1
|
Cahill J, Holt A, Theodore M, Moreland R, O'Leary C, Martin C, Bettridge K, Xiao J, Young R. Spatial and temporal control of lysis by the lambda holin. mBio 2024; 15:e0129023. [PMID: 38126784 PMCID: PMC10865782 DOI: 10.1128/mbio.01290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The infection cycle of phage λ terminates in lysis mediated by three types of lysis proteins, each disrupting a layer in the bacterial envelope: the S105 holin, the R endolysin, and the Rz/Rz1 spanin complex targeting the inner membrane, cell wall or peptidoglycan, and the outer membrane, respectively. Video microscopy has shown that in most infections, lysis occurs as a sudden, explosive event at a cell pole, such that the initial product is a less refractile ghost that retains rod-shaped morphology. Here, we investigate the molecular basis of polar lysis using time-lapse fluorescence microscopy. The results indicate that the holin determines the morphology of lysis by suddenly forming two-dimensional rafts at the poles about 100 s prior to lysis. Given the physiological and biochemical similarities between the lambda holin and other class I holins, dynamic redistribution and sudden concentration may be common features of holins, probably reflecting the fitness advantage of all-or-nothing lysis regulation.IMPORTANCEIn this study, we use fluorescent video microscopy to track -green fluorescent protein (GFP)-labeled holin in the minutes prior to phage lysis. Our work contextualizes prior genetic and biochemical data, showing when hole formation starts and where holin oligomers form in relation to the site of lytic rupture. Furthermore, prior work showed that the morphology of lambda-infected cells is characterized by an explosive event starting at the cell pole; however, the basis for this was not clear. This study shows that holin most often oligomerizes at cell poles and that the site of the oligomerization is spatially correlated with the site of lytic blowout. Therefore, the holin is the key contributor to polar lysis morphology for phage lambda.
Collapse
Affiliation(s)
- Jesse Cahill
- Sandia National Labs, Albuquerque, New Mexico, USA
| | - Ashley Holt
- Department of Biochemistry and Biophysics, Center of Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Matthew Theodore
- Department of Biochemistry and Biophysics, Center of Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Russell Moreland
- Department of Biochemistry and Biophysics, Center of Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Chandler O'Leary
- Department of Biochemistry and Biophysics, Center of Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Cody Martin
- Department of Biochemistry and Biophysics, Center of Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Kelsey Bettridge
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ry Young
- Sandia National Labs, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Bryl K. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes. APPLIED SPECTROSCOPY 2023; 77:187-199. [PMID: 36229916 DOI: 10.1177/00037028221135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump existing in the purple membranes (PM) of Halobacterium salinarum. The effects associated with changes in proton distribution (proton gradient, membrane electric potential) play a key role in ATPase stimulation. However, how the bioenergetic modulus (bR-PM-ATPase) functions remains unclear. One can find indications that hydrophobic matching and the curvature of the lipid membrane may form a functional link between bR and ATPase. To verify whether an interaction between bR and lipids can lead to curvature of the lipid membrane, a spectroscopic ruler, that is, a fluorescence resonance energy transfer (FRET) tool, was used. The distances from fluorescent lipid probes [octadecyl rhodamine B chloride (RhB), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), 16-(9-anthroyloxy) palmitic acid (16AP), and hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH), to the retinal chromophore of bR incorporated into phospholipid vesicles, were measured. The incorporation of retinal analogues with changed shape and/or altered electronic properties into the binding site of a bR or bR mutant were used to strengthen the feedback between the protein surrounding and chromophore. The experiments were performed with wild-type and D96N-mutated bR carrying retinal or 14-(12-,10-, 13,14-bi-) fluororetinal. As far as it is known, this is the first time that results obtained by the FRET method show that bR can induce a change in lipid structure interpreted as hydrophobically induced curving of the lipid membrane. Evidence was provided that the chromophore contributed to this effect. The extent of contribution was dependent on the chromophore structure in close vicinity to the place of its link with opsin. The implications of these findings for bR-PM-ATPase module functioning are also discussed.
Collapse
Affiliation(s)
- Krzysztof Bryl
- Department of Physics and Biophysics, 49674University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
3
|
Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. MEMBRANES 2021; 11:451. [PMID: 34204456 PMCID: PMC8235241 DOI: 10.3390/membranes11060451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Membrane proteins work within asymmetric bilayers of lipid molecules that are critical for their biological structures, dynamics and interactions. These properties are lost when detergents dislodge lipids, ligands and subunits, but are maintained in native nanodiscs formed using styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers. These amphipathic polymers allow extraction of multicomponent complexes of post-translationally modified membrane-bound proteins directly from organ homogenates or membranes from diverse types of cells and organelles. Here, we review the structures and mechanisms of transmembrane targets and their interactions with lipids including phosphoinositides (PIs), as resolved using nanodisc systems and methods including cryo-electron microscopy (cryo-EM) and X-ray diffraction (XRD). We focus on therapeutic targets including several G protein-coupled receptors (GPCRs), as well as ion channels and transporters that are driving the development of next-generation native nanodiscs. The design of new synthetic polymers and complementary biophysical tools bodes well for the future of drug discovery and structural biology of native membrane:protein assemblies (memteins).
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Louis-Philippe Picard
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Joey G. Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| |
Collapse
|
4
|
Suda K, Suematsu A, Akiyama R. Lateral depletion effect on two-dimensional ordering of bacteriorhodopsins in a lipid bilayer: A theoretical study based on a binary hard-disk model. J Chem Phys 2021; 154:204904. [PMID: 34241177 DOI: 10.1063/5.0044399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 2D ordering of bacteriorhodopsins in a lipid bilayer was studied using a binary hard-disk model. The phase diagrams were calculated taking into account the lateral depletion effects. The critical concentrations of the protein ordering for monomers and trimers were obtained from the phase diagrams. The critical concentration ratio agreed well with the experiment when the repulsive core interaction between the depletants, namely, lipids, was taken into account. The results suggest that the depletion effect plays an important role in the association behaviors of transmembrane proteins.
