1
|
Baothman OAS. Identifying therapeutic antibacterial peptides against Vibrio cholerae to inhibit the function of Na(+)-translocating NADH-quinone reductase. J Biomol Struct Dyn 2023:1-16. [PMID: 37850460 DOI: 10.1080/07391102.2023.2270696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Vibrio cholerae is the bacteria responsible for cholera, which is a significant threat to many nations. Curing and treating this infection requires identification of the critical protein and development of a drug to inhibit its function. In this context, Na(+)-translocating NADH-quinone reductase was considered a potential therapeutic target. A library of antibacterial peptides with residue lengths of 50 was screened using a docking method, and the five most potent peptides were selected on the basis of a weighted score derived from solvent accessible surface area and docking score. To investigate the stability of the protein-peptide complex, a 100-ns molecular dynamics simulation was performed. These peptides targeted the native dimeric binding interface of Na(+)-transporting NADH-quinone reductase. This study evaluated the binding affinity and conformational stability of these peptides with the protein using different post-simulation metrics. A peptide, CCL28, exhibited steady RMSD characteristics; nonetheless, it modified the docked conformation but stabilized in the new conformation. This peptide also demonstrated the best performance in addressing the protein's native binding interface. It demonstrated a binding free energy of -120 kcal/mol with the protein. Principal component analysis (PCA) revealed that the first PC had the lowest conformational variation and the greatest coverage. Eventually, these peptides were also evaluated using steered molecular dynamics, and it was discovered that CCL28 had a greater maximum force than the other five peptides, at 1139.08 kJ/mol/nm. Targeting the native binding interface, we present a CCL28 peptide with a strong potential to block the biological activity of Vibrio cholerae's Na(+)-translocating NADH-quinone reductase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Cryo-EM structures of Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. Nat Commun 2022; 13:4082. [PMID: 35882843 PMCID: PMC9325719 DOI: 10.1038/s41467-022-31718-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) couples electron transfer from NADH to ubiquinone with Na+-pumping, generating an electrochemical Na+ gradient that is essential for energy-consuming reactions in bacteria. Since Na+-NQR is exclusively found in prokaryotes, it is a promising target for highly selective antibiotics. However, the molecular mechanism of inhibition is not well-understood for lack of the atomic structural information about an inhibitor-bound state. Here we present cryo-electron microscopy structures of Na+-NQR from Vibrio cholerae with or without a bound inhibitor at 2.5- to 3.1-Å resolution. The structures reveal the arrangement of all six redox cofactors including a herein identified 2Fe-2S cluster located between the NqrD and NqrE subunits. A large part of the hydrophilic NqrF is barely visible in the density map, suggesting a high degree of flexibility. This flexibility may be responsible to reducing the long distance between the 2Fe-2S centers in NqrF and NqrD/E. Two different types of specific inhibitors bind to the N-terminal region of NqrB, which is disordered in the absence of inhibitors. The present study provides a foundation for understanding the function of Na+-NQR and the binding manner of specific inhibitors.
Collapse
|
3
|
Ishikawa M, Masuya T, Kuroda S, Uno S, Butler NL, Foreman S, Murai M, Barquera B, Miyoshi H. The side chain of ubiquinone plays a critical role in Na + translocation by the NADH-ubiquinone oxidoreductase (Na +-NQR) from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148547. [PMID: 35337841 DOI: 10.1016/j.bbabio.2022.148547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.
Collapse
Affiliation(s)
- Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Seina Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nicole L Butler
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Sara Foreman
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Department of Biological Science, Rensselaer Polytechnic Institute, Troy, NY 12180, United States; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Zhao L, Brugel S, Ramasamy KP, Andersson A. Response of Coastal Shewanella and Duganella Bacteria to Planktonic and Terrestrial Food Substrates. Front Microbiol 2022; 12:726844. [PMID: 35250896 PMCID: PMC8888917 DOI: 10.3389/fmicb.2021.726844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming scenarios indicate that in subarctic regions, the precipitation will increase in the future. Coastal bacteria will thus receive increasing organic carbon sources from land runoff. How such changes will affect the function and taxonomic composition of coastal bacteria is poorly known. We performed a 10-day experiment with two isolated bacteria: Shewanella baltica from a seaside location and Duganella sp. from a river mouth, and provided them with a plankton and a river extract as food substrate. The bacterial growth and carbon consumption were monitored over the experimental period. Shewanella and Duganella consumed 40% and 30% of the plankton extract, respectively, while the consumption of the river extract was low for both bacteria, ∼1%. Shewanella showed the highest bacterial growth efficiency (BGE) (12%) when grown on plankton extract, while when grown on river extract, the BGE was only 1%. Duganella showed low BGE when grown on plankton extract (< 1%) and slightly higher BGE when grown on river extract (2%). The cell growth yield of Duganella was higher than that of Shewanella when grown on river extract. These results indicate that Duganella is more adapted to terrestrial organic substrates with low nutritional availability, while Shewanella is adapted to eutrophied conditions. The different growth performance of the bacteria could be traced to genomic variations. A closely related genome of Shewanella was shown to harbor genes for the sequestration of autochthonously produced carbon substrates, while Duganella contained genes for the degradation of relatively refractive terrestrial organic matter. The results may reflect the influence of environmental drivers on bacterial community composition in natural aquatic environments. Elevated inflows of terrestrial organic matter to coastal areas in subarctic regions would lead to increased occurrence of bacteria adapted to the degradation of complex terrestrial compounds with a low bioavailability.
Collapse
Affiliation(s)
- Li Zhao
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Sonia Brugel
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| |
Collapse
|
5
|
Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021; 6:e0090621. [PMID: 34636676 PMCID: PMC8510549 DOI: 10.1128/msystems.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae, nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae, and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria, Flavobacteriales, and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia, this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance.
