1
|
Nowicka B, Walczak J, Kapsiak M, Barnaś K, Dziuba J, Suchoń A. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107660. [PMID: 36996637 DOI: 10.1016/j.plaphy.2023.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Hydrophilic, untethered 1,4-naphthoquinones (1,4-NQs) are plant secondary metabolites that are often excreted into the environment and play a role in various plant-microbial, plant-fungal, plant-insect and plant-plant interactions. The biological activity of 1,4-NQs is mainly related to their redox properties, i.e. the ability to undergo redox cycling in cells. These compounds may also undergo electrophilic addition to thiol-containing compounds. The aim of this study was to compare the impact of juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone (2-met-NQ) on the antioxidant response of the green microalga Chlamydomonas reinhardtii. The algae were incubated with the examined compounds under low light for 6 h and the content of photosynthetic pigments, prenyllipid antioxidants, ascorbate, soluble thiols, proline, and superoxide dismutase activity was assessed. To examine the interaction between photosynthetic activity and naphthoquinone toxicity, we carried out the second experiment, in which C. reinhardtii was incubated with 1,4-NQs for 1 h under high light or in darkness. The pro-oxidant action of the examined 1,4-NQs depended on their reduction potentials, which decrease in order: juglone > plumbagin > 2-met-NQ > lawsone. Lawsone did not display pro-oxidant properties. Exposure to high light strongly enhanced the pro-oxidant effect of juglone, plumbagin, and 2-met-NQ, which is thought to result from the interception of the electrons from photosynthetic electron transfer chain. Only juglone was able to cause a fast depletion of plastoquinol, which may be an important mode of action of this allelochemical, responsible for its high toxicity to plants.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| | - Jan Walczak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Maja Kapsiak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Karolina Barnaś
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Julia Dziuba
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Aleksandra Suchoń
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
2
|
Wilson S, Li DH, Ruban AV. The Structural and Spectral Features of Light-Harvesting Complex II Proteoliposomes Mimic Those of Native Thylakoid Membranes. J Phys Chem Lett 2022; 13:5683-5691. [PMID: 35709359 PMCID: PMC9237827 DOI: 10.1021/acs.jpclett.2c01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The major photosystem II light-harvesting antenna (LHCII) is the most abundant membrane protein in nature and plays an indispensable role in light harvesting and photoprotection in the plant thylakoid. Here, we show that "pseudothylakoid characteristics" can be observed in artificial LHCII membranes. In our proteoliposomal system, at high LHCII densities, the liposomes become stacked, mimicking the in vivo thylakoid grana membranes. Furthermore, an unexpected, unstructured emission peak at ∼730 nm appears, similar in appearance to photosystem I emission, but with a clear excimeric character that has never been previously reported. These states correlate with the increasing density of LHCII in the membrane and a decrease in its average fluorescence lifetime. The appearance of these low-energy states can also occur in natural plant membrane structures, which has unique consequences for the interpretation of the spectroscopic and physiological properties of the photosynthetic membrane.
Collapse
|
3
|
Voronova EN, Konyukhov IV, Koksharova OA, Popova AA, Pogosyan SI, Khmel IA, Rubin AB. Inhibition of cyanobacterial photosynthetic activity by natural ketones. JOURNAL OF PHYCOLOGY 2019; 55:840-857. [PMID: 30913303 DOI: 10.1111/jpy.12861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2-nonanone and 2-undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB , electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2-nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.