Collapse
Affiliation(s)
- Keiju Suda
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayumi Suematsu
- Faculty of Science and Engineering, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Ryo Akiyama
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Hoi KK, Bada Juarez JF, Judge PJ, Yen HY, Wu D, Vinals J, Taylor GF, Watts A, Robinson CV. Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins. NANO LETTERS 2021; 21:2824-2831. [PMID: 33787280 PMCID: PMC8050825 DOI: 10.1021/acs.nanolett.0c04911] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
Integral membrane proteins pose considerable challenges to mass spectrometry (MS) owing to the complexity and diversity of the components in their native environment. Here, we use native MS to study the post-translational maturation of bacteriorhodopsin (bR) and archaerhodopsin-3 (AR3), using both octyl-glucoside detergent micelles and lipid-based nanoparticles. A lower collision energy was required to obtain well-resolved spectra for proteins in styrene-maleic acid copolymer (SMA) Lipodisqs than in membrane scaffold protein (MSP) Nanodiscs. By comparing spectra of membrane proteins prepared using the different membrane mimetics, we found that SMA may favor selective solubilization of correctly folded proteins and better preserve native lipid interactions than other membrane mimetics. Our spectra reveal the correlation between the post-translation modifications (PTMs), lipid-interactions, and protein-folding states of bR, providing insights into the process of maturation of the photoreceptor proteins.
Collapse
Affiliation(s)
- Kin Kuan Hoi
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Juan Francisco Bada Juarez
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Peter J. Judge
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Hsin-Yung Yen
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- OMass
Therapeutics, The Schrödinger
Building, Oxford Science Park, Oxford OX4
4GE, United Kingdom
| | - Di Wu
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Javier Vinals
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Garrick F. Taylor
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anthony Watts
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carol V. Robinson
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Riedel R, Frese N, Yang F, Wortmann M, Dalpke R, Rhinow D, Hampp N, Gölzhäuser A. Fusion of purple membranes triggered by immobilization on carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:93-101. [PMID: 33564606 PMCID: PMC7849249 DOI: 10.3762/bjnano.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
A freestanding ultrathin hybrid membrane was synthesized comprising two functional layers, that is, first, a carbon nanomembrane (CNM) produced by electron irradiation-induced cross-linking of a self-assembled monolayer (SAM) of 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) and second, purple membrane (PM) containing genetically modified bacteriorhodopsin (BR) carrying a C-terminal His-tag. The NBPT-CNM was further modified to carry nitrilotriacetic acid (NTA) terminal groups for the interaction with the His-tagged PMs forming a quasi-monolayer of His-tagged PM on top of the CNM-NTA. The formation of the Ni-NTA/His-tag complex leads to the unidirectional orientation of PM on the CNM substrate. Electrophoretic sedimentation was employed to optimize the surface coverage and to close gaps between the PM patches. This procedure for the immobilization of oriented dense PM facilitates the spontaneous fusion of individual PM patches, forming larger membrane areas. This is, to our knowledge, the very first procedure described to induce the oriented fusion of PM on a solid support. The resulting hybrid membrane has a potential application as a light-driven two-dimensional proton-pumping membrane, for instance, for light-driven seawater desalination as envisioned soon after the discovery of PM.
Collapse
Affiliation(s)
- René Riedel
- Faculty of Chemistry and Materials Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Natalie Frese
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Fang Yang
- Nano Biomaterials Group, Ningbo Institute of Industrial Technology, Chinese Academy of Science, China
| | - Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, D-33619 Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Daniel Rhinow
- Faculty of Chemistry and Materials Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany
| | - Norbert Hampp
- Faculty of Chemistry and Materials Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Nami F, Tian L, Huber M, Croce R, Pandit A. Lipid and protein dynamics of stacked and cation-depletion induced unstacked thylakoid membranes. BBA ADVANCES 2021; 1:100015. [PMID: 37082020 PMCID: PMC10074959 DOI: 10.1016/j.bbadva.2021.100015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chloroplast thylakoid membranes in plants and green algae form 3D architectures of stacked granal membranes interconnected by unstacked stroma lamellae. They undergo dynamic structural changes as a response to changing light conditions that involve grana unstacking and lateral supramolecular reorganization of the integral membrane protein complexes. We assessed the dynamics of thylakoid membrane components and addressed how they are affected by thylakoid unstacking, which has consequences for protein mobility and the diffusion of small electron carriers. By a combined nuclear and electron paramagnetic-resonance approach the dynamics of thylakoid lipids was assessed in stacked and cation-depletion induced unstacked thylakoids of Chlamydomonas (C.) reinhardtii. We could distinguish between structural, bulk and annular lipids and determine membrane fluidity at two membrane depths: close to the lipid headgroups and in the lipid bilayer center. Thylakoid unstacking significantly increased the dynamics of bulk and annular lipids in both areas and increased the dynamics of protein helices. The unstacking process was associated with membrane reorganization and loss of long-range ordered Photosystem II- Light-Harvesting Complex II (PSII-LHCII) complexes. The fluorescence lifetime characteristics associated with membrane unstacking are similar to those associated with state transitions in intact C. reinhardtii cells. Our findings could be relevant for understanding the structural and functional implications of thylakoid unstacking that is suggested to take place during several light-induced processes, such as state transitions, photoacclimation, photoinhibition and PSII repair.
Collapse
Affiliation(s)
- Faezeh Nami
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Lijin Tian
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Anjali Pandit
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
- Corresponding author:
| |
Collapse
|
8
|
Stauffer M, Hirschi S, Ucurum Z, Harder D, Schlesinger R, Fotiadis D. Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies. Methods Protoc 2020; 3:mps3030051. [PMID: 32707904 PMCID: PMC7563565 DOI: 10.3390/mps3030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
The light-driven proton pump bacteriorhodopsin (BR) from the extreme halophilic archaeon Halobacterium salinarum is a retinal-binding protein, which forms highly ordered and thermally stable 2D crystals in native membranes (termed purple membranes). BR and purple membranes (PMs) have been and are still being intensively studied by numerous researchers from different scientific disciplines. Furthermore, PMs are being successfully used in new, emerging technologies such as bioelectronics and bionanotechnology. Most published studies used the wild-type form of BR, because of the intrinsic difficulty to produce genetically modified versions in purple membranes homologously. However, modification and engineering is crucial for studies in basic research and, in particular, to tailor BR for specific applications in applied sciences. We present an extensive and detailed protocol ranging from the genetic modification and cultivation of H. salinarum to the isolation, and biochemical, biophysical and functional characterization of BR and purple membranes. Pitfalls and problems of the homologous expression of BR versions in H. salinarum are discussed and possible solutions presented. The protocol is intended to facilitate the access to genetically modified BR versions for researchers of different scientific disciplines, thus increasing the application of this versatile biomaterial.
Collapse
Affiliation(s)
- Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: (R.S.); (D.F.)
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
- Correspondence: (R.S.); (D.F.)
| |
Collapse
|
9
|
Abstract
The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.
