1
|
Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:164-73. [PMID: 21895945 PMCID: PMC3728994 DOI: 10.1111/j.1467-7652.2011.00650.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
2
|
Chemistry and Function of Phospholipids. FOOD SCIENCE AND TECHNOLOGY 2010. [DOI: 10.1201/9781420046649.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Colarow L, Turini M, Teneberg S, Berger A. Characterization and biological activity of gangliosides in buffalo milk. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:94-106. [PMID: 12573454 DOI: 10.1016/s1388-1981(02)00360-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gangliosides (GS) were evaluated in Swiss cow's milk (SCM), Italian buffalo milk (IBM) and its serum, Pakistan buffalo colostrum (PBC), Pakistan buffalo mature milk (PBM), and Pakistan buffalo milk from rice-growing areas (PBR). Dairy GS were obtained from the Folch's upper (hydrophilic) and lower (lipophilic) extraction phases, respectively, and determined as lipid-bound sialic acid (LBSA) by colorimetry. Molar ratios of LBSA in the hydro- and lipophilic GS fractions were 52:48 to 79:21. Mature buffalo milk types had 40-100% more LBSA in the lipophilic GS fraction compared to SCM. Liquid PBC was higher in LBSA (24 nmol/g) compared to mature milk types (8-11 nmol/g). Thin-layer chromatography (TLC) and scanning densitometry showed distinct profiles of hydrophilic and lipophilic GS fractions. Lipophilic GS (but importantly not hydrophilic GS) from IBM and its serum decreased prostaglandin series 2 production by 75-80% in cultured human colonic epithelial cells exposed to tumor necrosis factor alpha (TNFalpha). Hydrophilic GD(3) and lipophilic GM(3) selectively bound rotavirus particles prepared from a rhesus strain and its mutant. A GS fraction in IBM showed a GM(1)-specific binding to cholera toxin subunit B (CTB). IBM serum (IBMS) was a rich source of LBSA (420 nmol/g proteins). In summary, improved methodology led to increased LBSA recovery and isolation of additional and bioactive milk GS. Human and Italian buffalo milk had similar CTB binding, and both had increased polysialo-GS compared to cows milk. The toxin binding properties of buffalo milk GS, and the anti-inflammatory activity of the lipophilized GS fraction could be important for developing innovative food applications, as well as the subject of future research.
Collapse
Affiliation(s)
- Ladislas Colarow
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 26, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
4
|
Alegría AE, Santiago G, Lópes M, Rosario BI, Cordones E. Role of membrane charge and semiquinone structure on naphthosemiquinone derivatives and 1,4-benzosemiquinone disproportionation and membrane-buffer distribution coefficients. Free Radic Res 2001; 35:529-41. [PMID: 11767411 DOI: 10.1080/10715760100301541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Semiquinone membrane/buffer partition coefficients have been determined for 1,2-naphthosemiquinone (ONQ.-), 1,4-naphthosemiquinone (NQ.-) and two of its hydroxylated derivatives, 5,8-dihydroxy-1,4-naphthosemiquinone (NZQ.-) and 5-hydroxy-1,4-naphthosemiquinone (JQ.-) as a function of membrane charge in multilamellar vesicles of phosphatidylcholine (PC) and equimolar mixtures of this lipid and phosphatidic acid (PC:PA) and cetyltrimethylammonium bromide (PC:CTAB) at physiological pH with the exception of values corresponding to PC:PA mixtures which were obtained at pH 9. These coefficients follow the order PC:PA < PC < PC:CTAB in agreement with the negative charge of the semiquinones. The disproportionation equilibria of the naphthosemiquinone derivatives are shifted to the semiquinone in the presence of neutral and positive membranes, being more pronounced in the latter. However, very low partition coefficients as well as small shifts in the semiquinone disproportionation equilibrium were observed for ONQ.- as compared to the other semiquinones. No partition of 1,4-benzosemiquinone (BQ.-) into the lipid phase was detected for either charged or neutral lipid membranes. The presence of lipid membranes decreases the BQ.- equilibrium concentration in the presence of all the types of membranes considered here.
