1
|
Lim J, Machin DR, Donato AJ. The role of hyaluronan in endothelial glycocalyx and potential preventative lifestyle strategy with advancing age. CURRENT TOPICS IN MEMBRANES 2023; 91:139-156. [PMID: 37080678 PMCID: PMC10464581 DOI: 10.1016/bs.ctm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx (EG) is a gel-like structure that forms a layer in between the surface of the endothelium and lumen. EG was once thought to be merely a structural support for the endothelium. However, in recent years, the importance of EG as a first line of defense and a key regulator to endothelial integrity has been illuminated. With advanced age, EG deterioration becomes more noticeable and at least partially associated with endothelial dysfunction. Hyaluronan (HA), one of the critical components of the EG, has distinct properties and roles to the maintenance of EG and endothelial function. Therefore, given the intimate relationship between the EG and endothelium during the aging process, HA may serve as a promising therapeutic target to prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Jisok Lim
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Daniel Robert Machin
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Anthony John Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT, United States; Department of Nutrition and Integrative Physiology, Salt Lake City, UT, United States; Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
2
|
Machin DR, Bloom SI, Campbell RA, Phuong TTT, Gates PE, Lesniewski LA, Rondina MT, Donato AJ. Advanced age results in a diminished endothelial glycocalyx. Am J Physiol Heart Circ Physiol 2018; 315:H531-H539. [PMID: 29750566 DOI: 10.1152/ajpheart.00104.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related microvascular dysfunction is well characterized in rodents and humans, but little is known about the properties of the microvascular endothelial glycocalyx in advanced age. We examined the glycocalyx in microvessels of young and old male C57BL6 mice (young: 6.1 ± 0.1 mo vs. old: 24.6 ± 0.2 mo) using intravital microscopy and transmission electron microscopy and in human participants (young: 29 ± 1 yr vs. old: 60 ± 2 yr) using intravital microscopy. Glycocalyx thickness in mesenteric and skeletal muscle microvessels was 51-54% lower in old compared with young mice. We also observed 33% lower glycocalyx thickness in the sublingual microcirculation of humans in advanced age. The perfused boundary region, a marker of glycocalyx barrier function, was also obtained using an automated capture and analysis system. In advanced age, we observed a 10-22% greater perfused boundary region in mice and humans, indicating a more penetrable glycocalyx. Finally, using this automated analysis system, we examined perfused microvascular density and red blood cell (RBC) fraction. Perfused microvascular density is a marker of microvascular function that reflects the length of perfused microvessel segments in a given area; RBC fraction represents the heterogeneity in RBC presence between microvessel segments. Compared with young, the perfused microvascular density was 16-21% lower and RBC fraction was 5-14% lower in older mice and in older humans. These data provide novel evidence that, across mammalian species, a diminished glycocalyx is present in advanced age and is accompanied by markers of impaired microvascular perfusion. Age-related glycocalyx deterioration may be an important contributor to microvascular dysfunction in older adults and subsequent pathophysiology. NEW & NOTEWORTHY Advanced age is characterized by microvascular dysfunction that contributes to age-related cardiovascular diseases, but little is known about endothelial glycocalyx properties in advanced age. This study reveals, for the first time, lower glycocalyx thickness and barrier function that is accompanied by impaired microvascular perfusion in both mice and humans in advanced age.
Collapse
Affiliation(s)
- Daniel R Machin
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Salt Lake City, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Robert A Campbell
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Molecular Medicine, University of Utah , Salt Lake City, Utah
| | - Tam T T Phuong
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Phillip E Gates
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Salt Lake City, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Matthew T Rondina
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Salt Lake City, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Molecular Medicine, University of Utah , Salt Lake City, Utah
| | - Anthony J Donato
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Salt Lake City, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah.,Department of Biochemistry, University of Utah , Salt Lake City, Utah
| |
Collapse
|
3
|
Abstract
The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.