Collapse
Affiliation(s)
- Jesse Cahill
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.
| | - Ry Young
- Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Verchère A, Ou WL, Ploier B, Morizumi T, Goren MA, Bütikofer P, Ernst OP, Khelashvili G, Menon AK. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Sci Rep 2017; 7:9522. [PMID: 28842688 PMCID: PMC5572738 DOI: 10.1038/s41598-017-09835-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
The retinylidene protein bacteriorhodopsin (BR) is a heptahelical light-dependent proton pump found in the purple membrane of the archaeon Halobacterium salinarum. We now show that when reconstituted into large unilamellar vesicles, purified BR trimers exhibit light-independent lipid scramblase activity, thereby facilitating transbilayer exchange of phospholipids between the leaflets of the vesicle membrane at a rate >10,000 per trimer per second. This activity is comparable to that of recently described scramblases including bovine rhodopsin and fungal TMEM16 proteins. Specificity tests reveal that BR scrambles fluorescent analogues of common phospholipids but does not transport a glycosylated diphosphate isoprenoid lipid. In silico analyses suggest that membrane-exposed polar residues in transmembrane helices 1 and 2 of BR may provide the molecular basis for lipid translocation by coordinating the polar head-groups of transiting phospholipids. Consistent with this possibility, extensive coarse-grained molecular dynamics simulations of a BR trimer in an explicit phospholipid membrane revealed water penetration along transmembrane helix 1 with the cooperation of a polar residue (Y147 in transmembrane helix 5) in the adjacent protomer. These results suggest that the lipid translocation pathway may lie at or near the interface of the protomers of a BR trimer.
Collapse
Affiliation(s)
- Alice Verchère
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Birgit Ploier
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Michael A Goren
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada, M5S 1A8.,Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - George Khelashvili
- Department of Physiology and Biophysics, and Institute for Computational Biomedicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA.
| |
Collapse
|
11
|
Lazarova T, Mlynarczyk K, Querol E, Tenchov B, Filipek S, Padrós E. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin. PLoS One 2016; 11:e0162952. [PMID: 27657718 PMCID: PMC5033488 DOI: 10.1371/journal.pone.0162952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022] Open
Abstract
In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants' alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (TL); (EP)
| | - Krzysztof Mlynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Enric Querol
- Institut de Biomedicina i Biotecnologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Boris Tenchov
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University – Sofia, Sofia, Bulgaria
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Esteve Padrós
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (TL); (EP)
| |
Collapse
|
12
|
Hoffmann A, Kovermann M, Oberwinkler T, Siedler F, Cortina NS, Balbach J, Oesterhelt D. Novel sulfated phosphoglycolipids from Natronomonas moolapensis. Chem Phys Lipids 2015; 191:8-15. [PMID: 26134137 DOI: 10.1016/j.chemphyslip.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
Abstract
Polar lipid pattern determination is often used for the taxonomic classification of halophilic Archaea in addition to a genomic characterization. During the analysis of polar lipid extracts from the recently described haloarchaeon Natrononomonas moolapensis, an unknown glycolipid was detected. Fragmentation patterns observed from preliminary mass spectrometric analysis initially suggested the presence of a sulfo-hexosyl-phosphatidylglycerol. However, by NMR spectroscopy and enzymatic assays the existence of two isomeric molecules with different hexoses (1-(6-sulfo-d-glcp/galf-β1,2-glycero)-phospho-2,3-diphytanylglycerol) could be shown. The structural origin from phosphatidylglycerol distinguishes these glycolipids within Archaea, because all other characterized haloarchaeal glycolipids consist of diphytanylglycerol directly linked to an oligoglycosyl moiety. Now the door is open to investigate the physical and functional consequences of these architectural differences of the head groups.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Michael Kovermann
- Institute of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany; Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Tanja Oberwinkler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Siedler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niña Socorro Cortina
- Institute of Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Jochen Balbach
- Institute of Physics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Dieter Oesterhelt
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
13
|
Tsukamoto T, Demura M, Sudo Y. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation. J Phys Chem B 2014; 118:12383-94. [PMID: 25279934 DOI: 10.1021/jp507374q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | |
Collapse
|
14
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
15
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
16
|
Lazarova T, Mlynarczyk K, Filipek S, Kolinski M, Wassenaar TA, Querol E, Renugopalakrishnan V, Viswanathan S, Padrós E. The effect of triple glutamic mutations E9Q/E194Q/E204Q on the structural stability of bacteriorhodopsin. FEBS J 2013; 281:1181-95. [PMID: 24341610 DOI: 10.1111/febs.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
In the present study, we report on the structural features of the bacteriorhodopsin triple mutant E9Q/E194Q/E204Q (3Glu) of bacteriorhodopsin by combining experimental and molecular dynamics (MD) approaches. In 3Glu mutant, Glu9, Glu194 and Glu204 residues located at the extracellular side of the protein were mutated altogether to glutamines. UV-visible and differential scanning calorimetry experiments served as diagnostic tools for monitoring the resistance against thermal stress of the active site and the tertiary structures of the 3Glu. The analyses of the UV-visible thermal difference spectra demonstrate that the spectral forms at room temperature and the thermal unfolding path differ in the wild-type bacteriorhodopsin and the 3Glu. Even with these spectral differences, the thermal unfolding of the active site occurs at rather similar melting temperatures in both proteins. A noteworthy consequence of the mutations is the altered two-dimensional packing revealed by the lack of the pre-transition peak in differential scanning calorimetry traces of 3Glu mutant, as previously detected in wild-type and the corresponding single mutants. The infrared spectroscopy data agree with the loss of paracrystalinity, illustrating a substantial conversion of αII to αI helical conformation in the 3Glu mutant. Molecular dynamics simulations show higher dynamics flexibility of most of the extracellular regions of 3Glu, which may account for the somewhat lower tertiary structural stability of the mutated protein. Finally, hydrogen bond analysis reveals that the mutated Glu194 and Glu204 residues create ~ 50% less hydrogen bonds with water molecules compared to wild-type bacteriorhodopsin. These results exemplify the role of the water hydrogen-bonding network for structural integrity and conformational flexibility of bacteriorhodopsin.
Collapse
Affiliation(s)
- Tzvetana Lazarova
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain; Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wagner NL, Greco JA, Ranaghan MJ, Birge RR. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 2013; 10:20130197. [PMID: 23676894 DOI: 10.1098/rsif.2013.0197] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas.