Collapse
Affiliation(s)
- Elena N Voronova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119991, Russia
| | - Ivan V Konyukhov
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119991, Russia
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, Moscow, 123182, Russia
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 40, Moscow, 119992, Russia
| | - Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, Moscow, 123182, Russia
| | - Sergey I Pogosyan
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119991, Russia
| | - Inessa A Khmel
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, Moscow, 123182, Russia
| | - Andrey B Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119991, Russia
| |
Collapse
|
4
|
Chukhutsina VU, Holzwarth AR, Croce R. Time-resolved fluorescence measurements on leaves: principles and recent developments. PHOTOSYNTHESIS RESEARCH 2019; 140:355-369. [PMID: 30478711 PMCID: PMC6509100 DOI: 10.1007/s11120-018-0607-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 05/03/2023]
Abstract
Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Alfred R Holzwarth
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gilbert M, Bährs H, Steinberg CEW, Wilhelm C. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. PHOTOSYNTHESIS RESEARCH 2018; 137:403-420. [PMID: 29777430 DOI: 10.1007/s11120-018-0513-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Humic substances (HSs) can influence the growth and composition of freshwater phytoplankton assemblage. Since HSs contain many phenolic and quinonic moieties and cause growth reductions in eco-physiological field experiments, HSs are considered photosystem II herbicides. To test this specific mode of action in vivo and in vitro, respectively, we used intact cells of the green alga Desmodesmus armatus, as well as thylakoids isolated from spinach (Spinacia oleracea) as a model system for the green algal chloroplast. Photosynthetic electron transport was measured as oxygen evolution and variable chlorophyll fluorescence. The in vivo effect of the artificial humic substance HS1500 on algae consisted of no impact on photosynthesis-irradiance curves of intact green algae compared to untreated controls. In contrast, addition of HS1500 to isolated thylakoids resulted in light-induced oxygen consumption (Mehler reaction) as an in vitro effect. Fluorescence induction kinetics of HS-treated thylakoids revealed a large static quenching effect of HS1500, but no inhibitory effect on electron transport. For the case of intact algal cells, we conclude that the highly hydrophilic and rather large molecules of HS1500 are not taken up in effective quantities and, therefore, cannot interfere with photosynthesis. The in vitro tests show that HS1500 has no inhibitory effect on photosystem II but operates as a weak, oxygen-consuming Hill acceptor at photosystem I. Hence, the results indicate that eco-physiological field experiments should focus more strongly on effects of HSs on extracellular features, such as reducing and red-shifting the underwater light field or influencing nutrient availability by cation exchange within the plankton network.
Collapse
Affiliation(s)
- Matthias Gilbert
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Hanno Bährs
- Aquacopa GmbH, Koppelbergstr. 4, 17166, Teterow, Germany
| | - Christian E W Steinberg
- Department of Biology, Freshwater and Stress Ecology, Humboldt-University Berlin, Arboretum, Späthstraße 80/81, 12437, Berlin, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. Sci Rep 2018; 8:11595. [PMID: 30072763 PMCID: PMC6072754 DOI: 10.1038/s41598-018-29976-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023] Open
Abstract
To mitigate cyanobacterial blooms, the naphthoquinone derivative, NQ 2-0, which has selective algicidal activity against cyanobacteria, has been developed. However, due to a lack of information on its algicidal mechanisms, there are significant gaps in our understanding of how this substance is capable of selectively killing cyanobacteria. Here, we investigated the selective algicidal mechanisms of NQ 2-0 using target (Microcystis aeruginosa) and non-target (Cyclotella sp. and Selenastrum capricornutum) species. NQ 2-0 showed selective algicidal activity against only M. aeruginosa, and this activity was strongly light-dependent. This NQ compound has selectively reduced the oxygen evolution rate and photosystem II (PSII) efficiency of M. aeruginosa throughout blocking electron transfer from the photosynthetic electron transport system, and significantly (p ≤ 0.05) increased levels of reactive oxygen species (ROS), resulting in membrane damage through lipid peroxidation. In ultrastructural observations, thylakoid membranes were disintegrated within 12 h after NQ 2-0 treatment, and cytoplasmic vacuolation and disintegrated cellular membrane were observed at 24 h. These findings suggest that increased ROS levels following NQ 2-0 treatment may induce cell death. Interestingly, compared to non-target eukaryotic cells, M. aeruginosa showed relatively late antioxidant response to reduce the increased ROS level, this may enhance algicidal activity against this cyanobacterium.
Collapse
|
7
|
Mandal P, Manna JS, Das D, Maiti R, Mitra MK, Chakravorty D. Magnetic response of chlorophyll self-assembly within hydrogel: a mechanistic approach towards enhanced photoharvesting. RSC Adv 2018; 8:26440-26447. [PMID: 35541073 PMCID: PMC9083083 DOI: 10.1039/c8ra04612c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/08/2018] [Indexed: 01/15/2023] Open
Abstract
Self-assembly of chlorophyll-a (Chl-a) molecules within a protein environment serves as the key factor behind controlled and efficient light energy harvesting in natural photosystems. Long-range ordering among supramolecular structures in terms of spin-orbit coupling and edge effect helps in untrapping of excitons in the disordered energy landscape. Mimicking the photosynthetic machinery would give a new paradigm for organic photovoltaic material design where a large amount of disorder exists. In this paper, we report the experimental evidence of room temperature magnetic domain wall formation and edge effect along with spin flop canting in self-assembled Chl-a within hydrogel matrix via SQUID magnetometry. This was further correlated with intermolecular coupling and exciton delocalization through specific arrangements of self-assembly as evident from NMR spectral and photophysical characteristics. The data cumulatively suggest electronic backscattering protection which is also substantiated by the ferroelectric behavior coming from coexisting symmetry lowering. Here the polarization evolves through primary distribution of π electronic density along with a photoresponsive IV loop, similar to the photoprotection of photosynthesis. This work thus proposes a promising design principle for room temperature Chl-a based biomimetic systems efficient in photoharnessing.