Collapse
Affiliation(s)
- A E Alegría
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, PR 00791, Puerto Rico.
| | | | | | | | | |
Collapse
|
5
|
Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3300-7. [PMID: 11544318 DOI: 10.4049/jimmunol.167.6.3300] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis survives within host macrophages by actively inhibiting phagosome fusion with lysosomes. Treatment of infected macrophages with ATP induces both cell apoptosis and rapid killing of intracellular mycobacteria. The following studies were undertaken to characterize the effector pathway(s) involved. Macrophages were obtained from p47(phox) and inducible NO synthase gene-disrupted mice (which are unable to produce reactive oxygen and nitrogen radicals, respectively) and P2X(7) gene-disrupted mice. RAW murine macrophages transfected with either the natural resistance-associated macrophage protein gene 1 (Nramp1)-resistant or Nramp1-susceptible gene were also used. The cells were infected with bacille Calmette-Guérin (BCG), and intracellular mycobacterial trafficking was analyzed using confocal and electron microscopy. P2X(7) receptor activation was essential for effective ATP-induced mycobacterial killing, as its bactericidal activity was radically diminished in P2X(7)(-/-) macrophages. ATP-mediated killing of BCG within p47(phox-/-), inducible NO synthase(-/-), and Nramp(s) cells was unaffected, demonstrating that none of these mechanisms have a role in the ATP/P2X(7) effector pathway. Following ATP stimulation, BCG-containing phagosomes rapidly coalesce and fuse with lysosomes. Blocking of macrophage phospholipase D activity with butan-1-ol blocked BCG killing, but not macrophage death. ATP stimulates phagosome-lysosome fusion with concomitant mycobacterial death via P2X(7) receptor activation. Macrophage death and mycobacterial killing induced by the ATP/P2X(7) signaling pathway can be uncoupled, and diverge proximal to phospholipase D activation.
Collapse
MESH Headings
- Adenosine Triphosphate/pharmacology
- Animals
- Bacteriolysis/drug effects
- Bacteriolysis/physiology
- Butanols/pharmacology
- Cation Transport Proteins/genetics
- Cation Transport Proteins/physiology
- Cell Line
- Enzyme Inhibitors/pharmacology
- Humans
- Hydrogen-Ion Concentration
- Lysosomes/physiology
- Macrophages/drug effects
- Macrophages/microbiology
- Macrophages/physiology
- Membrane Fusion/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Monocytes/microbiology
- Monocytes/physiology
- Mycobacterium bovis
- NADPH Oxidases
- Nitric Oxide Synthase/deficiency
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Phagosomes/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/physiology
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X7
- Vacuoles/microbiology
Collapse
Affiliation(s)
- I P Fairbairn
- Medical Research Council Centre for Immune Regulation, Birmingham Medical School, Birmingham University, Edgbaston, Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
6
|
Vermehren C, Jørgensen K, Schiffelers R, Frokjaer S. Activity of mammalian secreted phospholipase A(2) from inflammatory peritoneal fluid towards PEG-liposomes. Early indications. Int J Pharm 2001; 214:93-8. [PMID: 11282244 DOI: 10.1016/s0378-5173(00)00641-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to an increase in the activity of phospholipase A(2) (PLA(2)) in various inflammatory diseases, this enzyme may play a key role in the degradation of liposomes and the subsequent release of drug when PEG-liposomes passively target inflammatory tissue. The activity of mammalian secreted phospholipase A(2) (sPLA(2)) in casein stimulated peritoneal fluid was tested toward liposomes of different compositions. Early results indicate only a slight degradation of conventional dipalmitoylphosphatidylcholine (DPPC) liposomes as well as DPPC liposomes incorporated with different concentrations of PEG(2000). However, the DPPC degradation increased to 7% when inclusion of 30 mol% phosphatidylethanolamine (PE) in the lipid bilayer. The increase in degradation may be due to an improvement of the substrate - as it is well known, that PE is a better substrate for the mammalian sPLA(2) than PC. Incorporation of PE into the bilayer may increase the binding properties of the bilayer resulting in improved conditions for the enzymatic attack by sPLA(2). In addition, inhibitory zones of Staphylococcus aureus in an agar diffusion test showed that PLA(2) from Crotalus atrox venom was able to catalyze the release of gentamicin from PEG-liposomes. In conclusion, this study suggest that degradation of the lipid bilayer of PEG-liposomes by PLA(2) result in release of incapsulated drug, e.g. gentamicin and inclusion of PE in the liposomal bilayer, may enhance the activity of the mammalian sPLA(2) toward liposomes composed of DPPC.
Collapse
Affiliation(s)
- C Vermehren
- Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
7
|
Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:71-82. [PMID: 11080678 DOI: 10.1016/s1388-1981(00)00111-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a considerable body of evidence to support the antibacterial properties of the group IIa phospholipase A(2) as an important physiological function. This enzyme is able to act as an acute phase protein and may be part of the innate defence system of the body, acting in concert with other antibacterial proteins and peptides. The enzyme is most effective against Gram-positive bacteria whereas penetration of the lipopolysaccharide coat of Gram-negative bacteria requires bactericidal/permeability-increasing protein (BPI) as an additional permeabilizing factor. The global cationic nature of this protein (pI>10.5) appears to facilitate penetration of the anionic bacterial cell wall. In addition, the considerable preference of the enzyme for anionic phospholipid interfaces provides specificity toward anionic bacterial membranes as opposed to zwitterionic eucaryotic cell membranes.