Collapse
Affiliation(s)
- Mary K Cowman
- Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
4
|
Monslow J, Govindaraju P, Puré E. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment. Front Immunol 2015; 6:231. [PMID: 26029216 PMCID: PMC4432798 DOI: 10.3389/fimmu.2015.00231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture, physical properties, and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan, and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Mhanna R, Öztürk E, Schlink P, Zenobi-Wong M. Probing the microenvironmental conditions for induction of superficial zone protein expression. Osteoarthritis Cartilage 2013; 21:1924-32. [PMID: 23978656 DOI: 10.1016/j.joca.2013.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the in vitro conditions which promote expression of superficial zone protein (SZP). METHODS Chondrocytes from 6-month-old calves were expanded in monolayer culture and the expression of SZP in alginate bead and monolayer culture was quantified with quantitative real time-polymerase chain reaction (qRT-PCR) and immunostaining. The effect of oxygen tension on SZP expression was determined by qRT-PRC analysis of cells cultured in two dimension (2D) and three dimension (3D) under hypoxic (1% pO2) or normoxic (21% pO2) conditions. Finally, to examine the effect of cyclic tensile strain on expression of SZP in 2D and 3D cultures, chondrocytes encapsulated in alginate beams or seeded on type I collagen coated polydimethylsiloxane (PDMS) chambers were subjected to 5% strain at 1 Hz, 2 h/day for 4 days or 2 h at the fourth day of culture and mRNA levels were quantified. RESULTS Bovine chondrocytes in monolayer showed a drastic decrease in SZP expression, similar in trend to the commonly reported downregulation of type II collagen (Col2). Chondrocytes embedded in alginate beads for 4 days re-expressed SZP but not Col2. SZP expression was higher under normoxic conditions whereas Col2 was upregulated only in alginate beads under hypoxic conditions. Cyclic mechanical strain showed a tendency to upregulate mRNA levels of SZP. CONCLUSIONS A microenvironment encompassing a soft encapsulation material and 21% oxygen is sufficient for fibroblastic chondrocytes to re-express SZP. These results serve as a guideline for the design of stratified engineered articular cartilage and suggest that microenvironmental cues (oxygen tension level) strongly influence the pattern of SZP expression in vivo.
Collapse
Affiliation(s)
- R Mhanna
- Cartilage Engineering + Regeneration Laboratory, ETHZ, Schafmattstrasse 22, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
6
|
Yuan H, Tank M, Alsofyani A, Shah N, Talati N, LoBello JC, Kim JR, Oonuki Y, de la Motte CA, Cowman MK. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology 2013; 23:1270-80. [PMID: 23964097 DOI: 10.1093/glycob/cwt064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.
Collapse
Affiliation(s)
- Han Yuan
- Department of Chemical and Biomolecular Engineering, Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ng VY, Jump SS, Santangelo KS, Russell DS, Bertone AL. Genetic engineering of juvenile human chondrocytes improves scaffold-free mosaic neocartilage grafts. Clin Orthop Relat Res 2013; 471:26-38. [PMID: 23008026 PMCID: PMC3528904 DOI: 10.1007/s11999-012-2615-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023]
Abstract
BACKGROUND Current cartilage transplantation techniques achieve suboptimal restoration and rely on patient donor cells or living grafts of chondrocytes. PURPOSE We sought to enhance allogeneic grafts by testing mosaics of genetically engineered and naïve juvenile human chondrocytes (jCh). METHODS We obtained specimens from three humans and performed three experiments (two in vitro, one in vivo). We compared neocartilage with and without (1) supplemented serum-free medium (chondrocyte differentiation medium [CDM]), (2) adenoviral BMP-2 (AdBMP-2) transduction, and (3) varying ratios (0.1-1) of transduced and naïve jCh. We compared (4) healing with mosaic grafts with naïve neocartilage or marrow stimulation in immunosuppressed rats. For each of 10 in vitro treatment groups, we had six replicates for each human, and for each of three in vivo treatment groups, we had four replicates for one human. We scored the histology with the semiquantitative Bern score. RESULTS AdBMP-2 and naïve neocartilage growth in CDM were histologically superior (Bern score, 5.2 versus 3.7; 8.0 versus 1.8) and size (8.0 versus 6.1; 7.9 versus 2.2 mg) to standard medium. In CDM, AdBMP-2 decreased viability (76% versus 90%), but increased BMP-2 production (619 ng/mL versus 43 pg/mL). Ten percent and 25% AdBMP-2 transduction had Bern scores of 6.8 and 6.5 and viability of 84% and 83%, respectively. Twenty-five percent mosaic grafts provided better healing histologically than marrow stimulation or naive neocartilage. CONCLUSIONS Low-level AdBMP-2 and CDM augment neocartilage parameters in vitro and vivo. CLINICAL RELEVANCE Genetic augmentation of jCh and creation of mosaic neocartilage may improve graft viability and articular healing compared with naïve neocartilage.
