, Polukort SH, Rovatti J, Ser-Dolansky J, Secor E, Schneider SS, Thrall RS, Aguila HL. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure. Clin Exp Allergy 2017; 47:639-655. [PMID: 28093832 PMCID: PMC5407912 DOI: 10.1111/cea.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple haematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+ T cells. We therefore hypothesized that IL-15-/- mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). OBJECTIVE To determine whether IL-15-/- mice have attenuated allergic responses in a mouse model of AAD. METHODS C57BL/6 wild-type (WT) and IL-15-/- mice were sensitized and challenged with ovalbumin (OVA), and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. RESULTS Here, we report that IL-15-/- mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+ T and B cells in the spleens and bronchoalveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα-/- animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+ T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15-/- animals to levels observed in WT mice, but had no further effects. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+ T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Craig M. Schramm
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol A. Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Eric Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
11
|
Lee YZ, Shaari K, Cheema MS, Tham CL, Sulaiman MR, Israf DA. An orally active geranyl acetophenone attenuates airway remodeling in a murine model of chronic asthma. Eur J Pharmacol 2017; 797:53-64. [PMID: 28089919 DOI: 10.1016/j.ejphar.2017.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
Abstract
2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
Collapse
Affiliation(s)
- Yu Zhao Lee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Vang AG, Basole C, Dong H, Nguyen RK, Housley W, Guernsey L, Adami AJ, Thrall RS, Clark RB, Epstein PM, Brocke S. Differential Expression and Function of PDE8 and PDE4 in Effector T cells: Implications for PDE8 as a Drug Target in Inflammation. Front Pharmacol 2016; 7:259. [PMID: 27601994 PMCID: PMC4993990 DOI: 10.3389/fphar.2016.00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Abolishing the inhibitory signal of intracellular cAMP is a prerequisite for effector T (Teff) cell function. The regulation of cAMP within leukocytes critically depends on its degradation by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE8A, a PDE isoform with 40–100-fold greater affinity for cAMP than PDE4, is selectively expressed in Teff vs. regulatory T (Treg) cells and controls CD4+ Teff cell adhesion and chemotaxis. Here, we determined PDE8A expression and function in CD4+ Teff cell populations in vivo. Using magnetic bead separation to purify leukocyte populations from the lung draining hilar lymph node (HLN) in a mouse model of ovalbumin-induced allergic airway disease (AAD), we found by Western immunoblot and quantitative (q)RT-PCR that PDE8A protein and gene expression are enhanced in the CD4+ T cell fraction over the course of the acute inflammatory disease and recede at the late tolerant non-inflammatory stage. To evaluate PDE8A as a potential drug target, we compared the selective and combined effects of the recently characterized highly potent PDE8-selective inhibitor PF-04957325 with the PDE4-selective inhibitor piclamilast (PICL). As previously shown, PF-04957325 suppresses T cell adhesion to endothelial cells. In contrast, we found that PICL alone increased firm T cell adhesion to endothelial cells by ~20% and significantly abrogated the inhibitory effect of PF-04957325 on T cell adhesion by over 50% when cells were co-exposed to PICL and PF-04957325. Despite its robust effect on T cell adhesion, PF-04957325 was over two orders of magnitude less efficient than PICL in suppressing polyclonal Teff cell proliferation, and showed no effect on cytokine gene expression in these cells. More importantly, PDE8 inhibition did not suppress proliferation and cytokine production of myelin-antigen reactive proinflammatory Teff cells in vivo and in vitro. Thus, targeting PDE8 through PF-04957325 selectively regulates Teff cell interactions with endothelial cells without marked immunosuppression of proliferation, while PDE4 inhibition has partially opposing effects. Collectively, our data identify PF-04957325 as a novel function-specific tool for the suppression of Teff cell adhesion and indicate that PDE4 and PDE8 play unique and non-redundant roles in the control of Teff cell functions.
Collapse
Affiliation(s)
- Amanda G Vang
- Department of Immunology, University of Connecticut Health CenterFarmington, CT, USA; Department of Diagnostic Medicine, National Hospital of the Faroe IslandsTórshavn, Faroe Islands
| | - Chaitali Basole
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Hongli Dong
- Department of Cell Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Rebecca K Nguyen
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - William Housley
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Linda Guernsey
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Alexander J Adami
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Roger S Thrall
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| | - Paul M Epstein
- Department of Cell Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Stefan Brocke
- Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
13
|
Carson WF, Guernsey LA, Singh A, Secor ER, Wohlfert EA, Clark RB, Schramm CM, Kunkel SL, Thrall RS. Cbl-b Deficiency in Mice Results in Exacerbation of Acute and Chronic Stages of Allergic Asthma. Front Immunol 2015; 6:592. [PMID: 26635806 PMCID: PMC4653292 DOI: 10.3389/fimmu.2015.00592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/04/2015] [Indexed: 01/21/2023] Open
Abstract
Mice sensitized to ovalbumin (OVA) develop allergic airway disease (AAD) with short-term daily OVA aerosol challenge; inflammation resolves with long-term OVA aerosol exposure, resulting in local inhalational tolerance (LIT). Cbl-b is an E3 ubiquitin ligase involved with CD28 signaling; Cbl-b−/− effector T cells are resistant to regulatory T cell-mediated suppression in vitro and in vivo. The present study utilized Cbl-b−/− mice to investigate the role of Cbl-b in the development of AAD and LIT. Cbl-b−/− mice exhibited increased airway inflammation during AAD, which failed to resolve with long-term OVA aerosol exposure. Exacerbation of inflammation in Cbl-b−/− mice correlated with increased proinflammatory cytokine levels and expansion of effector T cells in the BAL during AAD, but did not result in either a modulation of lymphocyte subsets in systemic tissues or in OVA-specific IgE in serum. These results implicate a role for Cbl-b in the resolution of allergic airway inflammation.
Collapse
Affiliation(s)
- William F Carson
- Department of Pathology, University of Michigan , Ann Arbor, MI , USA
| | - Linda A Guernsey
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Anurag Singh
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Eric R Secor
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Elizabeth A Wohlfert
- Department of Pediatrics, University of Connecticut Health Center , Farmington, CT , USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Craig M Schramm
- Department of Microbiology and Immunology, University at Buffalo , Buffalo, NY , USA
| | - Steven L Kunkel
- Department of Pathology, University of Michigan , Ann Arbor, MI , USA
| | - Roger S Thrall
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| |
Collapse
|
14
|
Andemariam B, Adami AJ, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS. The sickle cell mouse lung: proinflammatory and primed for allergic inflammation. Transl Res 2015; 166:254-68. [PMID: 25843670 PMCID: PMC4537824 DOI: 10.1016/j.trsl.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023]
Abstract
Comorbid asthma in sickle cell disease (SCD) confers higher rates of vaso-occlusive pain and mortality, yet the physiological link between these two distinct diseases remains puzzling. We used a mouse model of SCD to study pulmonary immunology and physiology before and after the induction of allergic airway disease (AAD). SCD mice were sensitized with ovalbumin (OVA) and aluminum hydroxide by the intraperitoneal route followed by daily, nose-only OVA-aerosol challenge to induce AAD. The lungs of naive SCD mice showed signs of inflammatory and immune processes: (1) histologic and cytochemical evidence of airway inflammation compared with naive wild-type mice; (2) bronchoalveolar lavage (BAL) fluid contained increased total lymphocytes, %CD8+ T cells, granulocyte-colony stimulating factor, interleukin 5 (IL-5), IL-7, and chemokine (C-X-C motif) ligand (CXCL)1; and (3) lung tissue and hilar lymph node (HLN) had increased CD4+, CD8+, and regulatory T (Treg) cells. Furthermore, SCD mice at AAD demonstrated significant changes compared with the naive state: (1) BAL fluid with increased %CD4+ T cells and Treg cells, lower %CD8+ T cells, and decreased interferon gamma, CXCL10, chemokine (C-C motif) ligand 2, and IL-17; (2) serum with increased OVA-specific immunoglobulin E, IL-6, and IL-13, and decreased IL-1α and CXCL10; (3) no increase in Treg cells in the lung tissue or HLN; and (4) hyporesponsiveness to methacholine challenge. In conclusion, SCD mice have an altered immunologic pulmonary milieu and physiological responsiveness. These findings suggest that the clinical phenotype of AAD in SCD mice differs from that of wild-type mice and that individuals with SCD may also have a unique, divergent phenotype perhaps amenable to a different therapeutic approach.