Collapse
Affiliation(s)
- Nicole L Wagner
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | |
Collapse
|
18
|
Salt bridge in the conserved His-Asp cluster inGloeobacterrhodopsin contributes to trimer formation. FEBS Lett 2013; 587:322-7. [DOI: 10.1016/j.febslet.2012.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
|
19
|
Rhinow D, Imhof M, Chizhik I, Baumann RP, Hampp N. Structural Changes in Bacteriorhodopsin Caused by Two-Photon-Induced Photobleaching. J Phys Chem B 2012; 116:7455-62. [DOI: 10.1021/jp2112846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Rhinow
- Department of Structural
Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany
| | - Martin Imhof
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Ivan Chizhik
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Roelf-Peter Baumann
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Norbert Hampp
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
- Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
20
|
Baumann RP, Busch AP, Heidel B, Hampp N. A new class of purple membrane variants for the construction of highly oriented membrane assemblies on the basis of noncovalent interactions. J Phys Chem B 2012; 116:4134-40. [PMID: 22420766 DOI: 10.1021/jp210825x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Purple membranes (PM) from Halobacterium salinarum have been discussed for several technical applications. These ideas started just several years after its discovery. The biological function of bacteriorhodopsin (BR), the only protein in PM, is the light-driven proton translocation across the membrane thereby converting light energy into chemical energy. The astonishing physicochemical robustness of this molecular assembly and the ease of its isolation triggered ideas for technical uses. All basic molecular functions of BR, that is, photochromism, photoelectrism, and proton pumping, are key elements for technical applications like optical data processing and data storage, ultrafast light detection and processing, and direct utilization of sunlight in adenosine 5'-triphospate (ATP) generation or seawater desalination. In spite of the efforts of several research groups worldwide, which confirmed the proof-of-principle for all these potential applications, only the photochromism-based applications have reached a technical level. The physical reason for this is that no fixation or orientation of the PMs is required. The situation is quite different for photoelectrism and proton pumping where the macroscopic orientation of PMs is a prerequisite. For proton pumping, in addition, the formation of artificial membranes which prevent passive proton leakage is necessary. In this manuscript, we describe a new class of PM variants with oppositely charged membrane sides which enable an almost 100% orientation on a surface, which is the key element for photoelectric applications of BR. As an example, the mutated BR, BR-E234R7, was prepared and analyzed. A nearly 100% self-orientation on mica was obtained.
Collapse
Affiliation(s)
- Roelf-Peter Baumann
- Philipps University of Marburg, Department of Chemistry, Hans-Meerwein-Str., Bldg. H, D-35032, Germany
| | | | | | | |
Collapse
|
21
|
Johnston IG, Ahnert SE, Doye JPK, Louis AA. Evolutionary dynamics in a simple model of self-assembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:066105. [PMID: 21797439 DOI: 10.1103/physreve.83.066105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/22/2011] [Indexed: 05/31/2023]
Abstract
We investigate the evolutionary dynamics of an idealized model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model's rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterized, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers.
Collapse
Affiliation(s)
- Iain G Johnston
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | | | | | | |
Collapse
|
22
|
Negishi L, Mitaku S. Electrostatic effects influence the formation of two-dimensional crystals of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine membranes. J Biochem 2011; 150:113-9. [DOI: 10.1093/jb/mvr043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Baumann RP, Eussner J, Hampp N. pH-dependent bending in and out of purple membranes comprising BR-D85T. Phys Chem Chem Phys 2011; 13:21375-82. [DOI: 10.1039/c1cp22098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Rhinow D, Chizhik I, Baumann RP, Noll F, Hampp N. Crystallinity of Purple Membranes Comprising the Chloride-Pumping Bacteriorhodopsin Variant D85T and Its Modulation by pH and Salinity. J Phys Chem B 2010; 114:15424-8. [DOI: 10.1021/jp108502p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Rhinow
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Ivan Chizhik
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Roelf-Peter Baumann
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Frank Noll
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| | - Norbert Hampp
- Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany, Philipps-University of Marburg, Department of Chemistry, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg, Germany, and Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
25
|
Schranz M, Baumann RP, Rhinow D, Hampp N. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy. J Phys Chem B 2010; 114:9047-53. [PMID: 20509702 DOI: 10.1021/jp102377c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purple membrane (PM) from Halobacterium salinarum, which comprises bacteriorhodopsin (BR) and lipids only, has been employed by many groups as a model system to study the structure and dynamics of membrane proteins. Although the conformational dynamics of BR within PM has been extensively analyzed with subnanometer resolution by means of diffraction experiments and spectroscopic methods, as well, structural studies of dynamical transitions within single PMs are rare. In this work, we show that tapping-mode atomic force microscopy (TM-AFM) is ideally suited to study dynamical transitions within solid-supported PMs at the nanoscale. Time-dependent AFM analysis of solid-supported PMs shows that redistribution processes take place between a crystalline core region, featuring a height of approximately 5 nm, and a highly mobile rim region (approximately 4 nm in height). Furthermore, we discuss the influence of temperature and substrate on the equilibrium. The experiments are complemented by electrostatic force microscopy (EFM) of PM on mica. Beyond their importance for many physiological processes, dynamical transitions in biological membranes, as observed in this work, are of critical importance for all methods that make use of solid-supported membrane assemblies, either analytical tools or applications.
Collapse
Affiliation(s)
- Michael Schranz
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Strasse Building H, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Curnow P, Booth PJ. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. J Mol Biol 2010; 403:630-42. [PMID: 20850459 DOI: 10.1016/j.jmb.2010.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 02/03/2023]
Abstract
The factors controlling the stability, folding, and dynamics of integral membrane proteins are not fully understood. The high stability of the membrane protein bacteriorhodopsin (bR), an archetypal member of the rhodopsin photoreceptor family, has been ascribed to its covalently bound retinal cofactor. We investigate here the role of this cofactor in the thermodynamic stability and folding kinetics of bR. Multiple spectroscopic probes were used to determine the kinetics and energetics of protein folding in mixed lipid/detergent micelles in the presence and absence of retinal. The presence of retinal increases extrapolated values for the overall unfolding free energy from 6.3 ± 0.4 kcal mol(-1) to 23.4 ± 1.5 kcal mol(-1) at zero denaturant, suggesting that the cofactor contributes 17.1 kcal mol(-1) towards the overall stability of bR. In addition, the cooperativity of equilibrium unfolding curves is markedly reduced in the absence of retinal with overall m-values decreasing from 31.0 ± 2.0 kcal mol(-1) to 10.9 ± 1.0 kcal mol(-1), indicating that the folded state of the apoprotein is less compact than the equivalent for the holoprotein. This change in the denaturant response means that the difference in the unfolding free energy at a denaturant concentration midway between the two unfolding curves is only ca 3-6 kcal mol(-1). Kinetic data show that the decrease in stability upon removal of retinal is associated with an increase in the apparent intrinsic rate constant of unfolding, k(u)(H2O), from ~1 × 10(-16) s(-1) to ~1 × 10(-4) s(-1) at 25 °C. This correlates with a decrease in the unfolding activation energy by 16.3 kcal mol(-1) in the apoprotein, extrapolated to zero SDS. These results suggest that changes in bR stability induced by retinal binding are mediated solely by changes in the activation barrier for unfolding. The results are consistent with a model in which bR is kinetically stabilized via a very slow rate of unfolding arising from protein-retinal interactions that increase the rigidity and compactness of the polypeptide chain.
