1
|
Rancova O, Jankowiak R, Abramavicius D. Role of Bath Fluctuations in the Double-Excitation Manifold in Shaping the 2DES of Bacterial Reaction Centers at Low Temperature. J Phys Chem B 2018; 122:1348-1366. [DOI: 10.1021/acs.jpcb.7b08905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Olga Rancova
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| | - Ryszard Jankowiak
- Department
of Chemistry and Department of Physics, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Darius Abramavicius
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
2
|
Faries KM, Dylla NP, Hanson DK, Holten D, Laible PD, Kirmaier C. Manipulating the Energetics and Rates of Electron Transfer in Rhodobacter capsulatus Reaction Centers with Asymmetric Pigment Content. J Phys Chem B 2017; 121:6989-7004. [DOI: 10.1021/acs.jpcb.7b01389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaitlyn M. Faries
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nicholas P. Dylla
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Deborah K. Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christine Kirmaier
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Guo Z, Lin S, Woodbury NW. Utilizing the Dynamic Stark Shift as a Probe for Dielectric Relaxation in Photosynthetic Reaction Centers During Charge Separation. J Phys Chem B 2013; 117:11383-90. [DOI: 10.1021/jp4037843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhi Guo
- The
Biodesign Institute at Arizona State University, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Su Lin
- The
Biodesign Institute at Arizona State University, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Neal W. Woodbury
- The
Biodesign Institute at Arizona State University, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287-5201, United States
| |
Collapse
|
4
|
Husu I, Giustini M, Colafemmina G, Palazzo G, Mallardi A. Effects of the measuring light on the photochemistry of the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2011; 108:133-142. [PMID: 21785991 DOI: 10.1007/s11120-011-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.
Collapse
Affiliation(s)
- Ivan Husu
- Dipartimento di Chimica, Università La Sapienza, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
5
|
Jones MR. Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 2006; 46:56-87. [PMID: 16963124 DOI: 10.1016/j.plipres.2006.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 12/19/2022]
Abstract
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
6
|
Hughes AV, Rees P, Heathcote P, Jones MR. Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J 2006; 90:4155-66. [PMID: 16533858 PMCID: PMC1459489 DOI: 10.1529/biophysj.105.070029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temperature-induced denaturation of the photosynthetic reaction center from Rhodobacter sphaeroides has been studied through the changes that occur in the absorption spectrum of the bound chromophores on heating. At elevated temperatures, the characteristic absorbance bands of the bacteriochlorins bound to the polypeptides within the reaction center are lost, and are replaced by features typical of unbound bacteriochlorophyll and bacteriopheophytin. The kinetics of the spectral changes cannot be explained by a direct conversion from the functional to the denatured form of the protein, and require the presence of at least one intermediate. Possible mechanisms for the transformation via an intermediate are examined using a global analysis of the kinetic data, and the most likely mechanism is shown to involve a reversible transformation between the native state and an off-pathway intermediate, coupled to an irreversible transformation to the denatured state. The activation energies for the transformations between the three components are calculated from the effect of temperature on the individual rate constants, and the likely structural changes of the protein during the temperature-induced transformation are discussed.
Collapse
Affiliation(s)
- Arwel V Hughes
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | |
Collapse
|
7
|
Abstract
Reaction centres are membrane-embedded pigment–protein complexes that transduce the energy of sunlight into a biologically useful form. The most heavily studied reaction centres are the PS-I (Photosystem I) and PS-II complexes from oxygenic phototrophs, and the reaction centre from purple photosynthetic bacteria. A great deal is known about the compositions and structures of these reaction centres, and the mechanism of light-activated transmembrane electron transfer, but less is known about how they interact with other components of the photosynthetic membrane, including the membrane lipids. X-ray crystallography has provided high-resolution structures for PS-I and the purple bacterial reaction centre, and revealed binding sites for a number of lipids, either embedded in the protein interior or attached to the protein surface. These lipids play a variety of roles, including the binding of cofactors and the provision of structural support. The challenges of modelling surface-associated electron density features such as lipids, detergents, small amphiphiles and ions are discussed.
Collapse
|
8
|
Giustini M, Castelli F, Husu I, Giomini M, Mallardi A, Palazzo G. Influence of Cardiolipin on the Functionality of the QA Site of the Photosynthetic Bacterial Reaction Center. J Phys Chem B 2005; 109:21187-96. [PMID: 16853745 DOI: 10.1021/jp054104d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of cardiolipin on the functionality of the Q(A) site of a photosynthetic reaction center (RC) was studied in RCs from the purple non-sulfur bacterium Rhodobacter sphaeroides by means of time-resolved absorbance measurements. The binding of the ubiquinone-10 to the Q(A) site of the RC embedded in cardiolipin or lecithin liposomes has been followed at different temperatures and phospholipid loading. A global fit of the experimental data allowed us to get quite reliable values of the thermodynamic parameters joined to the binding process. The presence of cardiolipin does not affect the affinity of the Q(A) site for ubiquinone but has a marked influence on the rate of P+QA(-) --> PQA electron transfer. The P+QA(-) charge recombination kinetics has been examined in liposomes made of cardiolipin/lecithin mixtures and in detergent (DDAO) micelles doped with cardiolipin. The electron-transfer rate constant increases upon cardiolipin loading. It appears that the main effect of cardiolipin on the electron transfer can be ascribed to a destabilization of the charge-separated state. Results obtained in micelles and vesicles follow the same titration curve when cardiolipin concentration evaluated with respect to the apolar phase is used as a relevant variable. The dependence of the P+QA(-) recombination rate on cardiolipin loading suggests two classes of binding sites. In addition to a high-affinity site (compatible with previous crystallographic studies), a cooperative binding, involving about four cardiolipin molecules, takes place at high cardiolipin loading.