Collapse
|
6
|
Bertsova YV, Serebryakova MV, Baykov AA, Bogachev AV. The flavin transferase ApbE flavinylates the ferredoxin:NAD+-oxidoreductase Rnf required for N2 fixation in Azotobacter vinelandii. FEMS Microbiol Lett 2021; 368:6381689. [PMID: 34610116 DOI: 10.1093/femsle/fnab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Azotobacter vinelandii, the model microbe in nitrogen fixation studies, uses the ferredoxin:NAD+-oxidoreductase Rnf to regenerate ferredoxin (flavodoxin), acting as an electron donor for nitrogenase. However, the relative contribution of Rnf to nitrogenase functioning is unknown because this bacterium contains another ferredoxin reductase, FixABCX. Furthermore, Rnf is flavinylated in the cell, but the importance and pathway of this modification reaction also remain largely unknown. We constructed A. vinelandii cells with impaired activities of FixABCX and/or putative flavin transferase ApbE. The ApbE-deficient mutant could not produce covalently flavinylated membrane proteins and demonstrated markedly decreased flavodoxin:NAD+ oxidoreductase activity and significant growth defects under diazotrophic conditions. The double ΔFix/ΔApbE mutation abolished the flavodoxin:NAD+ oxidoreductase activity and the ability of A. vinelandii to grow in the absence of a fixed nitrogen source. ApbE flavinylated a truncated RnfG subunit of Rnf1 by forming a phosphoester bond between flavin mononucleotide and a threonine residue. These findings indicate that Rnf (presumably its Rnf1 form) is the major ferredoxin-reducing enzyme in the nitrogen fixation system and that the activity of Rnf depends on its covalent flavinylation by the flavin transferase ApbE.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
7
|
A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii. Appl Environ Microbiol 2021; 87:e0121121. [PMID: 34469197 PMCID: PMC8516057 DOI: 10.1128/aem.01211-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.
Collapse
|
8
|
Specific chemical modification explores dynamic structure of the NqrB subunit in Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148432. [PMID: 33932367 DOI: 10.1016/j.bbabio.2021.148432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) is a main ion transporter in many pathogenic bacteria. We previously proposed that N-terminal stretch of the NqrB subunit plays an important role in regulating the ubiquinone reaction at the adjacent NqrA subunit in Vibrio cholerae Na+-NQR. However, since approximately three quarters of the stretch (NqrB-Met1-Pro37) was not modeled in an earlier crystallographic study, its structure and function remain unknown. If we can develop a method that enables pinpoint modification of this stretch by functional chemicals (such as spin probes), it could lead to new ways to investigate the unsettled issues. As the first step to this end, we undertook to specifically attach an alkyne group to a lysine located in the stretch via protein-ligand affinity-driven substitution using synthetic ligands NAS-K1 and NAS-K2. The alkyne, once attached, can serve as an "anchor" for connecting functional chemicals via convenient click chemistry. After a short incubation of isolated Na+-NQR with these ligands, alkyne was predominantly incorporated into NqrB. Proteomic analyses in combination with mutagenesis of predicted target lysines revealed that alkyne attaches to NqrB-Lys22 located at the nonmodeled region of the stretch. This study not only achieved the specific modification initially aimed for but also provided valuable information about positioning of the nonmodeled region. For example, the fact that hydrophobic NAS-Ks come into contact with NqrB-Lys22 suggests that the nonmodeled region may orient toward the membrane phase rather than protruding into cytoplasmic medium. This conformation may be essential for regulating the ubiquinone reaction in the adjacent NqrA.
Collapse
|
9
|
Insights into the chemistry of the amphibactin-metal (M 3+) interaction and its role in antibiotic resistance. Sci Rep 2020; 10:21049. [PMID: 33273481 PMCID: PMC7712776 DOI: 10.1038/s41598-020-77807-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/05/2020] [Indexed: 12/03/2022] Open
Abstract
We have studied the diversity and specificity of interactions of amphibactin produced by Vibrio genus bacterium (Vibrio sp. HC0601C5) with iron and various metal ions in + 3 oxidation state in an octahedral (Oh) environment. To survive in the iron-deficient environment of their host, pathogenic bacteria have devised various efficient iron acquisition strategies. One such strategy involves the production of low molecular weight peptides called siderophores, which have a strong affinity and specificity to chelate Fe3+ and can thus facilitate uptake of this metal in order to ensure iron requirements. The Fe uptake by amphibactin and the release of iron inside the cell have been studied. Comparison of the interaction of different transition metal ions (M3+) with amphibactin has been studied and it reveals that Co and Ga form stable complexes with this siderophore. The competition of Co and Ga with Fe impedes iron uptake by bacteria, thereby preventing infection.
Collapse
|
10
|
Masuya T, Sano Y, Tanaka H, Butler NL, Ito T, Tosaki T, Morgan JE, Murai M, Barquera B, Miyoshi H. Inhibitors of a Na +-pumping NADH-ubiquinone oxidoreductase play multiple roles to block enzyme function. J Biol Chem 2020; 295:12739-12754. [PMID: 32690607 DOI: 10.1074/jbc.ra120.014229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/18/2020] [Indexed: 11/06/2022] Open
Abstract
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is present in the respiratory chain of many pathogenic bacteria and is thought to be a promising antibiotic target. Whereas many details of Na+-NQR structure and function are known, the mechanisms of action of potent inhibitors is not well-understood; elucidating the mechanisms would not only advance drug design strategies but might also provide insights on a terminal electron transfer from riboflavin to UQ. To this end, we performed photoaffinity labeling experiments using photoreactive derivatives of two known inhibitors, aurachin and korormicin, on isolated Vibrio cholerae Na+-NQR. The inhibitors labeled the cytoplasmic surface domain of the NqrB subunit including a protruding N-terminal stretch, which may be critical to regulate the UQ reaction in the adjacent NqrA subunit. The labeling was blocked by short-chain UQs such as ubiquinone-2. The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp49 and Asp52 (to Ala), and observed moderate decreases in labeling yields, suggesting that these residues are involved in the interaction with ACT. We conclude that the inhibitors interfere with the UQ reaction in two ways: the first is blocking structural rearrangements at the cytoplasmic interface between NqrA and NqrB, and the second is the direct obstruction of UQ binding at this interfacial area. Unusual competitive behavior between the photoreactive inhibitors and various competitors corroborates our previous proposition that there may be two inhibitor binding sites in Na+-NQR.