Collapse
Affiliation(s)
- Vincent Y. Ng
- />Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Seth S. Jump
- />Sports Medicine Center, The Ohio State University Wexner Medical Center, Columbus, OH USA
- />Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, Columbus, OH USA
| | - Kelly S. Santangelo
- />Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
| | - Duncan S. Russell
- />Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
| | - Alicia L. Bertone
- />Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH USA
- />Sports Medicine Center, The Ohio State University Wexner Medical Center, Columbus, OH USA
- />Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, Columbus, OH USA
- />College of Veterinary Medicine, The Ohio State University, 601 Tharp Street, Columbus, OH 43210 USA
| |
Collapse
|
8
|
Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, Bhilocha S, Russell-Puleri S, Skendaj E, Mijovic J, Jing W. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 2011; 417:50-6. [DOI: 10.1016/j.ab.2011.05.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
9
|
Bhilocha S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, Shytuhina A, Wang W, Wisniewski HG, de la Motte C, Cowman MK. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal Biochem 2011; 417:41-9. [PMID: 21684248 DOI: 10.1016/j.ab.2011.05.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/14/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.
Collapse
Affiliation(s)
- Shardul Bhilocha
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, NY 11201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tran-Khanh N, Chevrier A, Lascau-Coman V, Hoemann CD, Buschmann MD. Young adult chondrocytes proliferate rapidly and produce a cartilaginous tissue at the gel-media interface in agarose cultures. Connect Tissue Res 2010; 51:216-23. [PMID: 20053130 DOI: 10.3109/03008200903281683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Primary chondrocytes cultured in agarose can escape the gel, accumulate at the interface between agarose and the culture medium, and form an outgrowing tissue. These outgrowths can appear as voluminous cartilage-like nodules that have never been previously investigated. In the present study, bovine articular chondrocytes from three age groups (fetal, young adult, aged) were seeded and cultured in agarose to test the hypothesis that hyaline-like cartilage outgrowths develop at the interface by appositional growth, in an age-dependant manner. Macroscopic appearance, cell content, cell division, cytoskeletal morphology, and extracellular matrix (ECM) composition were analyzed. Fetal chondrocytes produced a fibrous interfacial tissue while aged chondrocytes produced ECM-poor cell clusters. In contrast young adult chondrocytes produced large cartilaginous outgrowths, rich in proteoglycan and collagen II, where cells in the central region displayed a chondrocyte morphology. Cell proliferation was confined to the peripheral edge of these outgrowths, where elongated cell morphology, cell-cell contacts, and cell extensions toward the culture medium were seen. Thus these voluminous cartilaginous outgrowths formed in an appositional growth process and only for donor chondrocytes from young adult animals. This system offers an interesting ability to proliferate chondrocytes in a manner that results in a chondrocyte morphology and a cartilaginous ECM in central regions of the outgrowing tissue. It also provides an in vitro model system to study neocartilage appositional growth.