Collapse
Affiliation(s)
- Pubali Mandal
- School of Materials Science & Nanotechnology, Jadavpur University Kolkata 700032 India
| | - Jhimli S Manna
- School of Materials Science & Nanotechnology, Jadavpur University Kolkata 700032 India
- Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology Kharagpur 721302 India
| | - Debmallya Das
- Department of Materials Science, Indian Association for the Cultivation of Science Kolkata 700032 India
- Metallurgical & Material Engineering Department, Jadavpur University Kolkata 700032 India
| | - Ramaprasad Maiti
- Department of Materials Science, Indian Association for the Cultivation of Science Kolkata 700032 India
- Department of Electronics, Derozio Memorial College Kolkata 700136 India
| | - Manoj K Mitra
- School of Materials Science & Nanotechnology, Jadavpur University Kolkata 700032 India
- Metallurgical & Material Engineering Department, Jadavpur University Kolkata 700032 India
| | - Dipankar Chakravorty
- MLS Professor's Unit, Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
8
|
Das S, Maiti SK. PSII as an in vivo molecular catalyst for the production of energy rich hydroquinones - A new approach in renewable energy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:134-139. [PMID: 29413696 DOI: 10.1016/j.jphotobiol.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
One of the pertinent issues in the field of energy science today is the quest for an abundant source of hydrogen or hydrogen equivalents. In this study, phenyl-p-benzoquinone (pPBQ) has been used to generate a molecular store of hydrogen equivalents (phenyl-p-hydroquinone; pPBQH2) from thein vivo splitting of water by photosystem II of the marine cyanobacterium Synechococcus elongatus BDU 70542. Using this technique, 10.8 μmol of pPBQH2 per mg chlorophyll a can be extracted per minute, an efficiency that is orders of magnitude higher when compared to the techniques present in the current literature. Moreover, the photo-reduction process was stable when tested over longer periods of time. Addition of phenyl-p-benzoquinone on an intermittent basis resulted in the precipitation of phenyl-p-hydroquinone, obviating the need for costly downstream processing units for product recovery. Phenyl-p-hydroquinone so obtained is a molecular store of free energy preserved through the light driven photolysis of water and can be used as a cheap and a renewable source of hydrogen equivalents by employing transition metal catalysts or fuel cells with the concomitant regeneration of phenyl-p-benzoquinone. The cyclic nature of this technique makes it an ideal candidate to be utilized in mankind's transition from fossil fuels to solar fuels.
Collapse
Affiliation(s)
- Sai Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Soumen K Maiti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India.
| |
Collapse
|
9
|
Mandal P, Manna JS, Das D, Mitra MK. Energy transfer cascade in bio-inspired chlorophyll-a/polyacrylamide hydrogel: towards a new class of biomimetic solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra16780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient solar energy harvesting in natural photosystem inspired chlorophyll-a/hydrogel based soft, simple system, revealing the effect of coherence-dephasing interpaly.
Collapse
Affiliation(s)
- Pubali Mandal
- School of Materials Science & Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Jhimli S. Manna
- School of Materials Science & Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Debmallya Das
- Metallurgical & Material Engineering Department
- Jadavpur University
- Kolkata 700032
- India
| | - Manoj K. Mitra
- Metallurgical & Material Engineering Department
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
10
|
van Amerongen H, Croce R. Light harvesting in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:251-63. [PMID: 23595278 PMCID: PMC3824292 DOI: 10.1007/s11120-013-9824-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It can handle far more photons than the ones absorbed by its own pigments and therefore, additional excitations are provided by the surrounding light-harvesting complexes or antennae. The RC is located in the PSII core that also contains the inner light-harvesting complexes CP43 and CP47, harboring 13 and 16 chlorophyll pigments, respectively. The core is surrounded by outer light-harvesting complexes (Lhcs), together forming the so-called supercomplexes, at least in plants. These PSII supercomplexes are complemented by some "extra" Lhcs, but their exact location in the thylakoid membrane is unknown. The whole system consists of many subunits and appears to be modular, i.e., both its composition and organization depend on environmental conditions, especially on the quality and intensity of the light. In this review, we will provide a short overview of the relation between the structure and organization of pigment-protein complexes in PSII, ranging from individual complexes to entire membranes and experimental and theoretical results on excitation energy transfer and charge separation. It will become clear that time-resolved fluorescence data can provide invaluable information about the organization and functioning of thylakoid membranes. At the end, an overview will be given of unanswered questions that should be addressed in the near future.