Collapse
Affiliation(s)
- Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Sano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hinako Tanaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Tatsuhiko Tosaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Joel E Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Blanca Barquera
- Department of Biological Science and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Raba D, Yuan M, Fang X, Menzer WM, Xie B, Liang P, Tuz K, Minh DDL, Juárez O. Role of Subunit D in Ubiquinone-Binding Site of Vibrio cholerae NQR: Pocket Flexibility and Inhibitor Resistance. ACS OMEGA 2019; 4:19324-19331. [PMID: 31763556 PMCID: PMC6868883 DOI: 10.1021/acsomega.9b02707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The ion-pumping NADH: ubiquinone dehydrogenase (NQR) is a vital component of the respiratory chain of numerous species of marine and pathogenic bacteria, including Vibrio cholerae. This respiratory enzyme couples the transfer of electrons from NADH to ubiquinone (UQ) to the pumping of ions across the plasma membrane, producing a gradient that sustains multiple homeostatic processes. The binding site of UQ within the enzyme is an important functional and structural motif that could be used to design drugs against pathogenic bacteria. Our group recently located the UQ site in the interface between subunits B and D and identified the residues within subunit B that are important for UQ binding. In this study, we carried out alanine scanning mutagenesis of amino acid residues located in subunit D of V. cholerae NQR to understand their role in UQ binding and enzymatic catalysis. Moreover, molecular docking calculations were performed to characterize the structure of the site at the atomic level. The results show that mutations in these positions, in particular, in residues P185, L190, and F193, decrease the turnover rate and increase the Km for UQ. These mutants also showed an increase in the resistance against the inhibitor HQNO. The data indicate that residues in subunit D fulfill important structural roles, restricting and orienting UQ in a catalytically favorable position. In addition, mutations of these residues open the site and allow the simultaneous binding of substrate and inhibitors, producing partial inhibition, which appears to be a strategy used by Pseudomonas aeruginosa to avoid autopoisoning.
Collapse
Affiliation(s)
- Daniel
A. Raba
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Ming Yuan
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Xuan Fang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - William M. Menzer
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Bing Xie
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Pingdong Liang
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Karina Tuz
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Oscar Juárez
- Department
of Biological Sciences and Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
12
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Jekabsons A, Jaudzems K, Viksna A, Bertins M, Tars K. Structural analysis of Borrelia burgdorferi periplasmic lipoprotein BB0365 involved in Lyme disease infection. FEBS Lett 2019; 594:317-326. [PMID: 31486526 DOI: 10.1002/1873-3468.13594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 11/07/2022]
Abstract
The periplasmic lipoprotein BB0365 of the Lyme disease agent Borrelia burgdorferi is expressed throughout mammalian infection and is essential for all phases of Lyme disease infection; its function, however, remains unknown. In the current study, our structural analysis of BB0365 revealed the same structural fold as that found in the NqrC and RnfG subunits of the NADH:quinone and ferredoxin:NAD+ sodium-translocating oxidoreductase complexes, which points to a potential role for BB0365 as a component of the sodium pump. Additionally, BB0365 coordinated Zn2+ by the His51, His55, His140 residues, and the Zn2+ -binding site indicates that BB0365 could act as a potential metalloenzyme; therefore, this structure narrows down the potential functions of BB0365, an essential protein for B. burgdorferi to cause Lyme disease.
Collapse
Affiliation(s)
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Arturs Viksna
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Maris Bertins
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
13
|
Maynard A, Butler NL, Ito T, da Silva AJ, Murai M, Chen T, Koffas MAG, Miyoshi H, Barquera B. Antibiotic Korormicin A Kills Bacteria by Producing Reactive Oxygen Species. J Bacteriol 2019; 201:e00718-18. [PMID: 30858300 PMCID: PMC6509656 DOI: 10.1128/jb.00718-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
Abstract
Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.
Collapse
Affiliation(s)
- Adam Maynard
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Nicole L Butler
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Adilson José da Silva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Chemical Engineering Department, Federal University of Sao Carlos, Sao Paulo, Brazil
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts, USA
- School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Mattheos A G Koffas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
14
|
Mezic KG, Juárez O, Neehaul Y, Cho J, Cook D, Hellwig P, Barquera B. Glutamate 95 in NqrE Is an Essential Residue for the Translocation of Cations in Na +-NQR. Biochemistry 2019; 58:2167-2175. [PMID: 30907577 DOI: 10.1021/acs.biochem.8b01294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) is a bacterial enzyme that oxidizes NADH, reduces ubiquinone, and translocates Na+ across the membrane. We previously identified three acidic residues in the membrane-spanning helices, near the cytosol, NqrB-D397, NqrD-D133, and NqrE-E95, as candidates likely to be involved in Na+ uptake, and replacement of any one of them by a non-acidic residue affects the Na+-dependent kinetics of the enzyme. Here, we have inquired further into the role of the NqrE-E95 residue by constructing a series of mutants in which this residue is replaced by amino acids with charges and/or sizes different from those of the glutamate of the wild-type enzyme. All of the mutants showed altered steady-state kinetics with the acceleration of turnover by Na+ greatly diminished. Selected mutants were studied by other physical methods. Membrane potential measurements showed that NqrE-E95D and A are significantly less efficient in ion transport. NqrE-E95A, Q, and D were studied by transient kinetic measurements of the reduction of the enzyme by NADH. In all three cases, the results indicated inhibition of the electron-transfer step in which the FMNC becomes reduced. This is the first Na+-dependent step and is associated with Na+ uptake by the enzyme. Electrochemical measurements on NqrE-E95Q showed that the Na+ dependence of the redox potential of the FMN cofactors has been lost. The fact that the mutations at the NqrE-E95 site have specific effects related to translocation of Na+ and Li+ strongly indicates a definite role for NqrE-E95 in the cation transport process of Na+-NQR.
