1
|
Lettau E, Lorent C, Appel J, Boehm M, Cordero PRF, Lauterbach L. Insights into electron transfer and bifurcation of the Synechocystis sp. PCC6803 hydrogenase reductase module. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149508. [PMID: 39245309 DOI: 10.1016/j.bbabio.2024.149508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The NAD+-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H2) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE. We demonstrated the importance of HoxE for enzyme functionality, suggesting a regulatory role in maintaining enzyme activity and electron supply. Spectroscopic analysis confirmed that HoxE and HoxF each contain one [2Fe2S] cluster with an almost identical electronic structure. Structure predictions, alongside experimental evidence for ferredoxin interactions, revealed a remarkable similarity between SynSH and bifurcating hydrogenases, suggesting a related functional mechanism. Our study unveiled the subunit arrangement and cofactor composition essential for biological electron transfer. These findings enhance our understanding of NAD+-reducing [NiFe] hydrogenases in terms of their physiological function and structural requirements for biotechnologically relevant modifications.
Collapse
Affiliation(s)
- Elisabeth Lettau
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany; Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany.
| | - Christian Lorent
- Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany
| | - Jens Appel
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Marko Boehm
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Paul R F Cordero
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany
| | - Lars Lauterbach
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015; 17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Challenges and chances in bio-molecular spectroscopy are exemplified by vibrational case studies on metalloenzymes.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| |
Collapse
|
3
|
Horch M, Rippers Y, Mroginski MA, Hildebrandt P, Zebger I. Combining Spectroscopy and Theory to Evaluate Structural Models of Metalloenzymes: A Case Study on the Soluble [NiFe] Hydrogenase fromRalstonia eutropha. Chemphyschem 2012; 14:185-91. [DOI: 10.1002/cphc.201200853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Indexed: 11/09/2022]
|
4
|
Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I. NAD(H)-coupled hydrogen cycling - structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 2011; 586:545-56. [PMID: 22056977 DOI: 10.1016/j.febslet.2011.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Hydrogenases catalyze the activation or production of molecular hydrogen. Due to their potential importance for future biotechnological applications, these enzymes have been in the focus of intense research for the past decades. Bidirectional [NiFe] hydrogenases are of particular interest as they couple the reversible cleavage of hydrogen to the redox conversion of NAD(H). In this account, we review the current state of knowledge about mechanistic aspects and structural determinants of these complex multi-cofactor enzymes. Special emphasis is laid on the oxygen-tolerant NAD(H)-linked bidirectional [NiFe] hydrogenase from Ralstonia eutropha.
Collapse
Affiliation(s)
- M Horch
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
Lauterbach L, Idris Z, Vincent KA, Lenz O. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha. PLoS One 2011; 6:e25939. [PMID: 22016788 PMCID: PMC3189943 DOI: 10.1371/journal.pone.0025939] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with KI values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.
Collapse
Affiliation(s)
- Lars Lauterbach
- Institute of Biology, Department of Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zulkifli Idris
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- * E-mail: (KAV); (OL)
| | - Oliver Lenz
- Institute of Biology, Department of Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (KAV); (OL)
| |
Collapse
|
6
|
Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 2011; 286:40614-23. [PMID: 21930709 DOI: 10.1074/jbc.m111.283648] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ∼50% decrease of the number of ∼2.7-Å Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Camilla Lambertz