Collapse
Affiliation(s)
- Paul Curnow
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
27
|
Calo D, Eichler J. Crossing the membrane in Archaea, the third domain of life. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:885-91. [PMID: 20347718 DOI: 10.1016/j.bbamem.2010.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
Abstract
Many of the recent advancements in the field of protein translocation, particularly from the structural perspective, have relied on Archaea. For instance, the solved structures of the translocon from the methanoarchaeon Methanocaldococcus jannaschii of the ribosomal large subunit from the haloarchaeon Haloarcula marismortui and of components of the SRP pathway from several archaeal species have provided novel insight into various aspects of the translocation event. Given the major contribution that Archaea have made to our understanding of how proteins enter and traverse membranes, it is surprising that relatively little is known of protein translocation in Archaea in comparison to the well-defined translocation pathways of Eukarya and Bacteria. What is known, however, points to archaeal translocation as comprising a mosaic of eukaryal and bacterial traits together with aspects of the process seemingly unique to this, the third domain of life. Here, current understanding of archaeal protein translocation is considered. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Doron Calo
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel
| | | |
Collapse
|
28
|
Rhinow D, Hampp N. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content. J Phys Chem B 2010; 114:549-56. [PMID: 19908872 DOI: 10.1021/jp908408d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purple membrane (PM) from Halobacterium salinarum has been studied by many groups and is commonly described as a flat 2-D crystalline membrane microdomain which contains a hexagonal crystalline lattice of bacteriorhodopsin (BR) trimers in a stoichiometric ratio of 10:1 between lipids and BR. BR is the key protein in the halobacterial photosynthetic system and acts as a light-driven proton pump. Upon absorption of a photon, BR undergoes a cyclic series of intramolecular changes, among them a transient "wedge-like" geometrical change of the protein due to a tilt in helix F, one of the seven alpha-helical domains of BR. Due to the strong coupling between the BRs in the crystalline lattice, this may affect membrane topography. In nature, only low light levels occur and the total number of BRs in the "wedge-shaped" state is negligible. For mutated PMs like PM-D85T and PM-D85N (PM-D85X, X = neutral residue), the change of the membrane topography can be triggered in a pH-dependent manner. PMs containing BR-D85X look like "cups" at certain pH values. How does nature deal with a mutated PM like PM-D96G/F171C/F219L (PM-Tri) which comprises permanently "wedge-shaped" BRs and how does this influence membrane assembly? Astonishingly, we observed that PM-Tri is flat. Obviously, the morphology of Halobacterium salinarum is highly conserved and requires flat PMs to be assembled. We found that the lipid content of PM-Tri is specifically altered to assemble a hexagonal crystalline PM-Tri lattice of flat topography.
Collapse
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
29
|
Yamashita H, Voïtchovsky K, Uchihashi T, Contera SA, Ryan JF, Ando T. Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 2009; 167:153-8. [DOI: 10.1016/j.jsb.2009.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
30
|
Kawamura I, Tanabe J, Ohmine M, Yamaguchi S, Tuzi S, Naito A. Participation of the BC Loop in the Correct Folding of Bacteriorhodopsin as Revealed by Solid-state NMR. Photochem Photobiol 2009; 85:624-30. [DOI: 10.1111/j.1751-1097.2009.00536.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ghosh A, Goyal A, Jain RK. Study of methanol-induced phenotypic changes in a novel strain of Acinetobacter lwoffii. Arch Microbiol 2007; 188:533-9. [PMID: 17572881 DOI: 10.1007/s00203-007-0268-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 04/20/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
A Gram-negative bacterial strain designated LS2 isolated from Lahaul-Spiti valley of North India was shown to produce pink pigment while utilizing methanol as sole source of carbon and energy. Interestingly, pigment production was inducible in nature since the organism did not produce any pigment when grown on other carbon sources. Based on phenotypic and phylogenetic characterization the non-pigmented methylotroph was identified as a novel strain of Acinetobacter lwoffii MTCC 8288 (DQ144736). By means of spectral and mass analyses the pigment was characterized as bacterioruberin-like carotenoid molecule. Here, the carotenoid pigment may form an important part of the antioxidant defense mechanism against oxidative stress imparted by methanol. The methanol utilization pathway in strain LS2 was deciphered by showing the presence of functional methanol dehydrogenase and formaldehyde dehydrogenase genes. In addition, to investigate methanol induced physiological changes, comparative fatty acid profile was analysed and distinctive qualitative as well as quantitative differences in fatty acid content were observed. Therefore, we suggest that strain LS2 exhibiting such unique phenotypic property should be assigned a taxonomic position other than the pigmented and non-pigmented methylotrophs.
Collapse
Affiliation(s)
- Anuradha Ghosh
- Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India
| | | | | |
Collapse
|
32
|
Saitô H, Kawase Y, Kira A, Yamamoto K, Tanio M, Yamaguchi S, Tuzi S, Naito A. Surface and Dynamic Structures of Bacteriorhodopsin in a 2D Crystal, a Distorted or Disrupted Lattice, as Revealed by Site-directed Solid-state 13C NMR†. Photochem Photobiol 2007; 83:253-62. [PMID: 17576344 DOI: 10.1562/2006.06-12-ir-917] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 3D structure of bacteriorhodopsin (bR) obtained by X-ray diffraction or cryo-electron microscope studies is not always sufficient for a picture at ambient temperature where dynamic behavior is exhibited. For this reason, a site-directed solid-state 13C NMR study of fully hydrated bR from purple membrane (PM), or a distorted or disrupted lattice, is very valuable in order to gain insight into the dynamic picture. This includes the surface structure, at the physiologically important ambient temperature. Almost all of the 13C NMR signals are available from [3-13C]Ala or [1-13C]Val-labeled bR from PM, although the 13C NMR signals from the surface areas, including loops and transmembrane alpha-helices near the surface (8.7 angstroms depth), are suppressed for preparations labeled with [1-13C]Gly, Ala, Leu, Phe, Tyr, etc. due to a failure of the attempted peak-narrowing by making use of the interfered frequency of the frequency of fluctuation motions with the frequency of magic angle spinning. In particular, the C-terminal residues, 226-235, are present as the C-terminal alpha-helix which is held together with the nearby loops to form a surface complex, although the remaining C-terminal residues undergo isotropic motion even in a 2D crystalline lattice (PM) under physiological conditions. Surprisingly, the 13C NMR signals could be further suppressed even from [3-13C]Ala- or [1-13C]Val-bR, due to the acquired fluctuation motions with correlation times in the order of 10(-4) to 10(-5) s, when the 2D lattice structure is instantaneously distorted or completely disrupted, either in photo-intermediate, removed retinal or when embedded in the lipid bilayers.