Collapse
Affiliation(s)
- Katherine G Mezic
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Oscar Juárez
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Yashvin Neehaul
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe , Université de Strasbourg-CNRS , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Jonathan Cho
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Darcie Cook
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe , Université de Strasbourg-CNRS , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Blanca Barquera
- Department of Biological Sciences and Center of Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
15
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
16
|
Yang J, Zeng ZH, Yang MJ, Cheng ZX, Peng XX, Li H. NaCl promotes antibiotic resistance by reducing redox states in Vibrio alginolyticus. Environ Microbiol 2018; 20:4022-4036. [PMID: 30307102 DOI: 10.1111/1462-2920.14443] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 01/22/2023]
Abstract
The development of antibiotic resistance in Vibrio alginolyticus represents a threat to human health and fish farming. Environmental NaCl regulation of bacterial physiology is well documented, but whether the regulation contributes to antibiotic resistance remains unknown. To explore this, we compared minimum inhibitory concentration (MIC) of V. alginolyticus cultured in different media with 0.5%-10% NaCl, and found that the MIC increased as the NaCl concentration increased, especially for aminoglycoside antibiotics. Consistent with this finding, internal NaCl also increased, while intracellular gentamicin level decreased. GC-MS-based metabolomics showed different distributions of pyruvate cycle intermediates among 0.5%, 4% and 10% NaCl. Differential activity of enzymes in the pyruvate cycle and altered expression of Na(+)-NQR led to a reducing redox state, characterized by decreased levels of NADH, proton motive force (PMF) and ATP. Meanwhile, NaCl negatively regulated PMF as a consequence of the reducing redox state. These together are responsible for the decreased intracellular gentamicin level with the increased external level of NaCl. Our study reveals a previously unknown redox state-dependent mechanism regulated by NaCl in V. alginolyticus that impacts antibiotic resistance.
Collapse
Affiliation(s)
- Jun Yang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Zao-Hai Zeng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Man-Jun Yang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Zhi-Xue Cheng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
17
|
Schleicher L, Muras V, Claussen B, Pfannstiel J, Blombach B, Dibrov P, Fritz G, Steuber J. Vibrio natriegens as Host for Expression of Multisubunit Membrane Protein Complexes. Front Microbiol 2018; 9:2537. [PMID: 30410475 PMCID: PMC6209661 DOI: 10.3389/fmicb.2018.02537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a convenient host for the expression of proteins, but the heterologous production of large membrane protein complexes often is hampered by the lack of specific accessory genes required for membrane insertion or cofactor assembly. In this study we introduce the non-pathogenic and fast-growing Vibrio natriegens as a suitable expression host for membrane-bound proteins from Vibrio cholerae. We achieved production of the primary Na+ pump, the NADH:quinone oxidoreductase (NQR), from V. cholerae in an active state, as indicated by increased overall NADH:quinone oxidoreduction activity of membranes from the transformed V. natriegens, and the sensitivity toward Ag+, a specific inhibitor of the NQR. Complete assembly of V. cholerae NQR expressed in V. natriegens was demonstrated by BN PAGE followed by activity staining. The secondary transport system Mrp from V. cholerae, another membrane-bound multisubunit complex, was also produced in V. natriegens in a functional state, as demonstrated by in vivo Li+ transport. V. natriegens is a promising expression host for the production of membrane protein complexes from Gram-negative pathogens.
Collapse
Affiliation(s)
- Lena Schleicher
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Valentin Muras
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claussen
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany.,Institute for Neuropathology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
18
|
Fadhlaoui K, Ben Hania W, Armougom F, Bartoli M, Fardeau ML, Erauso G, Brasseur G, Aubert C, Hamdi M, Brochier-Armanet C, Dolla A, Ollivier B. Obligate sugar oxidation inMesotogaspp., phylumThermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor. Environ Microbiol 2017; 20:281-292. [DOI: 10.1111/1462-2920.13995] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Khaled Fadhlaoui
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
- Laboratoire d'Ecologie et de Technologie Microbienne; Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Centre Urbain Nord; Tunis BP 676, 1080 Tunisia
| | - Wagdi Ben Hania
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
| | - Fabrice Armougom
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
| | - Manon Bartoli
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
| | | | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
| | | | | | - Moktar Hamdi
- Laboratoire d'Ecologie et de Technologie Microbienne; Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Centre Urbain Nord; Tunis BP 676, 1080 Tunisia
| | - Céline Brochier-Armanet
- Université de Lyon; Université Lyon 1; CNRS; UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918; Villeurbanne F-69622 France
| | - Alain Dolla
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Bernard Ollivier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO; Marseille France
| |
Collapse
|
19
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
20
|
Fang X, Liang P, Raba DA, Rosas-Lemus M, Chakravarthy S, Tuz K, Juárez O. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms. PLoS One 2017; 12:e0186805. [PMID: 29065131 PMCID: PMC5655446 DOI: 10.1371/journal.pone.0186805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP and potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.