Collapse
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | |
Collapse
|
8
|
Chang CY, Farrell KR, Baker RC. Phosphatidylethanol stimulates calcium-dependent cytosolic phospholipase A(2) activity of a macrophage cell line (RAW 264.7). J Biomed Sci 2000; 7:311-6. [PMID: 10895054 DOI: 10.1007/bf02253250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The synthesis of inflammation mediators produced from arachidonic acid is regulated primarily by the cellular concentration of free arachidonic acid. Since intracellular arachidonic acid is almost totally present as phospholipid esters, the concentration of intracellular arachidonic acid is primarily dependent on the balance between the release of arachidonic acid from membrane phospholipids and the uptake of arachidonic acid into membrane phospholipids. Cytosolic phospholipase A(2) is a calciumdependent enzyme that catalyzes the stimulus-coupled hydrolysis of arachidonic acid from membrane phospholipids. Following exposure of macrophages to various foreign or endogenous stimulants, cytosolic phospholipase A(2) is activated. Treatment with these compounds may also stimulate phospholipase D activity, and, in the presence of ethanol, phospholipase D catalyzes the synthesis of phosphatidylethanol. A cell-free system was used to evaluate the effect of phosphatidylethanol on cytosolic phospholipase A(2) activity. Phosphatidylethanol (0.5 microM) added to 1-stearoyl-2-[(3)H]-arachidonoyl-sn-glycero-3-phosphocholine vesicles stimulated cytosolic phospholipase A(2) activity. However, high concentrations (20-100 microM) of phosphatidylethanol inhibited cytosolic phospholipase A(2) activity. Phosphatidic acid, the normal phospholipase D product, also stimulated cytosolic phospholipase A(2) activity at 0.5 microM, but had an inhibitory effect on cytosolic phospholipase A(2) activity at concentrations of 50 and 100 microM. Ethanol (20-200 mM), the precursor of phosphatidylethanol, added directly to the assay did not alter cytosolic phospholipase A(2) activity. These results suggest that phosphatidylethanol alters the physical properties of the substrate, and at lower concentrations of anionic phospholipids the substrate is more susceptible to hydrolysis. However, at high concentrations, phosphatidylethanol either reverses the alterations in physical properties of the substrate or phosphatidylethanol may be competing as the substrate. Both interactions may result in lower cytosolic phospholipase A(2) activity.
Collapse
Affiliation(s)
- C Y Chang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
9
|
Buckland AG, Heeley EL, Wilton DC. Bacterial cell membrane hydrolysis by secreted phospholipases A(2): a major physiological role of human group IIa sPLA(2) involving both bacterial cell wall penetration and interfacial catalysis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:195-206. [PMID: 10760469 DOI: 10.1016/s1388-1981(00)00018-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability of human group IIa secreted phospholipase A(2) (human sPLA(2)) to hydrolyse the phospholipid membrane of whole cell suspensions of Gram-positive bacteria is demonstrated in real time using a continuous fluorescence displacement assay. Micrococcus luteus is used as a model system and demonstrates an almost absolute specificity for this human enzyme compared with porcine pancreatic and Naja naja venom sPLA(2)s. This specificity is due to selective penetration of the highly cationic human sPLA(2)50%) phospholipid hydrolysis was observed and this was confirmed by electrospray mass spectrometry that allowed the identification of several molecular species of phosphatidylglycerol as the targets for hydrolysis. However, the bactericidal activity of the human enzyme under these assay conditions was low, highlighting the capacity of the organism to survive a major phospholipid insult. In addition to pure enzyme, the human sPLA(2) activity in tears was demonstrated using M. luteus as substrate. In comparison to M. luteus, cell suspensions of Staphylococcus aureus were highly resistant to hydrolysis by human sPLA(2) as well as to the pancreatic and venom enzymes. Treatment of this organism with the specific cell wall protease lysostaphin resulted in a dramatic enhancement in cell membrane phospholipid hydrolysis by all three sPLA(2)s. Overall, the results highlight the potential of the human sPLA(2) as a selective antimicrobial agent against Gram-positive bacteria in vivo because this enzyme is essentially inactive against mammalian plasma membranes. However, the enzyme will be most effective in combination with other antimicrobial agents that enhance the permeability of the bacterial cell wall and where potentiation of the effectiveness of other antibiotics would be expected.