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Albracht SPJ, Meijer AJ, Rydström J. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. J Bioenerg Biomembr 2011; 43:541-64. [PMID: 21882037 DOI: 10.1007/s10863-011-9381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s⁻¹. This results in an overall NADH→O₂ rate of ca. 150 s⁻¹. It has long been known that the bovine enzyme also has a specific reaction site for NADPH. At neutral pH excess NADPH reduces only three to four of the prosthetic groups in Complex I with a rate of 40 s⁻¹ at 22 °C. The reducing equivalents remain essentially locked in the enzyme because the overall NADPH→O₂ rate (1.4 s⁻¹) is negligible. The physiological significance of the reaction with NADPH is still unclear. A number of recent developments has revived our thinking about this enigma. We hypothesize that Complex I and the Δp-driven nicotinamide nucleotide transhydrogenase (Nnt) co-operate in an energy-dependent attenuation of the hydrogen-peroxide generation by Complex I. This co-operation is thought to be mediated by the NADPH/NADP⁺ ratio in the vicinity of the NADPH site of Complex I. It is proposed that the specific H₂O₂ production by Complex I, and the attenuation of it, is of importance for apoptosis, autophagy and the survival mechanism of a number of cancers. Verification of this hypothesis may contribute to a better understanding of the regulation of these processes.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
8
|
The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: II. Comparison of the proposed working hypothesis with literature data. J Bioenerg Biomembr 2010; 42:279-92. [PMID: 20632077 DOI: 10.1007/s10863-010-9302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
The first purification of bovine NADH:ubiquinone oxidoreductase (Complex I) was reported nearly half a century ago (Hatefi et al. J Biol Chem 237:1676-1680, 1962). The pathway of electron-transfer through the enzyme is still under debate. A major obstacle is the assignment of EPR signals to the individual iron-sulfur clusters in the subunits. The preceding paper described a working model based on the kinetics with NADPH. This model is at variance with current views in the field. The present paper provides a critical overview on the possible causes for the discrepancies. It is concluded that the stability of all purified preparations described thus far, including Hatefi's Complex I, is compromised due to removal of the enzyme from the protective membrane environment. In addition, most preparations described during the last two decades are purified by methods involving synthetic detergents and column chromatography. This results in delipidation, loss of endogenous quinones and loss of reactions with (artificial) quinones in a rotenone-sensitive way. The Fe:FMN ratio's indicate that FMN-a is absent, but that all Fe-S clusters may be present. In contrast to the situation in bovine SMP and Hatefi's Complex I, three of the six expected [4Fe-4S] clusters are not detected in EPR spectra. Qualitatively, the overall EPR lineshape of the remaining three cubane signals may seem similar to that of Hatefi's Complex I, but quantitatively it is not. It is further proposed that point mutations in any of the TYKY, PSST, 49-kDa or 30-kDa subunits, considered to make up the delicate structural heart of Complex I, may have unpredictable effects on any of the other subunits of this quartet. The fact that most point mutations led to inactive enzymes makes a correct interpretation of such mutations even more ambiguous. In none of the Complex-I-containing membrane preparations from non-bovine origin, the pH dependencies of the NAD(P)H-->O(2) reactions and the pH-dependent reduction kinetics of the Fe-S clusters with NADPH have been determined. This excludes a proper discussion on the absence or presence of FMN-a in native Complex I from other organisms.
Collapse
|
9
|
The reaction of NADPH with bovine mitochondrial NADH:ubiquinone oxidoreductase revisited: I. Proposed consequences for electron transfer in the enzyme. J Bioenerg Biomembr 2010; 42:261-78. [PMID: 20628895 DOI: 10.1007/s10863-010-9301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Bovine NADH:ubiquinone oxidoreductase (Complex I) is the first complex in the mitochondrial respiratory chain. It has long been assumed that it contained only one FMN group. However, as demonstrated in 2003, the intact enzyme contains two FMN groups. The second FMN was proposed to be located in a conserved flavodoxin fold predicted to be present in the PSST subunit. The long-known reaction of Complex I with NADPH differs in many aspects from that with NADH. It was proposed that the second flavin group was specifically involved in the reaction with NADPH. The X-ray structure of the hydrophilic domain of Complex I from Thermus thermophilus (Sazanov and Hinchliffe 2006, Science 311, 1430-1436) disclosed the positions of all redox groups of that enzyme and of the subunits holding them. The PSST subunit indeed contains the predicted flavodoxin fold although it did not contain FMN. Inspired by this structure, the present paper describes a re-evaluation of the enigmatic reactions of the bovine enzyme with NADPH. Published data, as well as new freeze-quench kinetic data presented here, are incompatible with the general opinion that NADPH and NADH react at the same site. Instead, it is proposed that these pyridine nucleotides react at opposite ends of the 90 A long chain of prosthetic groups in Complex I. Ubiquinone is proposed to react with the Fe-S clusters in the TYKY subunit deep inside the hydrophilic domain. A new model for electron transfer in Complex I is proposed. In the accompanying paper this model is compared with the one advocated in current literature.