Collapse
Affiliation(s)
- Xuan Fang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Pingdong Liang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Daniel Alexander Raba
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Mónica Rosas-Lemus
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Srinivas Chakravarthy
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Karina Tuz
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ito T, Murai M, Ninokura S, Kitazumi Y, Mezic KG, Cress BF, Koffas MAG, Morgan JE, Barquera B, Miyoshi H. Identification of the binding sites for ubiquinone and inhibitors in the Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae by photoaffinity labeling. J Biol Chem 2017; 292:7727-7742. [PMID: 28298441 DOI: 10.1074/jbc.m117.781393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/11/2017] [Indexed: 12/30/2022] Open
Abstract
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is the first enzyme of the respiratory chain and the main ion transporter in many marine and pathogenic bacteria, including Vibrio cholerae The V. cholerae Na+-NQR has been extensively studied, but its binding sites for ubiquinone and inhibitors remain controversial. Here, using a photoreactive ubiquinone PUQ-3 as well as two aurachin-type inhibitors [125I]PAD-1 and [125I]PAD-2 and photoaffinity labeling experiments on the isolated enzyme, we demonstrate that the ubiquinone ring binds to the NqrA subunit in the regions Leu-32-Met-39 and Phe-131-Lys-138, encompassing the rear wall of a predicted ubiquinone-binding cavity. The quinolone ring and alkyl side chain of aurachin bound to the NqrB subunit in the regions Arg-43-Lys-54 and Trp-23-Gly-89, respectively. These results indicate that the binding sites for ubiquinone and aurachin-type inhibitors are in close proximity but do not overlap one another. Unexpectedly, although the inhibitory effects of PAD-1 and PAD-2 were almost completely abolished by certain mutations in NqrB (i.e. G140A and E144C), the binding reactivities of [125I]PAD-1 and [125I]PAD-2 to the mutated enzymes were unchanged compared with those of the wild-type enzyme. We also found that photoaffinity labeling by [125I]PAD-1 and [125I]PAD-2, rather than being competitively suppressed in the presence of other inhibitors, is enhanced under some experimental conditions. To explain these apparently paradoxical results, we propose models for the catalytic reaction of Na+-NQR and its interactions with inhibitors on the basis of the biochemical and biophysical results reported here and in previous work.
Collapse
Affiliation(s)
- Takeshi Ito
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Masatoshi Murai
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Satoshi Ninokura
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Yuki Kitazumi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Katherine G Mezic
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Brady F Cress
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Mattheos A G Koffas
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Joel E Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Blanca Barquera
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Hideto Miyoshi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| |
Collapse
|
22
|
Tuz K, Li C, Fang X, Raba DA, Liang P, Minh DDL, Juárez O. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase: A NOVEL UBIQUINONE-BINDING MOTIF. J Biol Chem 2017; 292:3039-3048. [PMID: 28053088 DOI: 10.1074/jbc.m116.770982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/29/2016] [Indexed: 11/06/2022] Open
Abstract
The sodium-dependent NADH dehydrogenase (Na+-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na+-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na+-NQR catalysis.
Collapse
Affiliation(s)
- Karina Tuz
- From the Departments of Biological Sciences and
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | | | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
23
|
Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Stand Genomic Sci 2016; 11:67. [PMID: 27617057 PMCID: PMC5016858 DOI: 10.1186/s40793-016-0184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.
Collapse
Affiliation(s)
- Emily Denise Melton
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Chertkov
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Alicia Clum
- Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Vorburger T, Nedielkov R, Brosig A, Bok E, Schunke E, Steffen W, Mayer S, Götz F, Möller HM, Steuber J. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:473-82. [PMID: 26721205 DOI: 10.1016/j.bbabio.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.
Collapse
Affiliation(s)
- Thomas Vorburger
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Ruslan Nedielkov
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alexander Brosig
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Eva Bok
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Emina Schunke
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Wojtek Steffen
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Sonja Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany.
| |
Collapse
|
25
|
NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase. J Bacteriol 2015; 198:655-63. [PMID: 26644436 DOI: 10.1128/jb.00757-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na(+) translocation across the membrane. Na(+)-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na(+)-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na(+)-NQR, resulted in an enzyme incapable of Na(+)-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na(+)-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na(+)-NQR, which could be recovered by an nqrM-containing plasmid. The Na(+)-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na(+)-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na(+)-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na(+)-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na(+)-translocating NADH:quinone oxidoreductase complex (Na(+)-NQR) is a unique primary Na(+) pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Neisseria gonorrhoeae, Pasteurella multocida, Porphyromonas gingivalis, Enterobacter aerogenes, and Yersinia pestis. Production of Na(+)-NQR in bacteria requires Na(+)-NQR-specific maturation factors. We earlier identified one such factor (ApbE) that covalently attaches flavin residues to Na(+)-NQR. Here we identify the other protein factor, designated NqrM, and show that NqrM and ApbE suffice to produce functional Na(+)-NQR from the Vibrio harveyi nqr operon. NqrM may be involved in Fe delivery to a unique Cys4[Fe] center during Na(+)-NQR assembly. Besides highlighting Na(+)-NQR biogenesis, these findings suggest a novel drug target to combat Na(+)-NQR-containing bacteria.
Collapse
|
26
|
Tuz K, Mezic KG, Xu T, Barquera B, Juárez O. The Kinetic Reaction Mechanism of the Vibrio cholerae Sodium-dependent NADH Dehydrogenase. J Biol Chem 2015; 290:20009-21. [PMID: 26004776 DOI: 10.1074/jbc.m115.658773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium-dependent NADH dehydrogenase (Na(+)-NQR) is the main ion transporter in Vibrio cholerae. Its activity is linked to the operation of the respiratory chain and is essential for the development of the pathogenic phenotype. Previous studies have described different aspects of the enzyme, including the electron transfer pathways, sodium pumping structures, cofactor and subunit composition, among others. However, the mechanism of the enzyme remains to be completely elucidated. In this work, we have studied the kinetic mechanism of Na(+)-NQR with the use of steady state kinetics and stopped flow analysis. Na(+)-NQR follows a hexa-uni ping-pong mechanism, in which NADH acts as the first substrate, reacts with the enzyme, and the oxidized NAD leaves the catalytic site. In this conformation, the enzyme is able to capture two sodium ions and transport them to the external side of the membrane. In the last step, ubiquinone is bound and reduced, and ubiquinol is released. Our data also demonstrate that the catalytic cycle involves two redox states, the three- and five-electron reduced forms. A model that gathers all available information is proposed to explain the kinetic mechanism of Na(+)-NQR. This model provides a background to understand the current structural and functional information.