Collapse
Affiliation(s)
- Mauro Giustini
- Dipartimento di Chimica, Università La Sapienza, via Orabona 4, I-00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Fyfe PK, Hughes AV, Heathcote P, Jones MR. Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship. TRENDS IN PLANT SCIENCE 2005; 10:275-82. [PMID: 15949761 DOI: 10.1016/j.tplants.2005.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/07/2005] [Accepted: 04/26/2005] [Indexed: 05/02/2023]
Abstract
Photosynthetic reaction centres and light harvesting complexes have been at the forefront of crystallographic studies of integral membrane proteins. In recent years, there have been spectacular advances in our understanding of the structure of (bacterio)chlorophyll-containing membrane proteins from oxygenic and anoxygenic phototrophs. In these complex structures, the protein scaffold encases different combinations of cofactors and interacts with several tightly bound lipid species that play a variety of hitherto unrecognized structural roles. Some of these lipids have relevance to the physiological function of the protein, whereas others are important for the formation of highly ordered crystals. The first site-directed mutagenesis studies of individual lipid binding sites have now underlined the importance of the lipid component for the structural stability of protein-cofactor-lipid complexes.
Collapse
Affiliation(s)
- Paul K Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK BS8 1TD
| | | | | | | |
Collapse
|
10
|
|
11
|
Gall A, Ellervee A, Robert B, Freiberg A. The effect of internal voids in membrane proteins: high-pressure study of two photochemical reaction centres from Rhodobacter sphaeroides. FEBS Lett 2004; 560:221-5. [PMID: 14988026 DOI: 10.1016/s0014-5793(04)00117-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/31/2003] [Accepted: 01/23/2004] [Indexed: 11/15/2022]
Abstract
The effect of application of high pressure on the carotenoid-containing bacterial reaction centre from Rhodobacter sphaeroides strain 2.4.1 was studied, and compared to recent experiments performed on its carotenoid-less counterpart, isolated from strain R26.1. Our results indicate that the cavity created by the absence of carotenoid contributes to localised differences in protein compressibility when using the intrinsic chromophores as molecular probes. Differential stability of the electronic transitions of the primary electron donor under high hydrostatic pressure is observed, dependent on the presence of the carotenoid cofactor. This suggests that the transition intensity loss is induced by a slight change of the primary electron donor structure, allowed by the void created by the absence of the carotenoid molecule.
Collapse
Affiliation(s)
- Andrew Gall
- Service de Biophysique des Fonctions Membranaires, DBJC/CEA and URA CNRS 2096, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
12
|
Barkigia KM, Renner MW, Senge MO, Fajer J. Interplay of Axial Ligation, Hydrogen Bonding, Self-Assembly, and Conformational Landscapes in High-Spin Ni(II) Porphyrins. J Phys Chem B 2004. [DOI: 10.1021/jp036398d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathleen M. Barkigia
- Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Institute of Chemistry, Potsdam University, D-14476 Golm, Germany
| | - Mark W. Renner
- Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Institute of Chemistry, Potsdam University, D-14476 Golm, Germany
| | - Mathias O. Senge
- Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Institute of Chemistry, Potsdam University, D-14476 Golm, Germany
| | - Jack Fajer
- Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and Institute of Chemistry, Potsdam University, D-14476 Golm, Germany
| |
Collapse
|
13
|
Palazzo G, Mallardi A, Francia F, Dezi M, Venturoli G, Pierno M, Vignati E, Piazza R. Spontaneous emulsification of detergent solubilized reaction center: protein conformational changes precede droplet growth. Phys Chem Chem Phys 2004. [DOI: 10.1039/b314588n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Jones MR, Fyfe PK, Roszak AW, Isaacs NW, Cogdell RJ. Protein-lipid interactions in the purple bacterial reaction centre. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:206-14. [PMID: 12409196 DOI: 10.1016/s0005-2736(02)00570-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK.
| | | | | | | | | |
Collapse
|
15
|
Heathcote P, Fyfe PK, Jones MR. Reaction centres: the structure and evolution of biological solar power. Trends Biochem Sci 2002; 27:79-87. [PMID: 11852245 DOI: 10.1016/s0968-0004(01)02034-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reaction centres are complexes of pigment and protein that convert the electromagnetic energy of sunlight into chemical potential energy. They are found in plants, algae and a variety of bacterial species, and vary greatly in their composition and complexity. New structural information has highlighted features that are common to the different types of reaction centre and has provided insights into some of the key differences between reaction centres from different sources. New ideas have also emerged on how contemporary reaction centres might have evolved and on the possible origin of the first chlorophyll-protein complexes to harness the power of sunlight.
Collapse
Affiliation(s)
- Peter Heathcote
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London, UK E1 4NS
| | | | | |
Collapse
|
16
|
Vullev VI, Jones G. Photoinduced charge transfer in helical polypeptides. RESEARCH ON CHEMICAL INTERMEDIATES 2002. [DOI: 10.1163/15685670260469429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Abstract
In oxygenic photosynthesis, a highly oxidising chlorophyll species strips electrons out of two water molecules, generating molecular oxygen as a waste product. A recent study has provided new insights into the structure of the molecular machinery responsible for biological oxygen production.
Collapse
Affiliation(s)
- M R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|