Collapse
|
10
|
Schröder O, Bleijlevens B, de Jongh TE, Chen Z, Li T, Fischer J, Förster J, Friedrich CG, Bagley KA, Albracht SPJ, Lubitz W. Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. J Biol Inorg Chem 2006; 12:212-33. [PMID: 17082918 DOI: 10.1007/s00775-006-0185-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Electron paramagnetic resonance (EPR) and Fourier transform IR studies on the soluble hydrogenase from Acidithiobacillus ferrooxidans are presented. In addition, detailed sequence analyses of the two subunits of the enzyme have been performed. They show that the enzyme belongs to a group of uptake [NiFe] hydrogenases typical for Cyanobacteria. The sequences have also a close relationship to those of the H(2)-sensor proteins, but clearly differ from those of standard [NiFe] hydrogenases. It is concluded that the structure of the catalytic centre is similar, but not identical, to that of known [NiFe] hydrogenases. The active site in the majority of oxidized enzyme molecules, 97% in cells and more than 50% in the purified enzyme, is EPR-silent. Upon contact with H(2) these sites remain EPR-silent and show only a limited IR response. Oxidized enzyme molecules with an EPR-detectable active site show a Ni(r)*-like EPR signal which is light-sensitive at cryogenic temperatures. This is a novelty in the field of [NiFe] hydrogenases. Reaction with H(2) converts these active sites to the well-known Ni(a)-C* state. Illumination below 160 K transforms this state into the Ni(a)-L* state. The reversal, in the dark at 200 K, proceeds via an intermediate Ni EPR signal only observed with the H(2)-sensor protein from Ralstonia eutropha. The EPR-silent active sites in as-isolated and H(2)-treated enzyme are also light-sensitive as observed by IR spectra at cryogenic temperatures. The possible origin of the light sensitivity is discussed. This study represents the first spectral characterization of an enzyme of the group of cyanobacterial uptake hydrogenases.
Collapse
Affiliation(s)
- Olga Schröder
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, 10623, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Foster KA, Galeffi F, Gerich FJ, Turner DA, Müller M. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 2006; 79:136-71. [PMID: 16920246 PMCID: PMC1994087 DOI: 10.1016/j.pneurobio.2006.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 02/06/2023]
Abstract
Mitochondria are critical for cellular adenosine triphosphate (ATP) production; however, recent studies suggest that these organelles fulfill a much broader range of tasks. For example, they are involved in the regulation of cytosolic Ca(2+) levels, intracellular pH and apoptosis, and are the major source of reactive oxygen species (ROS). Various reactive molecules that originate from mitochondria, such as ROS, are critical in pathological events, such as ischemia, as well as in physiological events such as long-term potentiation, neuronal-vascular coupling and neuronal-glial interactions. Due to their key roles in the regulation of several cellular functions, the dysfunction of mitochondria may be critical in various brain disorders. There has been increasing interest in the development of tools that modulate mitochondrial function, and the refinement of techniques that allow for real time monitoring of mitochondria, particularly within their intact cellular environment. Innovative imaging techniques are especially powerful since they allow for mitochondrial visualization at high resolution, tracking of mitochondrial structures and optical real time monitoring of parameters of mitochondrial function. The techniques discussed include classic imaging techniques, such as rhodamine-123, the highly advanced semi-conductor nanoparticles (quantum dots), and wide field microscopy as well as high-resolution multiphoton imaging. We have highlighted the use of these techniques to study mitochondrial function in brain tissue and have included studies from our laboratories in which these techniques have been successfully applied.
Collapse
Affiliation(s)
- Kelley A. Foster
- Research and Surgery Services Durham Veterans Affairs Medical Center; Neurosurgery and Neurobiology, Duke University Medical Center, Box 3807, Durham, NC 27710, USA
| | - Francesca Galeffi
- Research and Surgery Services Durham Veterans Affairs Medical Center; Neurosurgery and Neurobiology, Duke University Medical Center, Box 3807, Durham, NC 27710, USA
| | - Florian J. Gerich
- Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Dennis A. Turner
- Research and Surgery Services Durham Veterans Affairs Medical Center; Neurosurgery and Neurobiology, Duke University Medical Center, Box 3807, Durham, NC 27710, USA
| | - Michael Müller
- DFG Center Molecular Physiology of the Brain, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
- Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
12
|
Long M, Liu J, Chen Z, Bleijlevens B, Roseboom W, Albracht SPJ. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module. J Biol Inorg Chem 2006; 12:62-78. [PMID: 16969669 DOI: 10.1007/s00775-006-0162-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M (r) = 52 kDa) and a small (M (r) = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe-S clusters, three [2Fe-2S] clusters and five [4Fe-4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe-S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H(2)-dependent reduction of NAD(+). Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni-Fe active site and a [4Fe-4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Ni(a)-C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Minnan Long
- School of Life Sciences, Bio-energy Center, Xiamen University, Xiamen, 361005, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:553-61. [PMID: 16678117 DOI: 10.1016/j.bbabio.2006.03.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/13/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.