Collapse
Affiliation(s)
- Biree Andemariam
- Division of Hematology-Oncology, Lea Center for Hematologic Disorders, Adult Sickle Cell Center, University of Connecticut Health Center, Farmington, Conn.
| | - Alexander J Adami
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| | - Anurag Singh
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| | - Jeffrey T McNamara
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| | - Eric R Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| | - Linda A Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| | - Roger S Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn
| |
Collapse
|
15
|
Chapman DG, Tully JE, Nolin JD, Janssen-Heininger YM, Irvin CG. Animal models of allergic airways disease: where are we and where to next? J Cell Biochem 2015; 115:2055-64. [PMID: 25043224 DOI: 10.1002/jcb.24881] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
In a complex inflammatory airways disease such as asthma, abnormalities in a plethora of molecular and cellular pathways ultimately culminate in characteristic impairments in respiratory function. The ability to study disease pathophysiology in the setting of a functioning immune and respiratory system therefore makes mouse models an invaluable tool in translational research. Despite the vast understanding of inflammatory airways diseases gained from mouse models to date, concern over the validity of mouse models continues to grow. Therefore the aim of this review is twofold; firstly, to evaluate mouse models of asthma in light of current clinical definitions, and secondly, to provide a framework by which mouse models can be continually refined so that they continue to stand at the forefront of translational science. Indeed, it is in viewing mouse models as a continual work in progress that we will be able to target our research to those patient populations in whom current therapies are insufficient.
Collapse
Affiliation(s)
- David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont; Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
16
|
Bracken SJ, Adami AJ, Szczepanek SM, Ehsan M, Natarajan P, Guernsey LA, Shahriari N, Rafti E, Matson AP, Schramm CM, Thrall RS. Long-Term Exposure to House Dust Mite Leads to the Suppression of Allergic Airway Disease Despite Persistent Lung Inflammation. Int Arch Allergy Immunol 2015; 166:243-58. [PMID: 25924733 DOI: 10.1159/000381058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/18/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Allergic asthma is a major cause of worldwide morbidity and results from inadequate immune regulation in response to innocuous, environmental antigens. The need exists to understand the mechanisms that promote nonreactivity to human-relevant allergens such as house dust mite (HDM) in order to develop curative therapies for asthma. The aim of our study was to compare the effects of short-, intermediate- and long-term HDM administration in a murine asthma model and determine the ability of long-term HDM exposure to suppress allergic inflammation. METHODS C57BL/6 mice were intranasally instilled with HDM for short-term (2 weeks), intermediate-term (5 weeks) and long-term (11 weeks) periods to induce allergic airway disease (AAD). The severity of AAD was compared across all stages of the model via both immunological and pulmonary parameters. RESULTS Short- and intermediate-term HDM exposure stimulated the development of AAD that included eosinophilia in the bronchoalveolar lavage fluid (BALF), pronounced airway hyperreactivity (AHR) and evidence of lung inflammation. Long-term HDM exposure promoted the suppression of AAD, with a loss of BALF eosinophilia and AHR despite persistent mononuclear inflammation in the lungs. Suppression of AAD with long-term HDM exposure was associated with an increase in both Foxp3+ regulatory T cells and IL-10-positive alveolar macrophages at the site of inflammation. CONCLUSIONS This model recapitulates the key features of human asthma and may facilitate investigation into the mechanisms that promote immunological tolerance against clinically relevant aeroallergens.
Collapse
Affiliation(s)
- Sonali J Bracken
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mathias CB, Guernsey LA, Zammit D, Brammer C, Wu CA, Thrall RS, Aguila HL. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin Exp Allergy 2014; 44:589-601. [PMID: 24397722 DOI: 10.1111/cea.12271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/25/2013] [Accepted: 12/17/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural Killer (NK) cells have been implicated in the development of allergic airway inflammation. However, the in vivo role of NK cells has not been firmly established due to the lack of animal models with selective deficiencies in NK cells. OBJECTIVE To determine the specific contribution of NK cells in a murine model of allergic airway disease (AAD). METHODS The role of NK cells in AAD was studied using NK-deficient (NKD) mice, perforin(-/-) mice, and mice depleted of Ly49A/D/G(+) NK cell subsets in an ovalbumin-induced model of allergic airway disease (OVA-AAD). RESULTS Induction of OVA-AAD in C57BL/6 wild-type (WT) mice resulted in the expansion of airway NK cells and the development of pronounced airway eosinophilia. In the absence of NK cells or specific subsets of NK cells, either in NKD mice, or after the depletion of Ly49A/D/G(+) NK cells, the development of OVA-AAD was significantly impaired as seen by decreased airway inflammation and eosinophilia, decreased secretion of the Th2 cytokines IL-4, IL-5 and IL-13 and diminished OVA-specific antibody production. Furthermore, while OVA-exposure induced a dramatic expansion of dendritic cells (DCs) in WT mice, their induction was significantly attenuated in NKD mice. Development of OVA-AAD in perforin(-/-) mice suggested that the proinflammatory role of NK cells is not dependent on perforin-mediated cytotoxicity. Lastly, induction of allergic disease by OVA-specific CD4 T cells from WT but not NK-depleted or NKD mice in RAG(-/-) recipients, demonstrates that NK cells are essential for T cell priming. CONCLUSIONS AND CLINICAL RELEVANCE Our data demonstrate that conventional NK cells play an important and distinct role in the development of AAD. The presence of activated NK cells has been noted in patients with asthma. Understanding the mechanisms by which NK cells regulate allergic disease is therefore an important component of treatment approaches.
Collapse
Affiliation(s)
- C B Mathias
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA; Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Tumor necrosis factor-related apoptosis-inducing ligand mediates the resolution of allergic airway inflammation induced by chronic allergen inhalation. Mucosal Immunol 2014; 7:1199-208. [PMID: 24569802 DOI: 10.1038/mi.2014.9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/14/2014] [Indexed: 02/04/2023]
Abstract
Allergic asthma can vanish over time either spontaneously or induced by allergen-specific immunotherapy. In mice with established airway allergic inflammation, chronic intranasal (IN) allergen challenges decreases progressively airway allergic inflammation. Here we compared the contribution of different regulatory pathways that could be associated with this phenomenon, known as local inhalational tolerance. We found that inhalational tolerance was not associated with increased number of regulatory T cells or suppressive cytokines. Instead, it was associated with increased apoptosis of airway inflammatory leukocytes revealed by annexin-V staining and the expression of apical caspase 8 and effector caspase 3. Also, the transition from acute to chronic phase was associated with a shift in the expression of pro-allergic to pro-apoptotic molecules. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was found to be a key molecule in mediating resolution of allergic inflammation because anti-TRAIL treatment blocked apoptosis and increased the infiltration of T helper type 2 (Th2) cells and eosinophils. Notably, repeated IN treatment with recombinant TRAIL in established airway allergic inflammation augmented leukocyte apoptosis and decreased the frequency of interleukin-5-producing Th2 cells and eosinophils to airways. Our data indicate that TRAIL signaling is sufficient for downmodulation of allergic airway disease, suggesting a potential therapeutic use of TRAIL for asthma treatment.
Collapse
|
19
|
Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:702196. [PMID: 24381635 PMCID: PMC3870104 DOI: 10.1155/2013/702196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022]
Abstract
The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr's effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET(+) cells were decreased. sBr reduced CD11c(+) dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena.
Collapse
|
20
|
Secor ER, Carson WF, Singh A, Pensa M, Guernsey LA, Schramm CM, Thrall RS. Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced Murine Model of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:61-9. [PMID: 18317550 PMCID: PMC2249734 DOI: 10.1093/ecam/nel110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/04/2006] [Indexed: 12/16/2022]
Abstract
Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered saline)PBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL) cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01), reduction in BAL eosinophils (P ≤ 0.02) and IL-13 concentrations (P ≤ 0.04) as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001) and CD8+ T cells (P ≤ 0.0001) in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions.