Collapse
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Hyogo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ming M, Wang Y, Wu J, Ma D, Li Q, Ding J. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4. FEBS Lett 2006; 580:6749-53. [PMID: 17134701 DOI: 10.1016/j.febslet.2006.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/30/2006] [Accepted: 11/13/2006] [Indexed: 11/18/2022]
Abstract
We report that Triton X-100 can alter the temporal sequence of the light-induced proton uptake and release of archaerhodopsin 4 (AR4), a proton pumping protein in a species of Halobacteria from a Tibetan salt lake. Under physiological conditions, AR4 isolated from the bacterium exhibits a reversed temporal order of proton release and uptake compared to what is observed for bacteriorhodopsin (BR). However, in the presence of Triton X-100 early proton release was observed in AR4 at neutral pH by us. Further, this temporal order for light-driven proton release and uptake for AR4 was found to be recovered after the removal of Triton X-100 by Biobeads. This phenomenon of detergent-induced alteration of the order of proton release and uptake has not yet been reported in any other retinal-containing membrane protein such as BR. Our findings indicate that the function of AR4 is influenced by its self-assembled state, and meanwhile imply some subtle protein-lipid interactions or protein-protein interactions in adjusting the proton pumping behavior of AR4.
Collapse
Affiliation(s)
- Ming Ming
- Key Laboratory of Molecular Engineering of Polymers of the Chinese Ministry of Education, Department of Macromolecular Science, Lab of Advanced Materials, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
34
|
Yamamoto K, Tuzi S, Saitô H, Kawamura I, Naito A. Conformation and dynamics changes of bacteriorhodopsin and its D85N mutant in the absence of 2D crystalline lattice as revealed by site-directed 13C NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:181-9. [PMID: 16542636 DOI: 10.1016/j.bbamem.2006.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/05/2006] [Accepted: 01/31/2006] [Indexed: 11/16/2022]
Abstract
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Harima Science Garden City 678-1297, Japan
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Voïtchovsky K, Antoranz Contera S, Kamihira M, Watts A, Ryan JF. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys J 2005; 90:2075-85. [PMID: 16387758 PMCID: PMC1386785 DOI: 10.1529/biophysj.105.072405] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purple membranes (PM) are two-dimensional crystals formed by bacteriorhodopsin and a variety of lipids. The lipid composition and density in the cytoplasmic (CP) leaflet differ from those of the extracellular (EC) leaflet. A new way of differentiating the two sides of such asymmetric membranes using the phase signal in alternate contact atomic force microscopy is presented. This method does not require molecular resolution and is applied to study the stiffness and intertrimer lipid mobility in both leaflets of the PM independently over a broad range of pH and salt concentrations. PM stiffens with increasing salt concentration according to two different regimes. At low salt concentration, the membrane Young's normal modulus grows quickly but differentially for the EC and CP leaflets. At higher salt concentration, both leaflets behave similarly and their stiffness converges toward the native environment value. Changes in pH do not affect PM stiffness; however, the crystal assembly is less pronounced at pH > or = 10. Lipid mobility is high in the CP leaflet, especially at low salt concentration, but negligible in the EC leaflet regardless of pH or salt concentration. An independent lipid mobility study by solid-state NMR confirms and quantifies the atomic force microscopy qualitative observations.
Collapse
Affiliation(s)
- Kislon Voïtchovsky
- Interdisciplinary Research Collaboration in Bionanotechnology, Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Kim DT, Blanch HW, Radke CJ. Imaging of reconstituted purple membranes by atomic force microscopy. Colloids Surf B Biointerfaces 2005; 41:263-76. [PMID: 15748822 DOI: 10.1016/j.colsurfb.2005.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 12/30/2004] [Accepted: 01/03/2005] [Indexed: 11/27/2022]
Abstract
The organization of bacteriorhodopsin (bR) within reconstituted purple membranes (RPM) was examined using atomic force microscopy (AFM). Five reconstituted species were examined: RPM 3 (bR/native polar lipids/dimyristoylphosphatidylcholine (DMPC) in a 1:9:14 molar ratio), RPM 4 (bR/native polar lipids in a 1:7 molar ratio), RPM 5 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycerol in a 1:3.5:6.1 molar ratio), RPM 6 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycero-3-phosphocholine in a 1:3.5:4.9 molar ratio), and RPM 7 (bR/native polar lipids/1,2-diphytanoyl-sn-glycero-3-[phospho-L-serine] in a 1:3.5:4.6 molar ratio). RPM 3 patches adsorbed onto mica exhibit domains of crystallized bR trimers arranged in a hexagonal packing structure, similar to those found in native purple membrane (NPM). These domains are enclosed by DMPC-rich regions. RPM 4 patches were observed to have larger domains of crystallized bR, with trimer orientation 30 degrees different from that found in NPM. The bR-rich domains are enclosed by a large, protein-free, lipid-rich region. The topography of RPM 5 was difficult to resolve as the surface had no discernable patterns or structure. The topographies of RPM 6 and 7 were similar to that found in RPM 3 in that higher domains were formed within the patch adsorbed onto mica. They may contain protein-rich regions, but clear images of protein arrangement could not be obtained using AFM. This may be a result of imaging limitations or of the lack of organization of bR within these domains.
Collapse
Affiliation(s)
- David T Kim
- Department of Chemical Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462, USA
| | | | | |
Collapse
|
39
|
Saitô H. Dynamic pictures of membrane proteins in two-dimensional crystal, lipid bilayer and detergent as revealed by site-directed solid-state 13C NMR. Chem Phys Lipids 2004; 132:101-12. [PMID: 15530452 DOI: 10.1016/j.chemphyslip.2004.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.
Collapse
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kouto-3 chome, Kamigori, Hyogo 678-1297, Japan.
| |
Collapse
|
40
|
Lomize AL, Pogozheva ID, Mosberg HI. Quantification of helix-helix binding affinities in micelles and lipid bilayers. Protein Sci 2004; 13:2600-12. [PMID: 15340167 PMCID: PMC2286553 DOI: 10.1110/ps.04850804] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A theoretical approach for estimating association free energies of alpha-helices in nonpolar media has been developed. The parameters of energy functions have been derived from DeltaDeltaG values of mutants in water-soluble proteins and partitioning of organic solutes between water and nonpolar solvents. The proposed approach was verified successfully against three sets of published data: (1) dissociation constants of alpha-helical oligomers formed by 27 hydrophobic peptides; (2) stabilities of 22 bacteriorhodopsin mutants, and (3) protein-ligand binding affinities in aqueous solution. It has been found that coalescence of helices is driven exclusively by van der Waals interactions and H-bonds, whereas the principal destabilizing contributions are represented by side-chain conformational entropy and transfer energy of atoms from a detergent or lipid to the protein interior. Electrostatic interactions of alpha-helices were relatively weak but important for reproducing the experimental data. Immobilization free energy, which originates from restricting rotational and translational rigid-body movements of molecules during their association, was found to be less than 1 kcal/mole. The energetics of amino acid substitutions in bacteriorhodopsin was complicated by specific binding of lipid and water molecules to cavities created in certain mutants.