Collapse
Affiliation(s)
- Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation
| | | |
Collapse
|
14
|
van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SPJ. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. J Biol Inorg Chem 2006; 11:247-60. [PMID: 16418856 DOI: 10.1007/s00775-005-0075-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni-Fe site of the soluble NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI(2)) with aerobic specific H(2)-NAD(+) activities of 150-185 mumol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Melo AMP, Lobo SAL, Sousa FL, Fernandes AS, Pereira MM, Hreggvidsson GO, Kristjansson JK, Saraiva LM, Teixeira M. A nhaD Na+/H+ antiporter and a pcd homologues are among the Rhodothermus marinus complex I genes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:95-103. [PMID: 16023073 DOI: 10.1016/j.bbabio.2005.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
The NADH:menaquinone oxidoreductase (Nqo) is one of the enzymes present in the respiratory chain of the thermohalophilic bacterium Rhodothermus marinus. The genes coding for the R. marinus Nqo subunits were isolated and sequenced, clustering in two operons [nqo1 to nqo7 (nqoA) and nqo10 to nqo14 (nqoB)] and two independent genes (nqo8 and nqo9). Unexpectedly, two genes encoding homologues of a NhaD Na+/H+ antiporter (NhaD) and of a pterin-4alpha-carbinolamine dehydratase (PCD) were identified within nqoB, flanked by nqo13 and nqo14. Eight conserved motives to harbour iron-sulphur centres are identified in the deduced primary structures, as well as two consensus sequences to bind nucleotides, in this case NADH and FMN. Moreover, the open-reading-frames of the putative NhaD and PCD were shown to be co-transcribed with the other complex I genes encoded by nqoB. The possible role of these two genes in R. marinus complex I is discussed.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005; 187:3122-32. [PMID: 15838039 PMCID: PMC1082810 DOI: 10.1128/jb.187.9.3122-3132.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buhrke T, Löscher S, Lenz O, Schlodder E, Zebger I, Andersen LK, Hildebrandt P, Meyer-Klaucke W, Dau H, Friedrich B, Haumann M. Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16. J Biol Chem 2005; 280:19488-95. [PMID: 15764814 DOI: 10.1074/jbc.m500601200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory Ni-Fe hydrogenase (RH) from Ralstonia eutropha functions as a hydrogen sensor. The RH consists of the large subunit HoxC housing the Ni-Fe active site and the small subunit HoxB containing Fe-S clusters. The heterolytic cleavage of H(2) at the Ni-Fe active site leads to the EPR-detectable Ni-C state of the protein. For the first time, the simultaneous but EPR-invisible reduction of Fe-S clusters during Ni-C state formation was demonstrated by changes in the UV-visible absorption spectrum as well as by shifts of the iron K-edge from x-ray absorption spectroscopy in the wild-type double dimeric RH(WT) [HoxBC](2) and in a monodimeric derivative designated RH(stop) lacking the C-terminal 55 amino acids of HoxB. According to the analysis of iron EXAFS spectra, the Fe-S clusters of HoxB pronouncedly differ from the three Fe-S clusters in the small subunits of crystallized standard Ni-Fe hydrogenases. Each HoxBC unit of RH(WT) seems to harbor two [2Fe-2S] clusters in addition to a 4Fe species, which may be a [4Fe-3S-3O] cluster. The additional 4Fe-cluster was absent in RH(stop). Reduction of Fe-S clusters in the hydrogen sensor RH may be a first step in the signal transduction chain, which involves complex formation between [HoxBC](2) and tetrameric HoxJ protein, leading to the expression of the energy converting Ni-Fe hydrogenases in R. eutropha.