Collapse
Affiliation(s)
- Eric R Secor
- Department of Immunology and Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wilson SJ, Harmer MJ, Lee RL, Rigden HM, Doyon-Reale NM, Forman KM, Gao X, Lieh-Lai MW, Bassett DJP. Recurring BALB/c mouse lung inflammatory responses to episodic allergen exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:176-191. [PMID: 23356647 PMCID: PMC3558838 DOI: 10.1080/15287394.2013.752323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study detailed the sequence of recurring inflammatory events associated with episodic allergen exposures of mice resulting in airway hyperreactivity, sustained inflammation, goblet-cell hyperplasia, and fibrogenesis that characterize a lung with chronic asthma. Ovalbumin (OVA)-sensitized female BALB/c mice were exposed to saline-control or OVA aerosols for 1 h per day for episodes of 3 d/wk for up to 8 wk. Lung inflammation was assessed by inflammatory cell recoveries using bronchoalveolar lavages (BAL) and tissue collagenase dispersions. Cell accumulations were observed within airway submucosal and associated perivascular spaces using immunohistochemical and tinctorial staining methods. Airway responsiveness to methacholine aerosols were elevated after 2 wk and further enhanced to a sustained level after wk 4 and 8. Although by wk 8 diminished OVA-induced accumulations of eosinophils, neutrophils, and monocyte-macrophages were observed, suggesting diminished responsiveness, the BAL recovery of lymphocytes remained elevated. Airway but not perivascular lesions persisted with a proliferating cell population, epithelial goblet-cell hyperplasia, and evidence of enhanced collagen deposition. Examination of lung inflammatory cell content before the onset of the first, second, and fourth OVA exposure episodes demonstrated enhancements in residual BAL lymphocyte and BAL and tissue eosinophil recoveries with each exposure episode. Although tissue monocyte-macrophage numbers returned to baseline prior to each exposure episode, the greatest level of accumulation was observed after wk 4. These results provide the basis for establishing the inflammatory and exposure criteria by which episodic environmental exposures to allergen might result in the development of a remodeled lung in asthma.
Collapse
Affiliation(s)
- S J Wilson
- Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
de Oliveira Henriques MDGM, Penido C. γδ T Lymphocytes Coordinate Eosinophil Influx during Allergic Responses. Front Pharmacol 2012; 3:200. [PMID: 23316161 PMCID: PMC3540995 DOI: 10.3389/fphar.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Tissue eosinophil infiltration, which is a hallmark of allergic and helminthic diseases, is mainly coordinated by T lymphocytes, via the production of eosinophilotactic chemokines. Among T lymphocyte subsets, lymphocytes expressing γδ T cell receptor have been determined as a key factor for eosinophil accumulation via direct and indirect mechanisms. This knowledge is strongly supported by the fact that, in different experimental models of eosinophilic airway inflammation and helminth-induced Th2 lung inflammation, an evident tissue accumulation of γδ T lymphocytes is observed. In addition, the depletion of γδ T lymphocytes is correlated with the impairment of eosinophil accumulation in inflamed tissue. γδ T lymphocytes are non-conventional T lymphocytes, which comprise a minor T lymphocyte subset, mainly distributed in the tissue, and present crucial roles in innate and acquired immune responses. γδ T lymphocytes recognize several danger- and pathogen-associated molecular pattern molecules and stress antigens in a MHC-independent fashion and can provide rapid tissue-specific responses, via the production of a wide range of chemical mediators capable to modulate other cell populations. These mediators include chemoattractant cytokines and chemokines that attract eosinophils into the tissue by either direct recognition (such as IL-5, CCL11/eotaxin), or indirect mechanisms via the modulation of αβ T lymphocytes and macrophages (through the production of interferon-γ, IL-4, and CCL2/Monocyte chemoattractant protein-1, MCP-1, for example). The present review presents an overview of how γδ T lymphocytes coordinate eosinophil accumulation in allergy, by focusing on their role in airway inflammation and by discussing the involvement of cytokines and chemokines in this phenomenon.
Collapse
|
23
|
Natarajan P, Singh A, McNamara JT, Secor ER, Guernsey LA, Thrall RS, Schramm CM. Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol 2012; 5:691-701. [PMID: 22718263 PMCID: PMC3480990 DOI: 10.1038/mi.2012.42] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a biphasic, ovalbumin (OVA)-induced murine asthma model where allergic airway disease is followed by resolution and the development of local inhalational tolerance (LIT), transforming growth factor (TGF)-β-expressing CD5(+) B cells were selectively expanded locally in hilar lymph nodes (HLN) of LIT mice. LIT HLN CD5(+) B cells, but not LIT HLN CD5(-) B cells, induced expression of Foxp3 in CD4(+)CD25(-) T cells in vitro. These CD5(+) regulatory B cells (Breg) and CD4(+)Foxp3(+) T cells demonstrated similar increases in expression of chemokine receptors (CXCR4 and CXCR5) and co-localized in HLN B cell zones of LIT mice. The adoptive transfer of LIT HLN CD5(+) B cells, but not LIT HLN CD5(-) B cells, increased the number of CD4(+)Foxp3(+) T cells in the lung and inhibited airway eosinophilia in this OVA model. Thus, Breg in HLNs of LIT mice reside in a CD5(+) TGF-β-producing subpopulation and co-localize with CD4(+)Foxp3(+) T cells.
Collapse
Affiliation(s)
- Prabitha Natarajan
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Anurag Singh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030,Nestle Research Center, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Jeffrey T. McNamara
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Eric R. Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Craig M. Schramm
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
24
|
Kumar RK, Foster PS. Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness? Front Physiol 2012; 3:312. [PMID: 23060800 PMCID: PMC3459343 DOI: 10.3389/fphys.2012.00312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023] Open
Abstract
Whether mouse models of chronic asthma can be used to investigate the relationship between airway inflammation/remodeling and airway hyper-responsiveness (AHR) is a vexed question. It raises issues about the extent to which such models replicate key features of the human disease. Here, we review some of the characteristic pathological features of human asthma and their relationship to AHR and examine some limitations of mouse models that are commonly used to investigate these relationships. We compare these conventional models with our mouse model of chronic asthma involving long-term low-level inhalational challenge and review studies of the relationship between inflammation/remodeling and AHR in this model and its derivatives, including models of an acute exacerbation of chronic asthma and of the induction phase of childhood asthma. We conclude that while extrapolating from studies in mouse models to AHR in humans requires cautious interpretation, such experimental work can provide significant insights into the pathogenesis of airway responsiveness and its molecular and cellular regulation.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|
25
|
Costa MFS, Bornstein VU, Candéa AL, Henriques-Pons A, Henriques MG, Penido C. CCL25 induces α₄β₇ integrin-dependent migration of IL-17⁺ γδ T lymphocytes during an allergic reaction. Eur J Immunol 2012; 42:1250-60. [PMID: 22539297 DOI: 10.1002/eji.201142021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we provide evidence that during allergic inflammation, CCL25 induces the selective migration of IL-17(+) γδ T cells mediated by α(4) β(7) integrin. Intrapleural injection of CCL25 into ovalbumin (OVA)-immunized C57BL/6 mice triggered the accumulation of γδ T lymphocytes expressing CCR9 (CCL25 receptor) and α(4) β(7) integrin in the pleura, but failed to attract αβ T lymphocytes. CCL25 attracted CCR6(+) γδ T cells producing IL-17 (but not IFN-γ or IL-4). OVA challenge triggered increased production of CCL25 followed by the accumulation of CCR9(+) , α(4) β(7) (+) , and CCR6(+) /IL-17(+) γδ T cells into the pleural cavities of OVA-immunized mice, which was inhibited by the in vivo neutralization of CCL25. The in vivo blockade of α(4) β(7) integrin also inhibited the migration of IL-17(+) γδ T lymphocytes (but not of αβ T lymphocytes) into mouse pleura after OVA challenge, suggesting that the CCL25/α(4) β(7) integrin pathway is selective for γδ T cells. In addition, α(4) β(7) integrin blockade impaired the in vitro transmigration of γδ T cells across endothelium (which expresses α(4) β(7) ligands VCAM-1 and MadCAM-1), which was induced by CCL25 and by cell-free pleural washes recovered from OVA-challenged mice. Our results reveal that during an allergic reaction, CCL25 drives IL-17(+) γδ T-cell mobilization to inflamed tissue via α(4) β(7) integrin and modulates IL-17 levels.