Collapse
Affiliation(s)
- Andrei L Lomize
- College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109-1065, USA.
| | | | | |
Collapse
|
41
|
Chamberlain AK, Lee Y, Kim S, Bowie JU. Snorkeling Preferences Foster an Amino Acid Composition Bias in Transmembrane Helices. J Mol Biol 2004; 339:471-9. [PMID: 15136048 DOI: 10.1016/j.jmb.2004.03.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 03/21/2004] [Indexed: 11/28/2022]
Abstract
By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini.
Collapse
Affiliation(s)
- Aaron K Chamberlain
- Department of Chemistry and Biochemistry, UCLA-DOE Center for Genomics and Proteomics, Molecular Biology Institute, Boyer Hall, 611 Charles E. Young Drive E, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
42
|
Engelman DM, Chen Y, Chin CN, Curran AR, Dixon AM, Dupuy AD, Lee AS, Lehnert U, Matthews EE, Reshetnyak YK, Senes A, Popot JL. Membrane protein folding: beyond the two stage model. FEBS Lett 2004; 555:122-5. [PMID: 14630331 DOI: 10.1016/s0014-5793(03)01106-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The folding of alpha-helical membrane proteins has previously been described using the two stage model, in which the membrane insertion of independently stable alpha-helices is followed by their mutual interactions within the membrane to give higher order folding and oligomerization. Given recent advances in our understanding of membrane protein structure it has become apparent that in some cases the model may not fully represent the folding process. Here we present a three stage model which gives considerations to ligand binding, folding of extramembranous loops, insertion of peripheral domains and the formation of quaternary structure.
Collapse
Affiliation(s)
- Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520-8114, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Saitô H, Yamamoto K, Tuzi S, Yamaguchi S. Backbone dynamics of membrane proteins in lipid bilayers: the effect of two-dimensional array formation as revealed by site-directed solid-state 13C NMR studies on [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:127-36. [PMID: 14561470 DOI: 10.1016/j.bbamem.2003.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane alpha-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 10(4)-10(5) Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 degrees C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.
Collapse
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori, Hyogo 678-1297, Japan.
| | | | | | | |
Collapse
|
44
|
Chen DL, Lu YJ, Sui SF, Xu B, Hu KS. Oriented Assembly of Purple Membrane on Solid Support, Mediated by Molecular Recognition. J Phys Chem B 2003. [DOI: 10.1021/jp022400+] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Abstract
Bacteriorhodopsin (BR) and specific lipid molecules self-assemble into a quasi two-dimensional lattice structure known as the purple membrane (PM). In the PM, BR molecules exist in a trimeric form with lipid molecules present in the space enclosed by each trimeric unit and in the inter-trimer space. These trimeric units, which have a roughly circular cross-section, are arranged in hexagonal patterns with long-ranged crystalline order. In this work, we investigate the self-assembly of BR in the PM via Monte Carlo simulations of a two-dimensional model of the membrane and proteins. The protein molecules are modeled as 120 degrees sectors of a circle and the lipid molecules enter into the model through effective protein-protein interactions. The sectors cannot overlap with each other, and in addition to this excluded volume interaction there are site-site attractive interactions between specific points of the proteins to mimic interactions between helices on the proteins and lipid-induced interactions. At low values of the attractive well depth, the proteins are found in the monomeric form at all concentrations. At moderate and high values of the attractive well depth, trimers are formed as the concentration increases, and with a further increase in concentration the trimers organize into a hexagonal lattice. The interactions between the proteins and those induced by the intra-trimer lipids play an equally important role in the formation of trimers and the lattice. The lipids in the inter-trimer space cause the trimers to orient in a specific direction in the hexagonal crystal lattice.
Collapse
|
46
|
Saitô H, Tsuchida T, Ogawa K, Arakawa T, Yamaguchi S, Tuzi S. Residue-specific millisecond to microsecond fluctuations in bacteriorhodopsin induced by disrupted or disorganized two-dimensional crystalline lattice, through modified lipid-helix and helix-helix interactions, as revealed by 13C NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:97-106. [PMID: 12225857 DOI: 10.1016/s0005-2736(02)00513-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recorded 13C NMR spectra of [3-13C]-, [1-13C]Ala-, and [1-13C]Val-labeled bacteriorhodopsin (bR), W80L and W12L mutants and bacterio-opsin (bO) from retinal-deficient E1001 strain, in order to examine the possibility of their millisecond to microsecond local fluctuations with correlation time in the order of 10(-4) to 10(-5) s, induced or prevented by disruption or assembly of two-dimensional (2D) crystalline lattice, respectively, at ambient temperature. The presence of disrupted or disorganized 2D lattice for W12L, W80L and bO from E1001 strain was readily visualized by increased relative proportions of surrounding lipids per protein, together with their broadened 13C NMR signals of transmembrane alpha-helices and loops in [3-13C]Ala-labeled proteins, with reference to those of wild-type. In contrast, 13C CP-MAS NMR spectra of [1-13C]Ala- and Val-labeled these mutants were almost completely suppressed, owing to the presence of fluctuations with time scale of 10(-4) s interfered with magic angle spinning. In particular, 13C NMR signals of [1-13C]Ala-labeled transmembrane alpha-helices of wild-type were almost completely suppressed at the interface between the surface and inner part (up to 8.7 A deep from the surface) with reference to those of the similarly suppressed peaks by Mn(2+)-induced accelerated spin-spin relaxation rate. Such fluctuation-induced suppression of 13C NMR peaks from the interfacial regions, however, was less significant for [1-13C]Val-labeled proteins, because fluctuation motions in Val residues with bulky side-chains at the C(alpha) moiety were modified to those of longer correlation time (>10(-4) s), if any, by residue-specific manner. To support this view, we found that such suppressed 13C NMR signals of [1-13C]Ala-labeled peaks in the wild-type were recovered for D85N and bO in which correlation times of fluctuations were shifted to the order of 10(-5) s due to modified helix-helix interactions as previously pointed out [Biochemistry, 39 (2000) 14472; J. Biochem. (Tokyo) 127 (2000) 861].