Collapse
Affiliation(s)
- Thorsten Buhrke
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Members of the genus Methanosarcina are strictly anaerobic archaea that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2 + CO2 are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. Two novel electron transport systems are involved in the process of methanogenesis. Both systems are able to use a heterodisulfide as electron acceptor and either H2 or F420H2 as electron acceptors and generate a proton-motive force by redox potential-driven H(+)-translocation. The H2:heterodisulfide oxidoreductase is composed of an F420-nonreducing hydrogenase and the heterodisulfide reductase. The latter protein is also part of the F420H2:heterodisulfide oxidoreductase system. The second component of this system is referred to as F420H2 dehydrogenase. The archaeal protein is a homologue of complex I of the respiratory chain from bacteria and mitochondria. This review focuses on the biochemical and genetic characteristics of the three energy-transducing enzymes and on the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, Wisconsin 53201, USA.
| |
Collapse
|
19
|
Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 2004; 279:46686-91. [PMID: 15342627 DOI: 10.1074/jbc.m406942200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypX gene of the facultative lithoautotrophic bacterium Ralstonia eutropha is part of a cassette of accessory genes (the hyp cluster) required for the proper assembly of the active site of the [NiFe]-hydrogenases in the bacterium. A deletion of the hypX gene led to a severe growth retardation under lithoautotrophic conditions with 5 or 15% oxygen, when the growth was dependent on the activity of the soluble NAD+ -reducing hydrogenase. The enzymatic and infrared spectral properties of the soluble hydrogenase purified from a HypX-negative strain were compared with those from an enzyme purified from a HypX-positive strain. In activity assays under anaerobic conditions both enzyme preparations behaved the same. Under aerobic conditions, however, the mutant enzyme became irreversibly inactivated during H2 oxidation with NAD+ or benzyl viologen as the electron acceptor. Infrared spectra and chemical determination of cyanide showed that one of the four cyanide groups in the wild-type enzyme was missing in the mutant enzyme. The data are consistent with the proposal that the HypX protein is specifically involved in the biosynthetic pathway that delivers the nickel-bound cyanide. The data support the proposal that this cyanide is crucial for the enzyme to function under aerobic conditions.
Collapse
Affiliation(s)
- Boris Bleijlevens
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 2004; 9:616-26. [PMID: 15164270 DOI: 10.1007/s00775-004-0555-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Infrared spectra of (15)N-enriched preparations of the soluble cytoplasmic NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha are presented. These spectra, together with chemical analyses, show that the Ni-Fe active site contains four cyanide groups and one carbon monoxide molecule. It is proposed that the active site is a (RS)(2)(CN)Ni(micro-RS)(2)Fe(CN)(3)(CO) centre (R=Cys) and that H(2) activation solely takes place on nickel. One of the two FMN groups (FMN-a) in the enzyme can be reversibly released upon reduction of the enzyme. It is now reported that at longer times also one of the cyanide groups, the one proposed to be bound to the nickel atom, could be removed from the enzyme. This process was irreversible and induced the inhibition of the enzyme activity by oxygen; the enzyme remained insensitive to carbon monoxide. The Ni-Fe active site was EPR undetectable under all conditions tested. It is concluded that the Ni-bound cyanide group is responsible for the oxygen insensitivity of the enzyme.
Collapse
Affiliation(s)
- Eddy Van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Prommeenate P, Lennon AM, Markert C, Hippler M, Nixon PJ. Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 2004; 279:28165-73. [PMID: 15102833 DOI: 10.1074/jbc.m401107200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria contain several genes, annotated ndh, whose products show sequence similarities to subunits found in complex I (NADH:ubiquinone oxidoreductase) of eubacteria and mitochondria. However, it is still unclear whether the cyanobacterial ndh gene products actually form a single large protein complex or exist as smaller independent complexes. To address this, we have constructed a strain of Synechocystis sp. PCC 6803 in which the C terminus of the NdhJ subunit was fused to an His(6) tag to aid isolation. Three major NdhJ-containing complexes were resolved by blue native polyacrylamide gel electrophoresis, with approximate apparent molecular masses of 460, 330, and 110 kDa. N-terminal sequencing and mass spectrometry revealed that the 460-kDa complex contained ten annotated ndh gene products. Detergent-induced fragmentation experiments indicated that the 460-kDa complex was composed of hydrophobic (150 kDa) and hydrophilic (110-130 kDa) modules similar to that found in the minimal form of complex I found in Escherichia coli, except that the electron input module was not conserved. The difference in size between the 460- and 330-kDa complexes is attributed to differences in the stoichiometry of the hydrophilic and hydrophobic modules in the complex, either 2:1 or 1:1, respectively. We have also detected the presence of two new Ndh subunits (slr1623 and sll1262) that are unrelated to subunits in the eubacterial complex I but which have homologues in the closely related chloroplast Ndh complex of maize (Funk, E., Schäfer, E., and Steinmüller, K. (1999) J. Plant Physiol. 154, 16-23). The presence of these additional subunits might reflect the use by the NDH-1 and Ndh complexes of a different, so far unidentified, electron input module.