Collapse
Affiliation(s)
- Maria F S Costa
- Laboratório de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
McNamara JT, Schramm CM, Singh A, Secor ER, Guernsey LA, Lefrançois L, Thrall RS. Phenotypic changes to the endogenous antigen-specific CD8+ T cell response correlates with the development and resolution of allergic airway disease. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1991-2000. [PMID: 22452921 DOI: 10.1016/j.ajpath.2012.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022]
Abstract
The role of CD8(+) T cells in the pathogenesis of asthma remains controversial, as both pro- and anti-inflammatory functions have been suggested. This study was designed to examine the endogenous CD8(+) T cell response in a biphasic ovalbumin (OVA)-induced model of allergic airway disease (AAD) and its subsequent resolution with the development of local inhalational tolerance (LIT). We observed increases in OVA-specific CD8(+) T cell numbers in the local lung compartments (bronchoalveolar lavage, lung tissue, hilar lymph node) at AAD and LIT; systemic compartments (spleen, inguinal lymph node) displayed no such increases in CD8(+) T cell numbers. OVA-specific CD8(+) T cells appeared to exhibit plasticity both phenotypically and functionally. They possessed pro-inflammatory characteristics at AAD, with high phenotypic expression of CD11a and increased functional expression of granzyme B and interferon-γ. In contrast, at LIT they showed increased phenotypic expression of the inhibitory marker NKG2A and functionally did not produce granzyme B or interferon-γ. In addition, in a discontinuous model the OVA-specific CD8(+) T cells could be recalled on re-exposure to OVA, demonstrating memory. Finally, confocal microscopy results showed that OVA-specific CD8(+) T cells at AAD are associated with B cell aggregates in lung tissue. These B cell aggregates resembled tertiary ectopic lymphoid tissue and may thus provide a local environment for the salient cellular interactions that contribute to the development of LIT.
Collapse
Affiliation(s)
- Jeffrey T McNamara
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Riesenfeld E, Allen GB, Bates JH, Poynter ME, Wu M, Aimiand S, Lundblad LK. The Temporal Evolution of Airways Hyperresponsiveness and Inflammation. ACTA ACUST UNITED AC 2012; 1:1-7. [PMID: 23565340 DOI: 10.4172/2155-6121.s1-005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Airways hyperresponsiveness (AHR) is usually produced within days of first antigen exposure in mouse models of asthma. Furthermore, continual antigen challenge eventually results in the resolution of the AHR phenotype. Human asthma also waxes and wanes with time, suggesting that studying the time course of AHR in the allergic mouse would offer insights into the variation in symptoms seen in asthmatics. Mice were sensitized with ovalbumin (OVA) on days 0 and 14. As assessed by airway resistance (Rn ), lung elastance (H) and tissue damping (G), AHR was measured post an OVA inhalation on day 21 (Short Challenge group), after three days of OVA inhalation on day 25 (Standard Challenge group) and following an OVA inhalation on day 55 in mice previously challenged on days 21-23 (Recall Challenge group). Bronchoalveolar lavage was analyzed for inflammatory cells, cytokines and protein. AHR in the Short Challenge group was characterized by an increase in Rn and neutrophil accumulation in the lavage. AHR in the Standard Challenge group was characterized by increases in H and G but by only a modest response in Rn , while inflammation was eosinophilic. In the Standard Challenge protocol, mice lacking fibrinogen were no different from control in their AHR response. AHR in the Recall Challenge group was characterized by increases only in G and H and elevated numbers of both neutrophils and eosinophils. Lavage cytokines were only elevated in the Recall Challenge group. Lavage protein was significantly elevated in all groups. The phenotype in allergically inflamed mice evolves distinctly over time, both in terms of the nature of the inflammation and the location of the AHR response. The study of mouse models of AHR might be better served by focusing on this variation rather than simply on a single time point at which AHR is maximal.
Collapse
|
28
|
Porter P, Polikepahad S, Qian Y, Knight JM, Lu W, Tai WMT, Roberts L, Ongeri V, Yang T, Seryshev A, Abramson S, Delclos GL, Kheradmand F, Corry DB. Respiratory tract allergic disease and atopy: experimental evidence for a fungal infectious etiology. Med Mycol 2010; 49 Suppl 1:S158-63. [PMID: 20807032 DOI: 10.3109/13693786.2010.509743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Allergic asthma is an obstructive lung disease linked to environmental exposures that elicit allergic airway inflammation and characteristic antigen-specific immunoglobulin reactions termed atopy. Analyses of asthma pathogenesis using experimental models have shown that T helper cells, especially T helper type 2 (Th2) cells and Th2 cytokines such as interleukin 4 (IL-4) and IL-13, are critical mediators of airway obstruction following allergen challenge, but the environmental initiators of lung Th2 responses are less defined. Our studies demonstrate that fungal-derived proteinases that are commonly found in home environments are requisite immune adjuvants capable of eliciting robust Th2 responses and allergic lung disease in mice. We have further shown that common household fungi readily infect the mouse respiratory tract and induce both asthma-like disease and atopy to otherwise innocuous bystander antigens through the secretion of proteinases. These findings support the possibility that asthma and atopy represent a reaction to respiratory tract fungal infection, suggesting novel means for diagnosis and therapy of diverse allergic disorders.
Collapse
Affiliation(s)
- Paul Porter
- Departments of Medicine, Pathology and Immunology, and Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Koh YI, Shim JU, Lee JH, Chung IJ, Min JJ, Rhee JH, Lee HC, Chung DH, Wi JO. Natural killer T cells are dispensable in the development of allergen-induced airway hyperresponsiveness, inflammation and remodelling in a mouse model of chronic asthma. Clin Exp Immunol 2010; 161:159-70. [PMID: 20456411 DOI: 10.1111/j.1365-2249.2010.04151.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d-/- mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d-/- mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d-/- mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model.
Collapse
Affiliation(s)
- Y-I Koh
- Department of Allergy, Asthma and Clinical Immunology and Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bassett D, Hirata F, Gao X, Kannan R, Kerr J, Doyon-Reale N, Wilson S, Lieh-Lai M. Reversal of methylprednisolone effects in allergen-exposed female BALB/c mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:711-724. [PMID: 20391114 DOI: 10.1080/15287391003614018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A high percentage of asthma is associated with aeroallergen exposures. Glucocorticoids such as methylprednisolone represent a major method for managing chronic asthma. However, studies suggested that corticosteroid therapy might have the potential to stimulate rather than inhibit adaptive immune inflammatory reactions, raising concerns about possible adverse reactions due to excessive repeated methylprednisolone treatment. Therefore, a murine model of allergen-induced inflammation was characterized and used to investigate the effects of repeated intraperitoneal (ip) and transnasal treatments with methylprednisolone (0-20 mg/kg body weight) and cyclosporin A (20 mg/kg body weight). Sensitized BALB/c female mice were exposed daily to ovalbumin (OVA) aerosols for up to 5 d with 24-h postexposure analyses for airway responses to methacholine aerosols and inflammatory cell recoveries by bronchoalveolar lavage (BAL) and tissue collagenase dispersion. Although increased tissue neutrophils, lymphocytes, monocytes, and macrophages reached maximal levels after 2 daily OVA exposures, recoverable eosinophil numbers continued to rise over the 5-d period. Daily ip treatments with a 5-mg/kg body weight dose of methylprednisolone diminished both OVA-induced airway responses to methacholine and inflammatory-cell accumulations to levels comparable to those observed with cyclosporin A. However, treatments with higher doses of methylprednisolone reversed this anti-inflammatory effect, indicated by a return to untreated levels of OVA-induced eosinophil recovery. A similar biphasic response in eosinophil recoveries was observed using daily transnasal methylprednisolone treatments that correlated with a concomitant fall and rise in BAL interleukin-13. These results supported the hypothesis that repeated high-steroid treatments might activate rather than suppress allergen-induced immune responses.