Collapse
Affiliation(s)
- Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET, Wageningen, The Netherlands,
| | | |
Collapse
|
11
|
Deng Y, Li C, Shao Q, Ye X, She J. Differential responses of double petal and multi petal jasmine to shading: I. Photosynthetic characteristics and chloroplast ultrastructure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:93-102. [PMID: 22562019 DOI: 10.1016/j.plaphy.2012.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/14/2012] [Indexed: 05/20/2023]
Abstract
A double petal (DP) and a multi petal (MP) type jasmine (Jasminum sambac Ait.) growth and flowering was known largely affected by different levels of irradiance. Here, our objective was to determine the effects of shade on photosynthesis related characteristics and chloroplast ultrastructure of these two types. In both types, net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate increased with decreasing irradiance from 100% to 20%, while both maximum and variable fluorescence showed a steady increase, and photochemical and nonphotochemical quenching indexes declined. At each conducted time, chlorophyll a, b and carotenoids contents in DP type shaded leaves increased whereas those in MP type decreased at 5% irradiance (considered as extreme shade). The maximum photochemical efficiency of photosystem II of DP plants showed subtle changes but that of MP plants declined by shading thereafter 21 days of treatment. Observation of chloroplast ultrastructure showed its best development in the leaves of DP and MP types mostly from 50% to 20% irradiance (considered as weak and moderate shade, respectively). At each shade treatment, Pn, g(s) and water use efficiency of DP-jasmine were always higher than those of MP-jasmine, thus the shade tolerance ability of the former was higher than that of the latter. The results showed that full sunlight and 5% natural irradiance caused photoinhibition and light deficiency of jasmine plants respectively, and modulating chloroplast development by the more numbers of thylakoids and grana to contain more photosynthetic pigments is an important shade tolerance mechanism of DP type.
Collapse
Affiliation(s)
- Yanming Deng
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | | | | | | |
Collapse
|
12
|
Croce R, van Amerongen H. Light-harvesting and structural organization of Photosystem II: From individual complexes to thylakoid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:142-53. [DOI: 10.1016/j.jphotobiol.2011.02.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
13
|
Caffarri S, Broess K, Croce R, van Amerongen H. Excitation energy transfer and trapping in higher plant Photosystem II complexes with different antenna sizes. Biophys J 2011; 100:2094-103. [PMID: 21539776 PMCID: PMC3149253 DOI: 10.1016/j.bpj.2011.03.049] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022] Open
Abstract
We performed picosecond fluorescence measurements on well-defined Photosystem II (PSII) supercomplexes from Arabidopsis with largely varying antenna sizes. The average excited-state lifetime ranged from 109 ps for PSII core to 158 ps for the largest C(2)S(2)M(2) complex in 0.01% α-DM. Excitation energy transfer and trapping were investigated by coarse-grained modeling of the fluorescence kinetics. The results reveal a large drop in free energy upon charge separation (>700 cm(-1)) and a slow relaxation of the radical pair to an irreversible state (∼150 ps). Somewhat unexpectedly, we had to reduce the energy-transfer and charge-separation rates in complexes with decreasing size to obtain optimal fits. This strongly suggests that the antenna system is important for plant PSII integrity and functionality, which is supported by biochemical results. Furthermore, we used the coarse-grained model to investigate several aspects of PSII functioning. The excitation trapping time appears to be independent of the presence/absence of most of the individual contacts between light-harvesting complexes in PSII supercomplexes, demonstrating the robustness of the light-harvesting process. We conclude that the efficiency of the nonphotochemical quenching process is hardly dependent on the exact location of a quencher within the supercomplexes.
Collapse
Affiliation(s)
- Stefano Caffarri
- Aix Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- CEA, DSV, iBEB, Marseille, France
- CNRS, UMR6191 Biologie Végétale et Microbiologie Environnementales, Marseille, France
| | - Koen Broess
- Wageningen University, Laboratory of Biophysics, Wageningen, The Netherlands
| | - Roberta Croce
- Groningen University, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Biophysical Chemistry, Groningen, The Netherlands
| | - Herbert van Amerongen
- Wageningen University, Laboratory of Biophysics, Wageningen, The Netherlands
- Microspectroscopy Center, Wageningen, The Netherlands
| |
Collapse
|
14
|
Krumova SB, Laptenok SP, Kovács L, Tóth T, van Hoek A, Garab G, van Amerongen H. Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. PHOTOSYNTHESIS RESEARCH 2010; 105:229-42. [PMID: 20645128 PMCID: PMC2975056 DOI: 10.1007/s11120-010-9581-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 06/29/2010] [Indexed: 05/20/2023]
Abstract
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type-WT) occur at 4-7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.