Collapse
Affiliation(s)
- Karina Tuz
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| | - Katherine G Mezic
- the Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Tianhao Xu
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| | - Blanca Barquera
- the Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Oscar Juárez
- From the Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois 60616 and
| |
Collapse
|
27
|
Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure. Appl Microbiol Biotechnol 2014; 98:9735-47. [PMID: 25341401 DOI: 10.1007/s00253-014-6143-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a priority pollutant causing serious environmental issues. Microbial reduction provides an alternative strategy for Cr(VI) remediation. The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, was employed to study Cr(VI) reduction and toxicity in this work. To understand the effect of membrane cytochromes on Cr(VI) response, a comparative protein profile analysis from S. oneidensis MR-1 wild type and its mutant of deleting OmcA and MtrC (△omcA/mtrC) was conducted using two-dimensional electrophoresis (2-DE) technology. The 2-DE patterns were compared, and the proteins with abundant changes of up to twofold in the Cr(VI) treatment were detected. Using mass spectrometry, 38 and 45 differentially abundant proteins were identified in the wild type and the mutant, respectively. Among them, 25 proteins were shared by the two strains. The biological functions of these identified proteins were analyzed. Results showed that Cr(VI) exposure decreased the abundance of proteins involved in transcription, translation, pyruvate metabolism, energy production, and function of cellular membrane in both strains. There were also significant differences in protein expressions between the two strains under Cr(VI) treatment. Our results suggest that OmcA/MtrC deletion might result in the Cr(VI) toxicity to outer membrane and decrease assimilation of lactate, vitamin B12, and cystine. When carbohydrate metabolism was inhibited by Cr(VI), leucine and sulfur metabolism may act as the important compensatory mechanisms in the mutant. Furthermore, the mutant may regulate electron transfer in the inner membrane and periplasm to compensate for the deletion of OmcA and MtrC in Cr(VI) reduction.
Collapse
|
28
|
The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 2014; 46:289-98. [PMID: 25052842 DOI: 10.1007/s10863-014-9565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.
Collapse
|
29
|
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS One 2014; 9:e96696. [PMID: 24809444 PMCID: PMC4014512 DOI: 10.1371/journal.pone.0096696] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022] Open
Abstract
The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.
Collapse
|
30
|
Shea ME, Juárez O, Cho J, Barquera B. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity. J Biol Chem 2013; 288:31241-9. [PMID: 24030824 DOI: 10.1074/jbc.m113.510776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).
Collapse
Affiliation(s)
- Michael E Shea
- From the Department of Biology and Center of Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121801
| | | | | | | |
Collapse
|
31
|
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:94-113. [PMID: 22800682 DOI: 10.1016/j.bbabio.2012.07.002] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/21/2023]
Abstract
The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔμH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, and Fachbereich Biologie, Philipps-Universität, Marburg, Germany.
| | | |
Collapse
|
32
|
Juárez O, Neehaul Y, Turk E, Chahboun N, DeMicco JM, Hellwig P, Barquera B. The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2012; 287:25678-85. [PMID: 22645140 DOI: 10.1074/jbc.m112.366088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na(+)-NQR with its electron acceptor, ubiquinone.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC, Müller V, Oesterhelt D. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacteriumHalobacillus halophilus. Environ Microbiol 2012; 15:1619-33. [DOI: 10.1111/j.1462-2920.2012.02770.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Casutt MS, Schlosser A, Buckel W, Steuber J. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1817-22. [PMID: 22366169 DOI: 10.1016/j.bbabio.2012.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/03/2012] [Accepted: 02/09/2012] [Indexed: 12/19/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Marco S Casutt
- Department of Neuropathology, University of Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
35
|
Tabei Y, Era M, Ogawa A, Morita H. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri. J Basic Microbiol 2011; 52:350-9. [PMID: 21953119 DOI: 10.1002/jobm.201100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/03/2011] [Indexed: 11/06/2022]
Abstract
In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence.
Collapse
Affiliation(s)
- Yosuke Tabei
- Faculty of Environment Engineering, The University of Kitakyushu 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | | | | | | |
Collapse
|
36
|
Effects of magnesium sulfate on the luminescence of Vibrio fischeri under nutrient-starved conditions. Biosci Biotechnol Biochem 2011; 75:1073-8. [PMID: 21670537 DOI: 10.1271/bbb.100880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we investigated the relationship between MgSO(4) and luminescence in Vibrio fischeri under nutrient-starved conditions. When V. fischeri was cultured in an artificial seawater medium, the luminescence intensity was low relative to that observed under normal growth conditions. It decreased during the initial 14 h, and then increased slightly at 24 h. This regulation of luminescence was not dependent on the quorum-sensing mechanism, because the cell densities had not reached a critical threshold concentration. Under MgSO(4)-starved conditions, luminescence was not fully induced at 14 h, and decreased at 24 h. In contrast, induction of luminescence occurred under MgSO(4)-supplemented conditions, but MgSO(4) alone was insufficient to induce luminescence, and required NaHCO(3) or KCl. These results suggest that the luminescence of V. fischeri is controlled by an exogenous sulfur source under nutrient-starved conditions. In addition, they indicate that the induction of sulfur-dependent luminescence is regulated by the NaHCO(3) or KCl concentration.