Collapse
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Garden City, Kouto 3 chome, Kamigori, Hyogo 678-1297, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Peck RF, Johnson EA, Krebs MP. Identification of a lycopene beta-cyclase required for bacteriorhodopsin biogenesis in the archaeon Halobacterium salinarum. J Bacteriol 2002; 184:2889-97. [PMID: 12003928 PMCID: PMC135044 DOI: 10.1128/jb.184.11.2889-2897.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of the light-driven proton pump bacteriorhodopsin in the archaeon Halobacterium salinarum requires coordinate synthesis of the bacterioopsin apoprotein and carotenoid precursors of retinal, which serves as a covalently bound cofactor. As a step towards elucidating the mechanism and regulation of carotenoid metabolism during bacteriorhodopsin biogenesis, we have identified an H. salinarum gene required for conversion of lycopene to beta-carotene, a retinal precursor. The gene, designated crtY, is predicted to encode an integral membrane protein homologous to lycopene beta-cyclases identified in bacteria and fungi. To test crtY function, we constructed H. salinarum strains with in-frame deletions in the gene. In the deletion strains, bacteriorhodopsin, retinal, and beta-carotene were undetectable, whereas lycopene accumulated to high levels ( approximately 1.3 nmol/mg of total cell protein). Heterologous expression of H. salinarum crtY in a lycopene-producing Escherichia coli strain resulted in beta-carotene production. These results indicate that H. salinarum crtY encodes a functional lycopene beta-cyclase required for bacteriorhodopsin biogenesis. Comparative sequence analysis yields a topological model of the protein and provides a plausible evolutionary connection between heterodimeric lycopene cyclases in bacteria and bifunctional lycopene cyclase-phytoene synthases in fungi.
Collapse
Affiliation(s)
- Ronald F Peck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
48
|
Lagerquist C, Beigi F, Karlén A, Lennernäs H, Lundahl P. Effects of cholesterol and model transmembrane proteins on drug partitioning into lipid bilayers as analysed by immobilized-liposome chromatography. J Pharm Pharmacol 2001; 53:1477-87. [PMID: 11732750 DOI: 10.1211/0022357011778016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have analysed how cholesterol and transmembrane proteins in phospholipid bilayers modulate drug partitioning into the bilayers. For this purpose we determined the chromatographic retention of drugs on liposomes or proteoliposomes entrapped in gel beads. The drug retention per phospholipid amount (the capacity factor Ks) reflects the drug partitioning. Cholesterol in the bilayers decreased the Ks value and hence the partitioning into the membrane in proportion to the cholesterol fraction. On average this cholesterol effect decreased with increasing temperature. Model transmembrane proteins, the glucose transporter GLUT1 and bacteriorhodopsin, interacted electrostatically with charged drugs to increase or decrease the drug partitioning into the bilayers. Bacteriorhodopsin proteoliposomes containing cholesterol combined the effects of the protein and the cholesterol and approached the partitioning properties of red blood cell membranes. For positively charged drugs the correlation between calculated intestinal permeability and log Ks was fair for both liposomes and bacteriorhodopsin-cholesterol proteoliposomes. Detailed modeling of solute partitioning into biological membranes may require an extensive knowledge of their structures.
Collapse
Affiliation(s)
- C Lagerquist
- Department of Biochemistry, Uppsala Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
49
|
Gottschalk M, Dencher NA, Halle B. Microsecond exchange of internal water molecules in bacteriorhodopsin. J Mol Biol 2001; 311:605-21. [PMID: 11493013 DOI: 10.1006/jmbi.2001.4895] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-conducting pathway of bacteriorhodopsin (BR) contains at least nine internal water molecules that are thought to be key players in the proton translocation mechanism. Here, we report the results of a multinuclear (1H, 2H, 17O) magnetic relaxation dispersion (MRD) study with the primary goal of determining the rate of exchange of these internal water molecules with bulk water. This rate is of interest in current attempts to elucidate the molecular details of the proton translocation mechanism. The relevance of water exchange kinetics is underscored by recent crystallographic findings of substantial variations in the number and locations of internal water molecules during the photocycle. Moreover, internal water exchange is believed to be governed by conformational fluctuations in the protein and can therefore provide information about the thermal accessibility of functionally important conformational substates. The present 2H and 17O MRD data show that at least seven water molecules, or more if they are orientationally disordered, in BR have residence times (inverse exchange rate constant) in the range 0.1-10 micros at 277 K. At least five of these water molecules have residence times in the more restrictive range 0.1-0.5 micros. These results show that most or all of the deeply buried water molecules in BR exchange on a time-scale that is short compared to the rate-limiting step in the photocycle. The MRD measurements were performed on BR solubilized in micelles of octyl glucoside. From the MRD data, the rotational correlation time of detergent-solubilized BR was determined to 35 ns at 300 K, consistent with a monomeric protein in complex with about 150 detergent molecules. The solubilized protein was found to be stable in the dark for at least eight months at 277 K.
Collapse
Affiliation(s)
- M Gottschalk
- Physical Chemistry 2, Lund University, Lund, SE-22100, Sweden
| | | | | |
Collapse
|
50
|
Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, Hood L, DasSarma S, Krebs MP. brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 2001; 276:5739-44. [PMID: 11092896 DOI: 10.1074/jbc.m009492200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin, the light-driven proton pump of Halobacterium salinarum, consists of the membrane apoprotein bacterioopsin and a covalently bound retinal cofactor. The mechanism by which retinal is synthesized and bound to bacterioopsin in vivo is unknown. As a step toward identifying cellular factors involved in this process, we constructed an in-frame deletion of brp, a gene implicated in bacteriorhodopsin biogenesis. In the Deltabrp strain, bacteriorhodopsin levels are decreased approximately 4.0-fold compared with wild type, whereas bacterioopsin levels are normal. The probable precursor of retinal, beta-carotene, is increased approximately 3.8-fold, whereas retinal is decreased by approximately 3.7-fold. These results suggest that brp is involved in retinal synthesis. Additional cellular factors may substitute for brp function in the Deltabrp strain because retinal production is not abolished. The in-frame deletion of blh, a brp paralog identified by analysis of the Halobacterium sp. NRC-1 genome, reduced bacteriorhodopsin accumulation on solid medium but not in liquid. However, deletion of both brp and blh abolished bacteriorhodopsin and retinal production in liquid medium, again without affecting bacterioopsin accumulation. The level of beta-carotene increased approximately 5.3-fold. The simplest interpretation of these results is that brp and blh encode similar proteins that catalyze or regulate the conversion of beta-carotene to retinal.
Collapse
Affiliation(s)
- R F Peck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|