Collapse
Affiliation(s)
- David Bassett
- Department of Family Medicine & Public Health Sciences, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Preventive and curative glycoside kaempferol treatments attenuate the TH2-driven allergic airway disease. Int Immunopharmacol 2009; 9:1540-8. [PMID: 19755174 DOI: 10.1016/j.intimp.2009.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/19/2009] [Accepted: 09/06/2009] [Indexed: 02/05/2023]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). One strategy to treat allergic diseases is the development of new drugs. Flavonoids are compounds derived from plants and are known to have antiallergic, anti-inflammatory, and antioxidant properties. To investigate whether the flavonoid kaempferol glycoside 3-O-[beta-d-glycopiranosil-(1-->6)-alpha-l-ramnopiranosil]-7-O-alpha-l-ramnopiranosil-kaempferol (GRRK) would be capable of modulating allergic airway disease (AAD) either as a preventive (GRRK P) or curative (GRRK C) treatment in an experimental model of asthma. At weekly intervals, BALB/c mice were subcutaneously (sc) sensitized twice with ovalbumin (OVA)/alum and challenged twice with OVA administered intranasally. To evaluate any preventive effect, GRRK was administered 1h (hour) before each OVA-sensitization and challenge, while to analyze the curative effect, mice were first sensitized with OVA, followed by GRRK given at day 18 through 21. The onset of AAD was evaluated 24h after the last OVA challenge. Both treatments resulted in a dose-dependent reduction in total leukocyte and eosinophil counts in the bronchoalveolar lavage fluid (BAL). GRRK also decreased CD4(+), B220(+), MHC class II and CD40 molecule expressions in BAL cells. Histology and lung mechanic showed that GRRK suppressed mucus production and ameliorated the AHR induced by OVA challenge. Furthermore, GRRK impaired Th2 cytokine production (IL-5 and IL-13) and did not induce a Th1 pattern of inflammation. These findings demonstrate that GRRK treatment before or after established allergic lung disease down-regulates key asthmatic features. Therefore, GRRK has a potential clinical use for the treatment of allergic asthma.
Collapse
|
32
|
Bates JHT, Rincon M, Irvin CG. Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 297:L401-10. [PMID: 19561139 DOI: 10.1152/ajplung.00027.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in animal models form the basis for much of our current understanding of the pathophysiology of asthma, and are central to the preclinical development of drug therapies. No animal model completely recapitulates all features of the human disease, however. Research has focused primarily on ways to generate allergic inflammation by sensitizing and challenging animals with a variety of foreign proteins, leading to an increased understanding of the immunological factors that mediate the inflammatory response and its physiological expression in the form of airways hyperresponsiveness. Animal models of exaggerated airway narrowing are also lending support to the notion that asthma may represent an abnormality of the airway smooth muscle. The mouse is now the species of choice for asthma research involving animals. This presents practical challenges for physiological study because the mouse is so small, but modern imaging methodologies, coupled with the forced oscillation technique for measuring lung mechanics, have allowed the asthma phenotype in mice to be precisely characterized.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center and Center for Immunology and Infectious Disease, University of Vermont College of Medicine, HSRF 228, 149 Beaumont Ave., Burlington, VT 05405-0075, USA.
| | | | | |
Collapse
|
33
|
Soto-Montenegro ML, Conejero L, Vaquero JJ, Baeza ML, Zubeldia JM, Desco M. Assessment of airway distribution of transnasal solutions in mice by PET/CT imaging. Mol Imaging Biol 2009; 11:263-8. [PMID: 19340489 DOI: 10.1007/s11307-009-0199-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/16/2008] [Accepted: 10/07/2008] [Indexed: 11/28/2022]
Abstract
PURPOSE Transnasal administration is one of the most common routes for allergen challenge in mouse models of airway diseases. Although this technique is widely used, neither the amount of allergen that reaches the lung nor its airway distribution has been well established. We used positron emission tomography (PET) and computed tomography (CT) to examine the anatomical distribution of a solution containing a tracer immediately after transnasal delivery and to determine the possible influence of age and administered volume. PROCEDURES Forty-six female BALB/c mice were divided into three groups according to instillation volume and age: (A) 15 microl, 8-10 weeks old (N = 10), (B) 30 microl, 8-10 weeks old (N = 20), and (C) 30 microl, 32 weeks old (N = 16). Anesthetized animals underwent a dynamic scan in a dedicated small-animal PET scanner immediately after transnasal administration of a solution containing (18)FDG. Regions of interest were used to obtain quantitative data. Animals were also imaged with a small-animal CT scanner to obtain complementary anatomical information. RESULTS Mean +/- SD (5.69 +/- 4.51%) of the solution administered reached the lungs in group A, 41.84 +/- 8.03% in group B, and 36.65 +/- 16.15% in group C. A comparable percentage was delivered to the left and right lungs in all the groups. Analysis of variance revealed a significant difference between the groups in the proportion of the solution that reached the lungs depending on the injection volume (P < 0.001), but not depending on animal age. CONCLUSIONS In this first report on quantitative imaging by PET and CT in small animals, we confirmed the suitability of the transnasal route with an instilled volume of 30 microl delivering fluids into the lower airways, although only about 40% of the dose reaches the lungs.
Collapse
Affiliation(s)
- M L Soto-Montenegro
- Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Corry DB, Kheradmand F. Toward a comprehensive understanding of allergic lung disease. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2009; 120:33-48. [PMID: 19768161 PMCID: PMC2744551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Allergic asthma is a respiratory disease induced by exposure to environmental agents that elicit allergic inflammation and transient airway obstruction and which produce the characteristic symptoms of cough and dyspnea. Prior to the advent of experimental models, asthma was believed to be caused primarily by the degranulation of mast cells and eosinophils primed by antigen-specific immunoglobulin E (IgE). More recent studies in mice have shown that T cells primarily mediate antigen-dependent airway obstruction and allergic inflammation through secretion of the cytokines interleukin 4 (IL- 4) and IL-13. Our additional studies indicate that a major environmental link to asthma may be through exposure to environmental proteinases and especially airway infection by proteinase-producing organisms such as fungi. Pending verification in humans, these findings suggest entirely new therapeutic interventions in asthma that include the restricted use of anti-inflammatory therapy and universal application of anti-fungal agents.
Collapse
Affiliation(s)
- David B Corry
- Department of Medicine, One Baylor Plaza, BCM285, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
35
|
Born WK, Roark CL, Jin N, Wands JM, Kemal Aydintug M, Huang Y, Chain JL, Hahn YS, Simonian PL, Fontenot AP, O'Brien RL. Role of γδ T Cells in Lung Inflammation. ACTA ACUST UNITED AC 2009; 2:143-150. [PMID: 26550059 PMCID: PMC4634705 DOI: 10.2174/1874226200902010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The resident population of γδ T cells in the normal lung is small but during lung inflammation, γδ T cells can increase dramatically. Histological analysis reveals diverse interactions between γδ T cells and other pulmonary leukocytes. Studies in animal models show that γδ T cells play a role in allergic lung inflammation where they can protect normal lung function, that they also are capable of resolving infection-induced pulmonary inflammation, and that they can help preventing pulmonary fibrosis. Lung inflammation threatens vital lung functions. Protection of the lung tissues and their functions during inflammation is the net-effect of opposing influences of specialized subsets of γδ T cells as well as interactions of these cells with other pulmonary leukocytes.