Collapse
Affiliation(s)
- Nicolas Tran-Khanh
- Institute of Biomedical Engineering and Department of Chemical Engineering, Ecole Polytechnique, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
Wu CH, Ko CS, Huang JW, Huang HJ, Chu IM. Effects of exogenous glycosaminoglycans on human chondrocytes cultivated on type II collagen scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:725-729. [PMID: 19823917 DOI: 10.1007/s10856-009-3889-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/30/2009] [Indexed: 05/28/2023]
Abstract
Cartilage extracellular matrix (ECM) is composed primarily of type II collagen (COL II) and large, networks of proteoglycans (PGs) that contain glycosaminoglycans such as hyaluronic acid (HA) and chondroitin sulfate (CS). Since cartilage shows little tendency for self-repair, injuries are kept unhealed for years and can eventually lead to further degeneration. During the past decades, many investigations have pursued techniques to stimulate articular cartilage repair or regeneration. The current study assessed the effects of exogenous glycosaminoglycans (GAGs) including CS-A, CS-B, CS-C, heparan sulfate and HA, administration on human chondrocytes in terms of proliferation and matrix synthesis, while the cells were seeded and grown on the genipin-crosslinked collagen type II (COL II) scaffold. DNA content was measured by Hoechst dye intercalation, matrix deposition was evaluated by DMMB dye. Expression of collagen II and aggrecan mRNAs was assessed by RT-PCR, followed by gel electrophoresis. In a 28-day in vitro culture, administration of 5 microg/ml CS-A, 50 microg/ml CS-B, 50 microg/ml CS-C, 5 microg/ml HS, and 500 kDa HA led to significant increase in biosynthesis rate of PGs. Gene expression of aggrecan and collagen II were upregulated by CS-A, CS-C and HA. These results showed considerable relevance of GAGs to the issue of in vitro/ex vivo neo-cartilage synthesis for tissue engineering and regenerative medical applications.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | | | | | | | | |
Collapse
|
12
|
Yoon DM, Curtiss S, Reddi AH, Fisher JP. Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng Part A 2010; 15:3449-59. [PMID: 19426107 DOI: 10.1089/ten.tea.2009.0069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of an engineered tissue requires a clear understanding of the interactions between the individual components. In this study, we investigated how the addition of hyaluronic acid (HA) to a cartilage tissue engineered scaffold alters chondrocytic expression, and specifically the expression of insulin-like growth factor-1 (IGF-1) signaling molecules. Bovine chondrocytes were embedded (7 million cells/mL) in 2.0% w/v alginate hydrogels containing varying HA concentrations (0, 0.05, 0.50, and 5.00 mg/mL). In vitro constructs were cultured with exogenous IGF-1, and gene expression was monitored at days 1, 4, and 8 for IGF-1, IGF-1 receptor (IGF-1R), IGF binding protein 3 (IGFBP-3), type II collagen and type I collagen. In vivo constructs were precultured for 24 h with exogenous IGF-1 before being implanted subcutaneously in severe combined immunodeficient mice; samples were analyzed using histology at days 7, 14, and 21. Results indicate that, with the addition of high levels (5.00 mg/mL) of HA, IGF-1 can become entrapped within the matrix and therefore interfere with the delivery of IGF-1 to chondrocytes. In vitro and in vivo data showed that increasing the concentration of HA in an alginate hydrogel can decrease chondrocyte IGF-1 expression. IGF-1R expression did not change with HA concentration, and the addition of any HA did not significantly alter IGFBP-3 expression. Chondrocytes continuously expressed phenotypic type II collagen in vitro and in vivo throughout the study for all the groups. However, for all the HA concentrations investigated, chondrocytes showed more of a fibroblastic phenotype, as indicated by greater expression of type I collagen than with no HA, in vitro and in vivo. In conclusion, these results indicate that HA interferes with the delivery of IGF-1 to chondrocytes, affecting the endogenous expression of IGF-1 signaling molecules and the resulting chondrocyte phenotype, and therefore demonstrating the critical effect of biomaterial scaffolds on encapsulated cell function.