Collapse
Affiliation(s)
- Peerada Prommeenate
- Department of Biological Sciences, Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Stolpe S, Friedrich T. The Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I) Is a Primary Proton Pump but May Be Capable of Secondary Sodium Antiport. J Biol Chem 2004; 279:18377-83. [PMID: 14970214 DOI: 10.1074/jbc.m311242200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump as well. However, data obtained with whole cells showed the presence of an NADH-induced electrochemical proton gradient. In addition, Fourier transform IR spectroscopy demonstrated that the redox reaction of the E. coli complex I is coupled to a protonation of amino acids. To resolve this contradiction we measured the properties of isolated E. coli complex I reconstituted in phospholipids. We found that the NADH:ubiquinone oxidoreductase activity did not depend on the sodium concentration. The redox reaction of the complex in proteoliposomes caused a membrane potential due to an electrochemical proton gradient as measured with fluorescent probes. The signals were sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the inhibitors piericidin A, dicyclohexylcarbodi-imide (DCCD), and amiloride derivatives, but were insensitive to the sodium ionophore ETH-157. Furthermore, monensin acting as a Na(+)/H(+) exchanger prevented the generation of a proton gradient. Thus, our data demonstrated that the E. coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed.
Collapse
Affiliation(s)
- Stefan Stolpe
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
| | | |
Collapse
|
23
|
van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. ACTA ACUST UNITED AC 2004; 271:801-8. [PMID: 14764097 DOI: 10.1111/j.1432-1033.2004.03984.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The soluble, cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha is a heterotetrameric enzyme (HoxFUYH) and contains two FMN groups. The purified oxidized enzyme is inactive in the H2-NAD+ reaction, but can be activated by catalytic amounts of NADH. It was discovered that one of the FMN groups (FMN-a) is selectively released upon prolonged reduction of the enzyme with NADH. During this process, the enzyme maintained its tetrameric form, with one FMN group (FMN-b) firmly bound, but it lost its physiological activity--the reduction of NAD+ by H2. This activity could be reconstituted by the addition of excess FMN to the reduced enzyme. The rate of reduction of benzyl viologen by H2 was not dependent on the presence of FMN-a. Enzyme devoid of FMN-a could not be activated by NADH. As NADH-dehydrogenase activity was not dependent on the presence of FMN-a, and because FMN-b did not dissociate from the reduced enzyme, we conclude that FMN-b is functional in the NADH-dehydrogenase activity catalyzed by the HoxFU dimer. The possible function of FMN-a as a hydride acceptor in the hydrogenase reaction catalyzed by the HoxHY dimer is discussed.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Maklashina E, Kotlyar AB, Cecchini G. Active/de-active transition of respiratory complex I in bacteria, fungi, and animals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:95-103. [PMID: 14507430 DOI: 10.1016/s0005-2728(03)00087-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian complex I (NADH:ubiquinone oxidoreductase) exists as a mixture of interconvertible active (A) and de-activated (D) forms. The A-form is capable of NADH:quinone-reductase catalysis, but not the D-form. Complex I from the bacterium Paracoccus denitrificans, by contrast, exists only in the A-form. This bacterial complex contains 32 fewer subunits than the mammalian complex. The question arises therefore if the structural complexity of complex I from higher organisms correlates with its ability to undergo the A/D transition. In the present study, it was found that complex I from the bacterium Escherichia coli and from non-vertebrate organisms (earthworm, lobster, and cricket) did not show the A/D transitions. Vertebrate organisms (carp, frog, chicken), however, underwent similar A/D transitions to those of the well-characterized bovine complex I. Further studies showed that complex I from the lower eukaryotes, Neurospora crassa and Yarrowia lipolytica, exhibited very distinct A/D transitions with much lower activation barriers compared to the bovine enzyme. The A/D transitions of complex I as they relate to structure and regulation of enzymatic activity are discussed.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division (151-S), VA Medical Center, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|