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Christina L Roark
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Niyun Jin
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - J M Wands
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Yafei Huang
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Jennifer L Chain
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| | - Youn-Soo Hahn
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-711 and 240, Korea
| | - Philip L Simonian
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 and University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Bogaert P, Tournoy KG, Naessens T, Grooten J. Where asthma and hypersensitivity pneumonitis meet and differ: noneosinophilic severe asthma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:3-13. [PMID: 19074616 PMCID: PMC2631313 DOI: 10.2353/ajpath.2009.071151] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2008] [Indexed: 11/20/2022]
Abstract
Asthma is a type-I allergic airway disease characterized by Th(2) cells and IgE. Episodes of bronchial inflammation, eosinophilic in nature and promoting bronchoconstriction, may become chronic and lead to persistent respiratory symptoms and irreversible structural airway changes. Representative mostly of mild to moderate asthma, this clinical definition fails to account for the atypical and often more severe phenotype found in a considerable proportion of asthmatics who have increased neutrophil cell counts in the airways as a distinguishing trait. Neutrophilic inflammation is a hallmark of another type of allergic airway pathology, hypersensitivity pneumonitis. Considered as an immune counterpart of asthma, hypersensitivity pneumonitis is a prototypical type-III allergic inflammatory reaction involving the alveoli and lung interstitium, steered by Th(1) cells and IgG and, in its chronic form, accompanied by fibrosis. Although pathologically very different and commonly approached as separate disorders, as discussed in this review, clinical studies as well as data from animal models reveal undeniable parallels between both airway diseases. Danger signaling elicited by the allergenic agent or by accompanying microbial patterns emerges as critical in enabling immune sensitization and in determining the type of sensitization and ensuing allergic disease. On this basis, we propose that asthma allergens cause severe noneosinophilic asthma because of sensitization in the presence of hypersensitivity pneumonitis-promoting danger signaling.
Collapse
Affiliation(s)
- Pieter Bogaert
- Department of Molecular Biomedical Research, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
37
|
Yamagata S, Tomita K, Sato R, Niwa A, Higashino H, Tohda Y. Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol 2008; 154:295-304. [PMID: 18826499 DOI: 10.1111/j.1365-2249.2008.03772.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin (IL)-18, which is produced by activated monocytes/macrophages and airway epithelial cells, is suggested to contribute to the pathophysiology of asthma by modulating airway inflammation. However, the involvement of IL-18 on modulating chronic airway inflammation and airway remodelling, which are characterized in a refractory asthma model exposed to long-term antigen, has not been investigated sufficiently. We examined the role of IL-18 in chronic airway inflammation and airway remodelling by long-term antigen exposure. IL-18-deficient and C57BL/6-wild-type mice were sensitized by ovalbumin (OVA) and were then exposed to aerosolized OVA twice a week for 12 weeks. We assessed airway inflammation by assessing the infiltration of cells into the airspace and lung tissues, and airway remodelling by airway mucus expression, peribronchial fibrosis and smooth muscle thickness. In IL-18-deficient mice, when exposed to OVA, the total cells and neutrophils of the bronchoalveolar lavage fluid (BALF) were diminished, as were the number of infiltrated cells in the lung tissues. IL-18-deficient mice exposed to OVA after 12 weeks showed significantly decreased levels of interferon (IFN)-gamma, IL-13 and transforming growth factor (TGF)-beta1 in the BALF. The airway hyperresponsiveness to acetyl-beta-methacholine chloride was inhibited in IL-18-deficient mice in comparison with wild-type mice. In addition, IL-18-deficient mice exposed to OVA had fewer significant features of airway remodelling. These findings suggest that IL-18 may enhance chronic airway inflammation and airway remodelling through the production of IFN-gamma, IL-13 and TGF-beta1 in the OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- S Yamagata
- Department of Respiratory Medicine, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mucous cell metaplasia (MCM), defined by the appearance of mucous cells in airways where mucous cells were not present, is a consistent pathologic characteristic in the peripheral airways of bronchial asthma. Under mild inflammatory conditions MCM occurs as a result of pre-existing airway epithelial cells (AECs) starting to express mucin genes and differentiating into mucous cells. Under extensive inflammatory responses, AECs proliferate, and the development of MCM involves the differentiation of pre-existing and proliferating cells into mucous cells. Epithelial cell numbers per mm basal lamina are increased by approximately 30%. IL-13 is the central cytokine that is responsible for MCM in asthma through GABA-R- and STAT6-mediated mechanisms involving the calcium-activated chloride channel CLCA. IL-13 is also responsible for the proliferation of AECs by causing cells to produce TGFalpha that acts on the epidermal growth factor (EGF) receptor. Normally, resolution of MCM involves two distinct mechanisms. 1) Some of the metaplastic mucous cells stop the synthesis of mucus and dedifferentiate into Clara or serous cells to reconstitute the epithelium. 2) When proliferation of epithelial cells had occurred, approximately 30% of metaplastic cells are eliminated during the resolution process. Thus, a safe approach to reducing IL-13-induced MCM would involve blocking mucous synthesis and storage, blocking secretion of stored mucus, and eliminating hyperplastic mucous cells. Understanding the molecular mechanisms of each of these processes is necessary for developing effective therapies for reducing mucous hypersecretion in asthma and leading to a repaired epithelium.
Collapse
|
39
|
Singh A, Carson WF, Secor ER, Guernsey LA, Flavell RA, Clark RB, Thrall RS, Schramm CM. Regulatory role of B cells in a murine model of allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2008; 180:7318-26. [PMID: 18490731 DOI: 10.4049/jimmunol.180.11.7318] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice sensitized to OVA and subjected to acute OVA aerosol exposures develop allergic airway disease (AAD). However, chronic continuous Ag exposure results in resolution of AAD and the development of local inhalational tolerance (LIT). Because we have previously observed the persistence of B cells in the bronchoalveolar lavage (BAL) and hilar lymph nodes (HLN) at the resolution stage of this model, we investigated the role of B cells in the modulation of AAD. Although B cell-deficient mice developed LIT, adoptive transfer of HLN B cells from LIT mice to OVA-sensitized recipients resulted in attenuated AAD following subsequent OVA aerosol exposure, as determined by reduced BAL leukocytosis and eosinophilia, decreased tissue inflammation, and absent methacholine hyper-responsiveness. In similar adoptive transfer studies, HLN B cells from AAD mice were without effect. The protection transferred by LIT HLN B cells was Ag specific and was associated with accumulation of Foxp3(+) T regulatory cells regionally in BAL and HLN, but not systemically in the spleen. Fluorescent labeling of LIT HLN B cells before adoptive transfer demonstrated that these cells had the capacity to migrate to local inflammatory sites. In vitro assessment demonstrated that the LIT HLN B cells exerted this regulatory effect via TGF-beta induced conversion of CD4(+)CD25(-) T effector cells into functionally suppressive CD4(+)CD25(+)Foxp3(+) T regulatory cells. These findings illustrated a novel regulatory role for regional B cells in AAD and suggested a possible contributory role of B cells, along with other cell types, in the establishment of LIT.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Immunology, University of Connecticut Health Center, Framington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Singh A, Thrall RS, Guernsey LA, Carson WF, Secor ER, Cone RE, Rajan TV, Schramm CM. Subcutaneous late phase responses are augmented during local inhalational tolerance in a murine asthma model. Immunol Cell Biol 2008; 86:535-8. [PMID: 18458679 DOI: 10.1038/icb.2008.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute exposure of sensitized mice to antigen elicits allergic airway disease (AAD) characterized by Th2 cytokine-dependent pulmonary eosinophilia, methacholine hyperresponsiveness and antigen-specific IgE elevation. However, chronic exposure induces a local inhalational tolerance (LIT), with resolution of the airway responses but persistent systemic IgE production. To further determine if systemic immunologic responses were maintained during LIT, we assessed subcutaneous late phase responses to ovalbumin in this model. Sensitized and AAD mice developed small subcutaneous responses to ovalbumin, with footpad thickness increasing to 113.7 and 113.6% of baseline, respectively. In comparison, LIT mice developed marked foot swelling (141.6%). Histologic examination confirmed increased inflammation in the chronic animals, with a significant contribution by eosinophils. Thus, the resolution of airway inflammatory responses with chronic antigen inhalation is a localized response, not associated with loss of systemic responses to antigen.