Collapse
Affiliation(s)
- Sashka Boychova Krumova
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Collins AM, Redding KE, Blankenship RE. Modulation of fluorescence in Heliobacterium modesticaldum cells. PHOTOSYNTHESIS RESEARCH 2010; 104:283-292. [PMID: 20461555 DOI: 10.1007/s11120-010-9554-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
In what appears to be a common theme for all phototrophs, heliobacteria exhibit complex modulations of fluorescence yield when illuminated with actinic light and probed on a time scale of micros to minutes. The fluorescence yield from cells of Heliobacterium modesticaldum remained nearly constant for the first 10-100 ms of illumination and then rose to a maximum level with one or two inflections over the course of many seconds. Fluorescence then declined to a steady-state value within about one minute. In this analysis, the origins of the fluorescence induction in whole cells of heliobacteria are investigated by treating cells with a combination of electron accepters, donors, and inhibitors of the photosynthetic electron transport, as well as varying the temperature. We conclude that fluorescence modulation in H. modesticaldum results from acceptor-side limitation in the reaction center (RC), possibly due to charge recombination between P(800) (+) and A(0) (-).
Collapse
Affiliation(s)
- Aaron M Collins
- Departments of Biology and Chemistry, Washington University in St. Louis, MO 63130, USA
| | | | | |
Collapse
|
16
|
Hohmann-Marriott MF, Takizawa K, Eaton-Rye JJ, Mets L, Minagawa J. The redox state of the plastoquinone pool directly modulates minimum chlorophyll fluorescence yield in Chlamydomonas reinhardtii. FEBS Lett 2010; 584:1021-6. [PMID: 20122933 DOI: 10.1016/j.febslet.2010.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 11/26/2022]
Abstract
The effect of the plastoquionone (PQ) pool oxidation state on minimum chlorophyll fluorescence was studied in the green alga Chlamydomonas reinhardtii. In wild type and a mutant strain that lacks both photosystems but retains light harvesting complexes, oxygen depletion induced a rise in minimum chlorophyll fluorescence. An increase in minimum fluorescence yield is also observed when the PQ pool becomes reduced in the presence of oxygen and after application of an ionophore that collapses the transmembrane proton gradient. Together these results indicate that minimum chlorophyll fluorescence is modulated by the PQ oxidation state.
Collapse
|
17
|
Vassiliev S, Bruce D. Toward understanding molecular mechanisms of light harvesting and charge separation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 97:75-89. [PMID: 18443918 DOI: 10.1007/s11120-008-9303-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Conversion of light energy in photosynthesis is extremely fast and efficient, and understanding the nature of this complex photophysical process is challenging. This review describes current progress in understanding molecular mechanisms of light harvesting and charge separation in photosystem II (PSII). Breakthroughs in X-ray crystallography have allowed the development and testing of more detailed kinetic models than have previously been possible. However, due to the complexity of the light conversion processes, satisfactory descriptions remain elusive. Recent advances point out the importance of variations in the photochemical properties of PSII in situ in different thylakoid membrane regions as well as the advantages of combining sophisticated time-resolved spectroscopic experiments with atomic level computational modeling which includes the effects of molecular dynamics.
Collapse
Affiliation(s)
- Serguei Vassiliev
- Department of Biology, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
18
|
Joly D, Carpentier R. Regulation of Energy Dissipation in Photosystem I by the Redox State of the Plastoquinone Pool. Biochemistry 2007; 46:5534-41. [PMID: 17432831 DOI: 10.1021/bi602627d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.