Collapse
|
37
|
Juárez O, Shea ME, Makhatadze GI, Barquera B. The role and specificity of the catalytic and regulatory cation-binding sites of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2011; 286:26383-90. [PMID: 21652714 DOI: 10.1074/jbc.m111.257873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase is the entry site for electrons into the respiratory chain and the main sodium pump in Vibrio cholerae and many other pathogenic bacteria. In this work, we have employed steady-state and transient kinetics, together with equilibrium binding measurements to define the number of cation-binding sites and characterize their roles in the enzyme. Our results show that sodium and lithium ions stimulate enzyme activity, and that Na(+)-NQR enables pumping of Li(+), as well as Na(+) across the membrane. We also confirm that the enzyme is not able to translocate other monovalent cations, such as potassium or rubidium. Although potassium is not used as a substrate, Na(+)-NQR contains a regulatory site for this ion, which acts as a nonessential activator, increasing the activity and affinity for sodium. Rubidium can bind to the same site as potassium, but instead of being activated, enzyme turnover is inhibited. Activity measurements in the presence of both sodium and lithium indicate that the enzyme contains at least two functional sodium-binding sites. We also show that the binding sites are not exclusively responsible for ion selectivity, and other steps downstream in the mechanism also play a role. Finally, equilibrium-binding measurements with (22)Na(+) show that, in both its oxidized and reduced states, Na(+)-NQR binds three sodium ions, and that the affinity for sodium is the same for both of these states.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
38
|
Biegel E, Schmidt S, González JM, Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 2011; 68:613-34. [PMID: 21072677 PMCID: PMC11115008 DOI: 10.1007/s00018-010-0555-8] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H(+) as the most negative donor to oxygen/H(2)O as the most positive acceptor or increments thereof. The redox range more negative than -320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.
Collapse
Affiliation(s)
- Eva Biegel
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silke Schmidt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - José M. González
- Department of Microbiology and Cell Biology, University of La Laguna, 38206 La Laguna, Tenerife Spain
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
39
|
Fadeeva MS, Bertsova YV, Verkhovsky MI, Bogachev AV. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2011; 73:123-9. [DOI: 10.1134/s0006297908020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Casutt MS, Huber T, Brunisholz R, Tao M, Fritz G, Steuber J. Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 2010; 285:27088-27099. [PMID: 20558724 PMCID: PMC2930708 DOI: 10.1074/jbc.m109.071126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/16/2010] [Indexed: 12/29/2022] Open
Abstract
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na(+)-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na(+)-NQR is discussed.
Collapse
Affiliation(s)
- Marco S Casutt
- Department of Neuropathology, Breisacherstrasse 64, University of Freiburg, 79106 Freiburg, Germany
| | - Tamara Huber
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - René Brunisholz
- Functional Genomics Centre Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minli Tao
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Günter Fritz
- Department of Neuropathology, Breisacherstrasse 64, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Steuber
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
41
|
Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:12505-10. [PMID: 20616050 DOI: 10.1073/pnas.1002866107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Na(+)-NQR is a unique respiratory enzyme that couples the free energy of electron transfer reactions to electrogenic pumping of sodium across the cell membrane. This enzyme is found in many marine and pathogenic bacteria where it plays an analogous role to the H(+)-pumping complex I. It has generally been assumed that the sodium pump of Na(+)-NQR operates on the basis of thermodynamic coupling between reduction of a single redox cofactor and the binding of sodium at a nearby site. In this study, we have defined the coupling to sodium translocation of individual steps in the redox reaction of Na(+)-NQR. Sodium uptake takes place in the reaction step in which an electron moves from the 2Fe-2S center to FMN(C), while the translocation of sodium across the membrane dielectric (and probably its release into the external medium) occurs when an electron moves from FMN(B) to riboflavin. This argues against a single-site coupling model because the redox steps that drive these two parts of the sodium pumping process do not have any redox cofactor in common. The significance of these results for the mechanism of coupling is discussed, and we proposed that Na(+)-NQR operates through a novel mechanism based on kinetic coupling, mediated by conformational changes.
Collapse
|
42
|
Zhao JS, Deng Y, Manno D, Hawari J. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 2010; 5:e9109. [PMID: 20174598 PMCID: PMC2824531 DOI: 10.1371/journal.pone.0009109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Shewanella halifaxensis and Shewanella sediminis were among a few aquatic gamma-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and gamma-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other gamma-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and gamma-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biodegradation, Environmental
- Chromosome Mapping
- Cold Temperature
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- Evolution, Molecular
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Genome, Bacterial/genetics
- Genomics
- Marine Biology
- Molecular Structure
- Phylogeny
- Proteomics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Shewanella/classification
- Shewanella/genetics
- Shewanella/metabolism
- Species Specificity
- Triazines/chemistry
- Triazines/metabolism
Collapse
Affiliation(s)
- Jian-Shen Zhao
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| | - Yinghai Deng
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Dominic Manno
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jalal Hawari
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| |
Collapse
|
43
|
Energy conservation by Rhodothermus marinus respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:509-15. [PMID: 20100453 DOI: 10.1016/j.bbabio.2010.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/11/2010] [Accepted: 01/15/2010] [Indexed: 11/21/2022]
Abstract
A sodium ion efflux, together with a proton influx and an inside-positive DeltaPsi, was observed during NADH-respiration by Rhodothermus marinus membrane vesicles. Proton translocation was monitored by fluorescence spectroscopy and sodium ion transport by (23)Na-NMR spectroscopy. Specific inhibitors of complex I (rotenone) and of the dioxygen reductase (KCN) inhibited the proton and the sodium ion transport, but the KCN effect was totally reverted by the addition of menaquinone analogues, indicating that both transports were catalyzed by complex I. We concluded that the coupling ion of the system is the proton and that neither the catalytic reaction nor the establishment of the delta-pH are dependent on sodium, but the presence of sodium increases proton transport. Moreover, studies of NADH oxidation at different sodium concentrations and of proton and sodium transport activities allowed us to propose a model for the mechanism of complex I in which the presence of two different energy coupling sites is suggested.
Collapse
|
44
|
Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:738-46. [PMID: 20056102 DOI: 10.1016/j.bbabio.2009.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
Abstract
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria. This enzyme is an analogous but not homologous counterpart of mitochondrial Complex I. Na+-NQR drives the same chemistry and also uses released energy to translocate ions across the membrane, but it pumps Na+ instead of H+. Most likely the mechanism of sodium pumping is quite different from that of proton pumping (for example, it could not accommodate the Grotthuss mechanism of ion movement); this is why the enzyme structure, subunits and prosthetic groups are completely special. This review summarizes modern knowledge on the structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases. The sequence of electron transfer through the enzyme cofactors and thermodynamic properties of those cofactors is discussed. The resolution of the intermediates of the catalytic cycle and localization of sodium-dependent steps are combined in a possible molecular mechanism of sodium transfer by the enzyme.