Collapse
Affiliation(s)
- Anurag Singh
- 1Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Carson WF, Guernsey LA, Singh A, Vella AT, Schramm CM, Thrall RS. Accumulation of regulatory T cells in local draining lymph nodes of the lung correlates with spontaneous resolution of chronic asthma in a murine model. Int Arch Allergy Immunol 2007; 145:231-43. [PMID: 17914275 PMCID: PMC2576511 DOI: 10.1159/000109292] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 06/05/2007] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Mice sensitized to ovalbumin develop allergic airway disease (AAD) with short-term aerosol challenge; however, airway inflammation resolves with long-term aerosol challenge, referred to as local inhalational tolerance (LIT). METHODS We sought to determine if resolution of airway inflammation correlated with increases in lymphocyte subsets in local lung compartments, including putative regulatory T cells. RESULTS At the AAD stage, total numbers of T and B lymphocytes in bronchoalveolar lavage (BAL) were significantly increased above controls; however, at LIT, T and B lymphocytes were significantly reduced compared to AAD. In the lung tissue, the only alteration was a significant increase in CD4+ CD25+ T cells at AAD. In the hilar lymph node (HLN), CD4+ and CD4+ CD25+ T cells were significantly increased at AAD and LIT. In addition, CD8+ T cells were significantly elevated in the HLN at LIT, and CD19+ B cells were significantly increased at AAD. Adoptive transfer of HLN lymphocytes to lymphopenic mice confirmed that AAD lymphocytes could induce airway inflammation in response to aerosol challenge, whereas LIT lymphocytes were unable to do so. Depletion of CD4+ CD25+ T cells in vivo resulted in exacerbation of inflammation at AAD and LIT. CD4+ CD25+ T cells in the HLN also displayed suppressive activity in vitro. Additionally, T cells expressing Foxp3 were increased in the BAL and HLN during LIT. CONCLUSIONS These results indicate that lymphocytes with regulatory functions are increased and sustained in local lung compartments at LIT and that their appearance correlates with the resolution of lung inflammation.
Collapse
Affiliation(s)
- William F Carson
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn., USA.
| | | | | | | | | | | |
Collapse
|
42
|
Matson AP, Zhu L, Lingenheld EG, Schramm CM, Clark RB, Selander DM, Thrall RS, Breen E, Puddington L. Maternal transmission of resistance to development of allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:1282-91. [PMID: 17617621 PMCID: PMC3155847 DOI: 10.4049/jimmunol.179.2.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parental phenotype is known to influence the inheritance of atopic diseases, such as allergic asthma, with a maternal history being a more significant risk factor for progeny than paternal history. We hypothesized that recall Th1- or Th2-type immune responses during pregnancy would result in transfer of maternal factors that would differentially impact development of immune responsiveness in offspring. Following weaning, susceptibility and severity of allergic airway disease (a murine model of human asthma) was evaluated in progeny, disease being elicited by immunization with OVA-Al(OH)(3) and challenge with aerosolized OVA. We found that progeny of mothers with Th1-biased immunity to OVA subjected to recall aerosol challenge during pregnancy had reduced levels of Ag-specific IgE and airway eosinophilia compared with progeny of mothers with Th2-biased immunity to OVA or naive mothers. Interestingly, progeny of mothers with Th1-type immunity to a heterologous albumin, BSA, were not protected from developing OVA-induced allergic airway disease. These findings demonstrated that maternal transfer of protection from development of allergic airway disease to offspring in this model of maternal Th1-type immunity was Ag specific.
Collapse
Affiliation(s)
- Adam P. Matson
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
- Division of Neonatology, Connecticut Children’s Medical Center, Hartford, CT 06106
| | - Li Zhu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | | | - Craig M. Schramm
- Division of Pulmonary Medicine, Department of Pediatrics, Connecticut Children’s Medical Center, Hartford, CT 06106
| | - Robert B. Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Dawn M. Selander
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Elena Breen
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
- Address correspondence and reprint requests to Dr. Lynn Puddington, Department of Immunology, Center for Integrative Immunology and Vaccine Research, MC-1319, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1319.
| |
Collapse
|
43
|
Stengel PW, Zeckner DJ, Guo WKK, Wolos JA, Snyder DW. Methacholine-induced pulmonary gas trapping in a mouse model of allergic asthma: effect of inhaled budesonide and ciglitazone. Eur J Pharmacol 2007; 578:65-75. [PMID: 17900559 DOI: 10.1016/j.ejphar.2007.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Previously, we found pulmonary gas trapping to be a rapid, simple and objective measure of methacholine-induced airway obstruction in naïve mice. In this study we extended that finding by using methacholine-induced pulmonary gas trapping to differentiate airway responses of ovalbumin-sensitized, ovalbumin-exposed (Positive Control) and ovalbumin-sensitized, sodium chloride-exposed (Negative Control) mice. Additionally, pulmonary gas trapping and enhanced pause were compared following methacholine exposure in sensitized and nonsensitized mice. Finally, we examined by nose-only inhalation the ability of the glucocorticosteroid budesonide and the peroxisome proliferator-activated receptor-gamma agonist ciglitazone to modify methacholine-induced airway responses in ovalbumin-sensitized mice. Positive Controls exhibited a 7.8-fold increase in sensitivity and a 2.4-fold enhancement in the maximal airway obstruction to methacholine versus Negative Controls. Following methacholine, individual Positive and Negative Control mouse enhanced pause values overlapped in 9 of 9 studies, whereas individual Positive and Negative Control mouse excised lung gas volume values overlapped in only 1 of 9 studies, and log[excised lung gas volume] correlated (P=0.023) with in vivo log[enhanced pause] in nonsensitized mice. Finally, budesonide (100.0 or 1000.0 microg/kg) reduced methacholine-mediated airway responses and eosinophils and neutrophils, whereas ciglitazone (1000.0 microg/kg) had no effect on methacholine-induced pulmonary gas trapping, but reduced eosinophils. In conclusion, pulmonary gas trapping is a more reproducible measure of methacholine-mediated airway responses in ovalbumin-sensitized mice than enhanced pause. Also, excised lung gas volume changes can be used to monitor drug interventions like budesonide. Finally, this study highlights the importance of running a positive comparator when examining novel treatments like ciglitazone.
Collapse
Affiliation(s)
- Peter W Stengel
- Eli Lilly and Company, Lilly Research Laboratories, 2001 West Main Street, Greenfield, Indiana 46140, USA.
| | | | | | | | | |
Collapse
|
44
|
Niu N, Le Goff MK, Li F, Rahman M, Homer RJ, Cohn L. A novel pathway that regulates inflammatory disease in the respiratory tract. THE JOURNAL OF IMMUNOLOGY 2007; 178:3846-55. [PMID: 17339484 DOI: 10.4049/jimmunol.178.6.3846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In animals with acute airway inflammation followed by repeated exposure to inhaled Ag, inflammation wanes over time and thus limits the study of chronic airway inflammatory diseases such as asthma. We developed a model of airway inflammation and inhalational exposure to investigate regulatory pathways in the respiratory tract. We show that Th1- and Th2-induced airway inflammation followed by repeated exposure to inhaled Ag leads to a state of immunosuppression. Challenge of these animals with a marked population of TCR transgenic effector Th1 or Th2 cells results in a striking inhibition of inflammation and effector Th cells. In Th2 models, airway hyperresponsiveness, mucus, and eosinophilia are reduced. The inhibitory effects observed are Ag nonspecific, can be induced in lymphocyte-deficient mice, and are associated with a population of TGF-beta1-expressing macrophages. Induction of this pathway may offer potent localized treatment of chronic T cell-mediated respiratory illnesses and provide insights into the development of such diseases.
Collapse
Affiliation(s)
- Naiqian Niu
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mayuzumi H, Ohki Y, Tokuyama K, Sato A, Mizuno T, Arakawa H, Mochizuki H, Morikawa A. Age-related difference in the persistency of allergic airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol 2007; 143:255-62. [PMID: 17347573 DOI: 10.1159/000100570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/20/2006] [Indexed: 11/19/2022] Open
Abstract
AIM Asthmatic children are more likely to outgrow their symptoms than adult patients. Thus, we wanted to know whether there were any age-related differences in the time course of the allergic airway inflammation. METHODS BALB/C mice at different ages (young: 3 days after birth, and mature: 8 weeks of age) were sensitized with ovalbumin (OVA). Subsequently, animals were challenged with aerosolized OVA during 1, 2, 4 or 8 consecutive weeks. Bronchial hyperresponsiveness (BHR), serum IgE levels, the degrees of inflammatory cell infiltration (ICI) and goblet cell metaplasia (GCM) in the airways, and the number of eosinophils and cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. RESULTS At 1 week, airway inflammation and BHR occurred similarly between young and mature mice. However, BHR disappeared at 4 weeks in young, whereas it persisted even at 8 weeks in mature mice. GCM, ICI and eosinophilia in BALF attenuated with time, with more remarkable reduction in young mice. The BALF IL-4 level was high during the first 2 weeks in both groups, while the IL-2 level was significantly increased at 2 weeks solely in young mice. CONCLUSION Different time courses in airway inflammation and in BHR may relate to the different prognoses between childhood and adult asthma. The understanding of the mechanisms underlying this age-related differences may be helpful to induce remission in asthmatic patients.