Collapse
Affiliation(s)
- David Joly
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | | |
Collapse
|
19
|
Dewez D, Eullaffroy P, Popovic R, Juneau P. Rapid Chlorophyll a Fluorescence Transients of Lemna minor Leaves as Indication of Light and Exogenous Electron Carriers Effect on Photosystem II Activity. Photochem Photobiol 2007; 83:714-21. [PMID: 17076544 DOI: 10.1562/2006-08-08-ra-999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By using saturating flash, we investigated the change in the rapid fluorescence rise when Lemna minor leaf was exposed to different light conditions and treated with exogenous electron acceptors (methyl viologen and duroquinone) and electron donor (hydroxylamine). Investigation was carried out by using combined pulse amplitude modulated fluorometer and plant efficiency analyzer system, which were employed simultaneously to provide different light conditions and to induce rapid fluorescence rise respectively. We have shown that when leaf of L. minor was exposed to different conditions of illumination, rapid fluorescence rise was greatly influenced by the electron transport functions beyond quinone A-plastoquinone reduction. This was indicated by the change in both fluorescence yield and appearance time of the different transients. When exogenous electron donor (hydroxylamine) and acceptors (methyl viologen and duroquinone) were applied in in vivo condition, we showed that rapid fluorescence rise represented a reliable indicator of PSII-PSI electron transport state and energy dissipation process.
Collapse
Affiliation(s)
- D Dewez
- Department of Chemistry-TOXEN, University of Quebec in Montreal, Succ. Centre-Ville, Montreal, QC, Canada
| | | | | | | |
Collapse
|
20
|
Broess K, Trinkunas G, van der Weij-de Wit CD, Dekker JP, van Hoek A, van Amerongen H. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 2006; 91:3776-86. [PMID: 16861268 PMCID: PMC1630486 DOI: 10.1529/biophysj.106.085068] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/29/2006] [Indexed: 11/18/2022] Open
Abstract
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.
Collapse
Affiliation(s)
- Koen Broess
- Wageningen University, Laboratory of Biophysics, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Rossini S, Casazza AP, Engelmann ECM, Havaux M, Jennings RC, Soave C. Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. PLANT PHYSIOLOGY 2006; 141:1264-73. [PMID: 16778010 PMCID: PMC1533944 DOI: 10.1104/pp.106.083055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ELIPs (early light-induced proteins) are thylakoid proteins transiently induced during greening of etiolated seedlings and during exposure to high light stress conditions. This expression pattern suggests that these proteins may be involved in the protection of the photosynthetic apparatus against photooxidative damage. To test this hypothesis, we have generated Arabidopsis (Arabidopsis thaliana) mutant plants null for both elip genes (Elip1 and Elip2) and have analyzed their sensitivity to light during greening of seedlings and to high light and cold in mature plants. In particular, we have evaluated the extent of damage to photosystem II, the level of lipid peroxidation, the presence of uncoupled chlorophyll molecules, and the nonphotochemical quenching of excitation energy. The absence of ELIPs during greening at moderate light intensities slightly reduced the rate of chlorophyll accumulation but did not modify the extent of photoinhibition. In mature plants, the absence of ELIP1 and ELIP2 did not modify the sensitivity to photoinhibition and photooxidation or the ability to recover from light stress. This raises questions about the photoprotective function of these proteins. Moreover, no compensatory accumulation of other ELIP-like proteins (SEPs, OHPs) was found in the elip1/elip2 double mutant during high light stress. elip1/elip2 mutant plants show only a slight reduction in the chlorophyll content in mature leaves and greening seedlings and a lower zeaxanthin accumulation in high light conditions, suggesting that ELIPs could somehow affect the stability or synthesis of these pigments. On the basis of these results, we make a number of suggestions concerning the biological function of ELIPs.
Collapse
Affiliation(s)
- Silvia Rossini
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Santabarbara S, Jennings RC. The size of the population of weakly coupled chlorophyll pigments involved in thylakoid photoinhibition determined by steady-state fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:138-49. [PMID: 16043117 DOI: 10.1016/j.bbabio.2005.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 05/24/2005] [Accepted: 06/03/2005] [Indexed: 11/24/2022]
Abstract
On the basis of experiments with singlet quenchers and in agreement with previous data, it is suggested that a population of energetically weakly coupled chlorophylls may play a central role in photoinhibition in vivo and in vitro. In the present study, we have used steady state fluorescence techniques to gain direct evidence for these uncoupled chlorophylls. Due to the presence of their emission maxima, near 650 nm and more prominently in the 670--675 nm interval both chlorophylls b and a seem to be involved. A straightforward mathematical model is developed to describe the data which allows us to conclude that the uncoupled/weakly coupled population size is in the range of 1--3 molecules per photosystem.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Istituto di Biofisica del CNR, Sezione di Milano, Dipartimento di Biologia, Universita' degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | |
Collapse
|
23
|
Apostolova E, Krumova S, Markova T, Filipova T, Molina MT, Petkanchin I, Taneva SG. Role of LHCII organization in the interaction of substituted 1,4-anthraquinones with thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2005; 78:115-23. [PMID: 15664498 DOI: 10.1016/j.jphotobiol.2004.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 10/04/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022]
Abstract
The chlorophyll fluorescence, photochemical activity and surface electric properties of thylakoid membranes with different stoichiometry of pigment-protein complexes and organization of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHCII) were studied in the presence of substituted 1,4-anthraquinones. Data show strong dependence of the quenching of the chlorophyll fluorescence on the structural organization of LHCII. The increase of the LHCII oligomerization, which is associated with significant reduction of the transmembrane electric charge asymmetry and electric polarizability of the membrane, correlates with enhanced quenching effect of substituted 1,4-athraquinones. Crucial for the large quinone-induced changes in the membrane electric dipole moments is the structure of the quinone molecule. The strongest reduction in the values of the dipole moments is observed after interaction of thylakoids with 3-chloro-9-hydroxy-1,4-anthraquinone (TF33) which has the highest quenching efficiency. The quinone induced changes in the photochemical activity of photosystem II (PSII) correlate with the total amount of the supramolecular LHCII-PSII complex and depend on the number of substituents in the 1,4-anthraquinone molecule.