Collapse
|
45
|
Juárez O, Athearn K, Gillespie P, Barquera B. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 2009; 48:9516-24. [PMID: 19694431 DOI: 10.1021/bi900845y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae and many other marine and pathogenic bacteria possess a unique respiratory complex, the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR), which pumps Na(+) across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. To function as a selective sodium pump, Na(+)-NQR must contain structures that (1) allow the sodium ion to pass through the hydrophobic core of the membrane and (2) provide cation specificity to the translocation system. In other sodium-transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study, we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D, and E of Na(+)-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133, and NqrE-E95 produced a decrease of approximately >or=10-fold in the apparent affinity of the enzyme for sodium (Km(app)(Na+)), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346, and NqrD-D88, had a strong effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but a weaker effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
46
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
47
|
Juárez O, Nilges MJ, Gillespie P, Cotton J, Barquera B. Riboflavin is an active redox cofactor in the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 2008; 283:33162-7. [PMID: 18832377 DOI: 10.1074/jbc.m806913200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
48
|
Backiel J, Juárez O, Zagorevski DV, Wang Z, Nilges MJ, Barquera B. Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 2008; 47:11273-84. [PMID: 18831535 DOI: 10.1021/bi800920j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes of the Rnf family are believed to be bacterial redox-driven ion pumps, coupling an oxidoreduction process to the translocation of Na+ across the cell membrane. Here we show for the first time that Rnf is a flavoprotein, with FMN covalently bound to threonine-175 in RnfG and a second flavin bound to threonine-187 in RnfD. Rnf subunits D and G are homologous to subunits B and C of Na+-NQR, respectively. Each of these Na+-NQR subunits includes a conserved S(T)GAT motif, with FMN covalently bound to the final threonine. RnfD and RnfG both contain the same motif, suggesting that they bind flavins in a similar way. In order to investigate this, the genes for RnfD and RnfG from Vibrio cholerae were cloned and expressed individually in that organism. In both cases the produced protein fluoresced under UV illumination on an SDS gel, further indicating the presence of flavin. However, analysis of the mutants RnfG-T175L, RnfD-T278L, and RnfD-T187V showed that RnfG-T175 and RnfD-T187 are the likely flavin ligands. This indicates that, in the case of RnfD, the flavin is bound, not to the SGAT sequence but to the final residues of a TMAT sequence, a novel variant of the flavin binding motif. In the case of RnfG, flavin analysis, followed by MALDI-TOF-TOF mass spectrometry, showed that an FMN is covalently attached to threonine-175, the final threonine of the S(T)GAT sequence. Studies by visible, EPR, and ENDOR spectroscopy showed that, upon partial reduction, the isolated RnfG produces a neutral semiquinone intermediate. The semiquinone species disappeared upon full reduction and was not observed in the denatured protein. A topological analysis combining reporter protein fusion and computer predictions indicated that the flavins in RnfG and RnfD are localized in the periplasmic space. In contrast, in NqrC and NqrB the flavins are located in a cytoplasmic loop. This topological analysis suggests that there may be mechanistic differences between the Rnf and Na+-NQR complexes.
Collapse
Affiliation(s)
- Julianne Backiel
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eight Street, Troy, New York 12180, USA
| | | | | | | | | | | |
Collapse
|
49
|
Tao M, Casutt MS, Fritz G, Steuber J. Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:696-702. [PMID: 18454933 DOI: 10.1016/j.bbabio.2008.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/31/2008] [Accepted: 04/05/2008] [Indexed: 10/22/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory flavo-FeS complex composed of the six subunits NqrA-F. The Na(+)-NQR was produced as His(6)-tagged protein by homologous expression in V. cholerae. The isolated complex contained near-stoichiometric amounts of non-covalently bound FAD (0.78 mol/mol Na(+)-NQR) and riboflavin (0.70 mol/mol Na(+)-NQR), catalyzed NADH-driven Na(+) transport (40 nmol Na(+)min(-1) mg(-1)), and was inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide. EPR spectroscopy showed that Na(+)-NQR as isolated contained very low amounts of a neutral flavosemiquinone (10(-3) mol/mol Na(+)-NQR). Reduction with NADH resulted in the formation of an anionic flavosemiquinone (0.10 mol/mol Na(+)-NQR). Subsequent oxidation of the Na(+)-NQR with ubiquinone-1 or O(2) led to the formation of a neutral flavosemiquinone (0.24 mol/mol Na(+)-NQR). We propose that the Na(+)-NQR is fully oxidized in its resting state, and discuss putative schemes of NADH-triggered redox transitions.
Collapse
Affiliation(s)
- Minli Tao
- Biochemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
50
|
Fadeeva MS, Núñez C, Bertsova YV, Espín G, Bogachev AV. Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii. FEMS Microbiol Lett 2008; 279:116-23. [PMID: 18300384 DOI: 10.1111/j.1574-6968.2007.01015.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The catalytic properties of sodium-translocating NADH:quinone oxidoreductases (Na+-NQRs) from the marine bacterium Vibrio harveyi, the enterobacterium Klebsiella pneumoniae, and the soil microorganism Azotobacter vinelandii have been comparatively analyzed. It is shown that these enzymes drastically differ in their affinity to sodium ions. The enzymes also possess different sensitivity to inhibitors. Na+-NQR from A. vinelandii is not sensitive to low 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) concentrations, while Na+-NQR from K. pneumoniae is fully resistant to either Ag+ or N-ethylmaleimide. All the Na+-NQR-type enzymes are sensitive to diphenyliodonium, which is shown to modify the noncovalently bound FAD of the enzyme.
Collapse
Affiliation(s)
- Maria S Fadeeva
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|