Collapse
Affiliation(s)
- Diana M Yoon
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
13
|
Carossino AM, Recenti R, Carossino R, Piscitelli E, Gozzini A, Martineti V, Mavilia C, Franchi A, Danielli D, Aglietti P, Ciardullo A, Galli G, Tognarini I, Moggi Pignone A, Cagnoni M, Brandi ML. Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients. Biogerontology 2007; 8:483-98. [PMID: 17372845 DOI: 10.1007/s10522-007-9088-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 02/22/2007] [Indexed: 12/24/2022]
Abstract
Articular cartilage defects, an exceedingly common problem closely correlated with advancing age, is characterized by lack of spontaneous resolution because of the limited regenerative capacity of adult articular chondrocytes. Medical and surgical therapies yield unsatisfactory short-lasting results. Recently, cultured autologous chondrocytes have been proposed as a source to promote repair of deep cartilage defects. Despite encouraging preliminary results, this approach is not yet routinely applicable in clinical practice, but for young patients. One critical points is the isolation and ex vivo expansion of large enough number of differentiated articular chondrocytes. In general, human articular chondrocytes grown in monolayer cultures tend to undergo dedifferentiation. This reversible process produces morphological changes by which cells acquire fibroblast-like features, loosing typical functional characteristics, such as the ability to synthesize type II collagen. The aim of this study was to isolate human articular chondrocytes from elderly patients and to carefully characterize their morphological, proliferative, and differentiative features. Cells were morphologically analyzed by optic and transmission electron microscopy (TEM). Production of periodic acid-schiff (PAS)-positive cellular products and of type II collagen mRNA was monitored at different cellular passages. Typical chondrocytic characteristics were also studied in a suspension culture system with cells encapsulated in alginate-polylysine-alginate (APA) membranes. Results showed that human articular chondrocytes can be expanded in monolayers for several passages, and then microencapsulated, retaining their morphological and functional characteristics. The results obtained could contribute to optimize expansion and redifferentiation sequences for applying cartilage tissue engineering in the elderly patients.
Collapse
Affiliation(s)
- Anna Maria Carossino
- Department of Internal Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mesa JM, Zaporojan V, Weinand C, Johnson TS, Bonassar L, Randolph MA, Yaremchuk MJ, Butler PE. Tissue Engineering Cartilage with Aged Articular Chondrocytes In Vivo. Plast Reconstr Surg 2006; 118:41-9; discussion 50-3. [PMID: 16816672 DOI: 10.1097/01.prs.0000231929.37736.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tissue engineering has the potential to repair cartilage structures in middle-aged and elderly patients using their own "aged" cartilage tissue as a source of reparative chondrocytes. However, most studies on tissue-engineered cartilage have used chondrocytes from postfetal or very young donors. The authors hypothesized that articular chondrocytes isolated from old animals could produce neocartilage in vivo as well as articular chondrocytes from young donors. METHODS Articular chondrocytes from 8-year-old sheep (old donors) and 3- to 6-month-old sheep (young donors) were isolated. Cells were mixed in fibrin gel polymer at 40 x 10 cells/ml until polymerization. Cell-polymer constructs were implanted into the subcutaneous tissue of nude mice and harvested at 7 and 12 weeks. RESULTS Samples and native articular cartilage controls were examined histologically and assessed biochemically for total DNA, glycosaminoglycan, and hydroxyproline content. Histological analysis showed that samples made with chondrocytes from old donors accumulated basophilic extracellular matrix and sulfated glycosaminoglycans around the cells in a manner similar to that seen in samples made with chondrocytes from young donors at 7 and 12 weeks. Biochemical analysis revealed that DNA, glycosaminoglycan, and hydroxyproline content increased in chondrocytes from old donors over time in a pattern similar to that seen with chondrocytes from young donors. CONCLUSIONS This study demonstrates that chondrocytes from old donors can be rejuvenated and can produce neocartilage just as chondrocytes from young donors do when encapsulated in fibrin gel polymer in vivo. This study suggests that middle-aged and elderly patients could benefit from cartilage tissue-engineering repair using their own "aged" articular cartilage as a source of reparative chondrocytes.