Collapse
Affiliation(s)
- Emilia Apostolova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., B1.21, Sofia 1113, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rajagopal S, Egorova EA, Bukhov NG, Carpentier R. Quenching of excited states of chlorophyll molecules in submembrane fractions of Photosystem I by exogenous quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:147-52. [PMID: 14507435 DOI: 10.1016/s0005-2728(03)00111-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of three substituted quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duriquinone) to quench the excited states of chlorophyll (Chl) molecules in Photosystem I (PSI) was studied. Chl fluorescence emission measured with isolated PSI submembrane fractions was reduced following the addition of exogenous quinones. This quenching progressively increased with rising concentrations of the exogenous quinones according to the Stern-Volmer law. The values of Stern-Volmer quenching coefficients were found to be 3.28 x 10(5) M(-1) (DBMIB), 1.31 x 10(4) M(-1) (DCBQ), and 3.7 x 10(3) M(-1) (duroquinone). The relative quenching capacities of the various exogenous quinones in PSI thus strictly coincided to those found for the quenching of Fo level of Chl fluorescence in isolated thylakoids, which is emitted largely by Photosystem II (PSII) [Biochim. Biophys. Acta (2003) 1604, 115-123]. Quenching of Chl excited states in PSI submembrane fractions by exogenous quinones slowed down the rate of P700, primary electron donor of PSI, photooxidation measured at limiting actinic light irradiances thus revealing a reduced photochemical capacity of absorbed quanta. The possible involvement of non-photochemical quenching of excited Chl states by oxidized phylloquinones, electron acceptors of PSI, and oxidized plastoquinones, mobile electron carriers between PSII and the cytochrome b(6)/f complex, into the control of photochemical activity of PSI is discussed.
Collapse
Affiliation(s)
- Subramanyam Rajagopal
- Groupe de Recherche en Energie et Information Biomoléculaires, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Three Rivers, Quebec, Canada GA9 5H7
| | | | | | | |
Collapse
|
25
|
Bukhov NG, Sridharan G, Egorova EA, Carpentier R. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:115-23. [PMID: 12765768 DOI: 10.1016/s0005-2728(03)00042-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (F(o)) and to markedly retard the light-induced rise of variable fluorescence (F(v)). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to F(o) level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench F(v) at low concentration, while F(o) was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched F(o) level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).
Collapse
Affiliation(s)
- Nikolai G Bukhov
- Département de Chimie-biologie, Groupe de Recherche en Energie et Information Biomoléculaires, Université du Québec à Trois-Rivières, Canada
| | | | | | | |
Collapse
|
26
|
Apostolova E, Markova T, Filipova T, Molina MT, Taneva SG. Influence of substituted 1,4-anthraquinones on the chlorophyll fluorescence and photochemical activity of pea thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2003; 70:75-80. [PMID: 12849697 DOI: 10.1016/s1011-1344(03)00057-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of substituted 1,4-anthraquinones on the photochemical activity and chlorophyll fluorescence of thylakoid membranes was examined. Both the fluorescence and the photochemical activity depend on the 1,4-anthraquinone substituent. Stronger quinone-induced quenching of the chlorophyll fluorescence than quinone-induced changes in the activity of photosystem II is observed. The type (Cl or Br) and the position (Cl) of the chalogen atom strongly influence the degree of inhibition of PSII electron transport and the quenching of chlorophyll fluorescence. The data suggest that the quenching of chlorophyll fluorescence is due rather to the interaction of the 1,4-anthraquinones and chlorophyll molecules than to an indirect effect caused by stimulation of the photochemistry.