Collapse
Affiliation(s)
- Hiroo Mayuzumi
- Department of Pediatrics and Developmental Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Corry DB, Irvin CG. Promise and pitfalls in animal-based asthma research: building a better mousetrap. Immunol Res 2007; 35:279-94. [PMID: 17172652 DOI: 10.1385/ir:35:3:279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/13/2023]
Abstract
Asthma is one of the leading chronic diseases in the world today. An essential component of the asthma research endeavor is the animal-based experimental disease system, which provides knowledge that is not attainable through study of patients alone. Animal research is especially valuable for elucidating pathophysiology, drug testing, and as an adjunct for interpreting the results of human clinical trials. However, controversies surrounding animal systems data and at the interface between animal and human studies raise questions regarding the true utility of experimental asthma research. We consider here the considerable promise and important limitations of animal-based systems and their prospects for the future study asthma.
Collapse
Affiliation(s)
- David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
47
|
Stoilov I, Krueger W, Mankowski D, Guernsey L, Kaur A, Glynn J, Thrall RS. The cytochromes P450 (CYP) response to allergic inflammation of the lung. Arch Biochem Biophys 2006; 456:30-8. [PMID: 17081494 DOI: 10.1016/j.abb.2006.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/27/2022]
Abstract
The expression of the mouse Cyp family and key inflammatory mediators were examined in a model of ovalbumin (OVA)-induced allergic airway disease. The expression of IL-4, IL-13 and Ccl11 increased during the acute phase of allergic inflammation and decreased with its resolution. Interestingly, the expression of Ccl20 was increased during the resolution phase. The response of the Cyp gene family to the development of allergic inflammation was differential and correlated with the evolution of the inflammatory response. During the acute inflammatory phase the mRNA levels of Cyp2e1, Cyp2f2, Cyp2j6, Cyp4b1, Cyp8a1 and Cypor were decreased while the mRNA levels of Cyp4f18, Cyp5a1 and Cyp7b1 were elevated. With resolution of the inflammation the expression patterns returned to normal. These changes suggest that the Cyp family may play a role in the allergic inflammation by modulating the metabolism of xenobiotics and endogenous compounds such as LTB4, TXA1, PGI2 and native anti-glucocorticoids.
Collapse
Affiliation(s)
- Ivaylo Stoilov
- Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Swirski FK, D'Sa A, Kianpour S, Inman MD, Stämpfli MR. Prolonged ovalbumin exposure attenuates airway hyperresponsiveness and T cell function in mice. Int Arch Allergy Immunol 2006; 141:130-40. [PMID: 16864992 DOI: 10.1159/000094715] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Continuous exposure of sensitized mice to an innocuous antigen, such as OVA, does not lead to chronic airway eosinophilia, but induces antigen unresponsiveness and resolution of the inflammatory response. In this study we explored mechanisms underlying attenuation of the airway inflammatory response, assessed whether the phenomenon is strain-specific, and determined its consequences to airway physiology. METHODS Mice were sensitized and exposed to OVA for two and four weeks. Analysis involved BAL, flow cytometry, adoptive transfer of OVA specific CD4 T cells, ex vivo cytokine expression and response to methacholine challenge. RESULTS Chronic exposure to antigen resulted in decreased eosinophilia in 5 different mouse strains. Likewise, numbers of lung CD4 T cells expressing activation and Th2 markers sharply declined following continuous OVA exposure. Transfer studies using OVA TcR transgenic cells revealed that the contraction of lung T cells included antigen-specific cells. Systemically, we observed a loss of Th2 memory effector function. Finally, we observed significantly attenuated airway hyper-responsiveness (AHR) in chronically exposed animals. CONCLUSIONS Attenuation of airway eosinophilia in response to chronic OVA exposure is independent of genetic background. Airway eosinophilia, but not systemic responses, correlates with and is predictive for airway hyperresponsiveness. Our study contributes to the understanding of immune regulatory processes controlling antigen-driven airway inflammatory responses.
Collapse
Affiliation(s)
- Filip K Swirski
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, Hamilton, Canada.
| | | | | | | | | |
Collapse
|
49
|
Vaughan RP, Szewczyk MT, Lanosa MJ, Desesa CR, Gianutsos G, Morris JB. Adenosine sensory transduction pathways contribute to activation of the sensory irritation response to inspired irritant vapors. Toxicol Sci 2006; 93:411-21. [PMID: 16840565 DOI: 10.1093/toxsci/kfl061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The molecular mechanisms through which sensory irritants stimulate nasal trigeminal nerves are poorly understood. The current study was aimed at evaluating the potential contribution of purinergic sensory transduction pathways in this process. Aerosols of 4-36 mM adenosine 5'-triphosphate (ATP) and adenosine both acted as sensory irritants. Large dose capsaicin pretreatment to induce degeneration of transient receptor potential vanilloid type-1 (TRPV1)-expressing C fibers greatly reduced, but did not abolish, the sensory irritation response to ATP aerosol and was without effect on the response to adenosine aerosol, indicating that ATP acts largely on capsaicin-sensitive (primarily C fibers) and adenosine acts on capsaicin-insensitive (primarily Adelta fibers) nerves. The response to adenosine was diminished by pretreatment with the broad-based adenosine receptor antagonist theophylline (20 mg/kg) and A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.1 mg/kg), providing evidence that adenosine stimulates capsaicin-insensitive nerves via the A1 receptor. The sensory irritation responses to 275 ppm styrene and 110 ppm acetic acid vapors were significantly reduced by theophylline pretreatment suggesting a role for adenosine signaling pathways in activation of the sensory irritant response by these vapors. If sensory nerves are activated by mediators that are released from injured airway mucosal cells, then nasal sensory nerve activation may be a reflection of irritant-induced alterations in airway cell integrity.
Collapse
Affiliation(s)
- Ryan P Vaughan
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hollingsworth JW, Whitehead GS, Lin KL, Nakano H, Gunn MD, Schwartz DA, Cook DN. TLR4 signaling attenuates ongoing allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 176:5856-62. [PMID: 16670292 DOI: 10.4049/jimmunol.176.10.5856] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The relationship between LPS exposure and allergic asthma is poorly understood. Epidemiologic studies in humans have found that exposure to LPS can protect, have no effect, or exacerbate allergic asthma. Similarly, LPS has had variable effects on allergic pulmonary inflammation in the mouse, depending on the model used. In the present study, we studied the effect of very low doses of LPS in models of both short-term and long-term allergen challenge. When challenged with allergen for short periods, wild-type and tlr4-deficient mice had similar responses. However, when challenged for periods of 1 wk or longer, tlr4-deficient mice developed dramatically increased airway eosinophils, serum IgE, and Th2 cytokines compared with similarly challenged, genetically matched C57BL/6 mice. The relative attenuation of allergic responses seen in C57BL/6 mice was dependent on bone marrow-derived cell-specific expression of tlr4, and was not associated with an increase in Th1 responses. The number of dendritic cells in lungs of challenged tlr4-deficient mice was significantly increased compared with those in challenged C57BL/6 mice. No differences were seen in the abilities of naive C57BL/6 and tlr4-deficient mice to develop allergen-specific tolerance after exposure to similar preparations of OVA, suggesting that tolerance and regulation of existing inflammation develop through different mechanisms. The attenuation of eosinophilic inflammation in C57BL/6 mice was abolished when these mice were challenged with OVA supplemented with additional LPS. Together, these findings show that low doses of endotoxin can have regulatory effects on allergic inflammation, particularly in the setting of ongoing allergen exposure.
Collapse
Affiliation(s)
- John W Hollingsworth
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|