Collapse
Affiliation(s)
- John M Mesa
- Plastic Surgery Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Mass. 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tran-Khanh N, Hoemann CD, McKee MD, Henderson JE, Buschmann MD. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 2005; 23:1354-62. [PMID: 16048738 DOI: 10.1016/j.orthres.2005.05.009.1100230617] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/10/2005] [Accepted: 05/25/2005] [Indexed: 02/04/2023]
Abstract
Most fundamental studies in cartilage tissue engineering investigate the ability of chondrocytes from young animals to produce cartilaginous matrix under various conditions, while current clinical applications such as autologous chondrocyte implantation, use chondrocytes from donors that are decades past skeletal maturity. Previous investigations have suggested that several characteristics of primary chondrocytes are age-dependent but none have quantified cell proliferation, proteoglycan synthesis and accumulation, collagen synthesis and accumulation, compressive and tensile mechanical properties in order to examine the effects of donor age on all of these parameters. We enzymatically isolated primary bovine chondrocytes from fetal, young and aged animals and cultured these cells in agarose gels to assess the above-mentioned properties. We found that fetal and young (but still skeletally mature i.e. 18-month-old bovine) chondrocytes behaved similarly, while aged chondrocytes (5- to 7-year-old bovine) displayed diminished proliferation ( approximately 2x less), a slightly reduced proteoglycan accumulation per cell ( approximately 20%), and significantly less collagen accumulation per cell ( approximately 55%) compared to the younger cells. Histological observations and mechanical properties supported these findings, where a particularly significant reduction in tensile stiffness produced by aged chondrocytes compared to younger cells was observed. Our findings suggest that donor age is an important factor in determining the outcome and potential success when tissue-engineered cartilage is produced from articular chondrocytes. More specifically, primary chondrocytes from aged donors may not possess sufficient capacity to produce the extracellular matrix that is required for a mechanically resilient tissue.
Collapse
Affiliation(s)
- Nicolas Tran-Khanh
- Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
16
|
McConell K, Jarman-Smith M, Stewart K, Chaudhuri J. Culture of Meniscal Chondrocytes on Alginate Hydrogel Matrices. FOOD AND BIOPRODUCTS PROCESSING 2004. [DOI: 10.1205/0960308041614873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. ACTA ACUST UNITED AC 2003; 48:3151-8. [PMID: 14613277 DOI: 10.1002/art.11305] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We have previously demonstrated that reactive oxygen species (ROS) are involved in cartilage degradation. Decreased size of hyaluronan (HA), the major macromolecule in synovial fluid, to which it imparts viscosity, is reported in patients with arthritis. The purpose of this study was to determine the alteration in the molecular weight range of HA as a result of mechanical deformation loaded on the chondrocytes, as well as the involvement of ROS in this action. METHODS ROS were generated via the oxidation of hypoxanthine by xanthine oxidase. Cyclic tensile stretch was loaded using a vacuum-operated instrument. Levels of HA were measured using a sandwich enzyme-binding assay. Superoxide dismutase (SOD) activity and ROS were measured using water-soluble tetrazolium and a chemiluminescent probe, respectively. RESULTS ROS depolymerized HA molecules. Cyclic tensile stretch depolymerized HA and induced ROS. SOD inhibited not only ROS induction but also HA depolymerization caused by the mechanical stress. CONCLUSION ROS play an important role in mechanical stress-induced HA depolymerization.
Collapse
Affiliation(s)
- K Yamazaki
- Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|