Collapse
Affiliation(s)
- Emilia Apostolova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
27
|
Cruz JA, Salbilla BA, Kanazawa A, Kramer DM. Inhibition of plastocyanin to P(700)(+) electron transfer in Chlamydomonas reinhardtii by hyperosmotic stress. PLANT PHYSIOLOGY 2001. [PMID: 11706196 DOI: 10.1104/pp.010328] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oxygen electrode and fluorescence studies demonstrate that linear electron transport in the freshwater alga Chlamydomonas reinhardtii can be completely abolished by abrupt hyperosmotic shock. We show that the most likely primary site of inhibition of electron transfer by hyperosmotic shock is a blockage of electron transfer between plastocyanin (PC) or cytochrome c(6) and P(700). The effects on this reaction were reversible upon dilution of the osmolytes and the stability of plastocyanin or photosystem (PS) I was unaffected. Electron micrographs of osmotically shocked cells showed a significant decrease in the thylakoid lumen volume. Comparison of estimated lumenal width with the x-ray structures of plastocyanin and PS I suggest that lumenal space contracts during HOS so as to hinder the movement of docking to PS I of plastocyanin or cytochrome c(6).
Collapse
Affiliation(s)
- J A Cruz
- Institute of Biological Chemistry, Department of Biochemistry and Biophysics, 289 Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
28
|
Santabarbara S, Barbato R, Zucchelli G, Garlaschi FM, Jennings RC. The quenching of photosystem II fluorescence does not protect the D1 protein against light induced degradation in thylakoids. FEBS Lett 2001; 505:159-62. [PMID: 11557061 DOI: 10.1016/s0014-5793(01)02796-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In spinach thylakoids, the quenching of the singlet excited state in the photosystem II antenna by m-dinitrobenzene does not change the rate of the light induced degradation of the D1 reaction centre protein and offers only limited protection against photoinhibition itself. These results are discussed in terms of the role of non-photochemical quenching as a photoprotective strategy.
Collapse
Affiliation(s)
- S Santabarbara
- Dipartmento di Biologia, Università di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
29
|
Santabarbara S, Neverov KV, Garlaschi FM, Zucchelli G, Jennings RC. Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett 2001; 491:109-13. [PMID: 11226430 DOI: 10.1016/s0014-5793(01)02174-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Evidence is presented, by means of both fluorescence and action spectroscopy, that a small, spectroscopically heterogeneous population of both Chl a and Chl b molecules is present in isolated spinach thylakoids and is active in photoinhibition. The broadness of the action spectrum suggests that degraded or incompletely assembled pigment-protein complexes may be involved.
Collapse
Affiliation(s)
- S Santabarbara
- Centro C.N.R. Biologia Cellulare e Molecolare delle Piante, Dipartamento de Biologia, Universitá di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Frigaard N, Tokita S, Matsuura K. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:108-16. [PMID: 10556623 DOI: 10.1016/s0005-2728(99)00094-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus.
Collapse
Affiliation(s)
- N Frigaard
- Department of Biology, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji, 192-0397, Tokyo, Japan.
| | | | | |
Collapse
|
31
|
Santabarbara S, Garlaschi FM, Zucchelli G, Jennings RC. The effect of excited state population in photosystem II on the photoinhibition-induced changes in chlorophyll fluorescence parameters. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1409:165-70. [PMID: 9878720 DOI: 10.1016/s0005-2728(98)00159-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The photoinhibition-induced changes in Photosystem II fluorescence parameters of spinach thylakoids were only slightly sensitive to the excited state population in Photosystem II antenna, as modulated by either quinone quenching or energy spillover. The possibility that this may be due to a small fraction of chlorophyll molecules which are poorly coupled to the antenna is discussed.
Collapse
Affiliation(s)
- S Santabarbara
- Centro CNR Biologia Cellulare e Molecolare delle Piante, Dipartimento di Biologia, Universita degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
32
|
Vasil'ev S, Bruce D. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Biochemistry 1998; 37:11046-54. [PMID: 9693000 DOI: 10.1021/bi9806854] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in calculations of photochemical and nonphotochemical quenching parameters. The implications of our data with respect to kinetic models for the excited-state dynamics of photosystem II and the practical applications of the fluorescence yield parameters Fm and Fsat to calculations of photochemical yield are discussed.
Collapse
Affiliation(s)
- S Vasil'ev
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|