Collapse
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK
| | | | | |
Collapse
|
10
|
Wang X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 2000; 39:109-49. [PMID: 10775762 DOI: 10.1016/s0163-7827(00)00002-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple Phospholipase D (PLD) genes have been identified in plants and encode isoforms with distinct regulatory and catalytic properties. Elucidation of the genetic and biochemical heterogeneity has provided important clues as to the regulation and function of this family of enzymes. Polyphosphoinositides, Ca(2+), and G-proteins are possible cellular regulators for PLD activation. PLD-mediated hydrolysis of membrane lipids increases in response to various stresses. Recent studies suggest that PLD plays a role in the signaling and production of hormones involved in plant stress responses.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA.
| |
Collapse
|
11
|
Buckland AG, Wilton DC. Anionic phospholipids, interfacial binding and the regulation of cell functions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:199-216. [PMID: 10634937 DOI: 10.1016/s1388-1981(99)00188-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK
| | | |
Collapse
|
12
|
Liu P, Xu Y, Hopfner RL, Gopalakrishnan V. Phosphatidic acid increases inositol-1,4,5,-trisphosphate and [Ca2+]i levels in neonatal rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:89-99. [PMID: 10477828 DOI: 10.1016/s1388-1981(99)00115-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.
Collapse
Affiliation(s)
- P Liu
- Cardiovascular Risk Factor Reduction Unit (CRFRU), Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
13
|
Lee JY, Kim MR, Sok DE. Release of GPI-anchored Zn2+-glycerophosphocholine cholinephosphodiesterase as an amphiphilic form from bovine brain membranes by bee venom phospholipase A2. Neurochem Res 1999; 24:1043-50. [PMID: 10478944 DOI: 10.1023/a:1021060927738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Enzymatic release of Zn(2+)-glycerophosphocholine (GPC)cholinephosphodiesterase, as an amphiphilic form, from bovine brain membranes was examined. Of various membrane hydrolases, bee PLA2 was the most effective in the release of the GPC cholinephosphodiesterase (amphiphilic form, 63-70%) from membrane. Compared to pancreatic PLA2, bee PLA2 was more efficient in the release of GPC cholinephosphodiesterase. In pH-dependent release of GP1-anchored phosphodiesterase, there was a similar pH-release profile between PLA2-mediated release and spontaneous one, implying the involvement of membrane disruption in the PLA2 action. The PLA2-mediated release showed a limited time-dependence (until 45 min) and a limited dose dependence (up to 3 units/ml), characteristic of a receptor-type binding. An ionic binding of PLA2 to membrane may be alluded from the interfering effect of anionic phospholipids on the PLA2 action. In support of an interaction between PLA2 and membrane glycoproteins, the PLA2 action was found to be blocked by lectins, wheat germ agglutinin or concanavalin A. In combination with detergent, the PLA2-mediated release was found to be enhanced synergistically by saponin, a cholesterol-complexing agent. Meanwhile, an additive interaction between PLA2 and lysolecithin suggests that PLA2 action is independent of lysolecithin. It is suggested that the binding of PLA2 to specific sites of membranes, probably rich in GPI-anchored glycoproteins, may be related to the facilitated release of GPI-anchored proteins as amphiphilic form.
Collapse
Affiliation(s)
- J Y Lee
- College of Pharmacy, Department of Food and Nutrition, Taejeon, Korea
| | | | | |
Collapse
|
14
|
Koduri RS, Baker SF, Snitko Y, Han SK, Cho W, Wilton DC, Gelb MH. Action of human group IIa secreted phospholipase A2 on cell membranes. Vesicle but not heparinoid binding determines rate of fatty acid release by exogenously added enzyme. J Biol Chem 1998; 273:32142-53. [PMID: 9822691 DOI: 10.1074/jbc.273.48.32142] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human group IIa phospholipase A2 (hIIa-PLA2) is a highly basic protein that is secreted from a number of cells during inflammation and may play a role in arachidonate liberation and in destruction of invading bacteria. It has been proposed that rodent group IIa PLA2 is anchored to cell surfaces via attachment to heparan sulfate proteoglycan and that this interaction facilitates lipolysis. hIIa-PLA2 contains 13 lysines, 2 histidines, and 10 arginines that fall into 10 clusters. A panel of 26 hIIa-PLA2 mutants were prepared in which 1-4 basic residues in each cluster were changed to glutamate or aspartate (charge reversal). A detailed analysis of the affinities of these mutants for anionic vesicles and for heparin and heparan sulfate in vitro and of the specific activities of these proteins for hydrolysis of vesicles in vitro and of living cell membranes reveal the following trends: 1) the affinity of hIIa-PLA2 for heparin and heparan sulfate is modulated not by a highly localized site of basic residues but by diffuse sites that partially overlap with the interfacial binding site. In contrast, only those residues on the interfacial binding site of hIIa-PLA2 are involved in binding to membranes; 2) the relative ability of these mutants to hydrolyze cellular phospholipids when enzymes were added exogenously to CHO-K1, NIH-3T3, and RAW 264.7 cells correlates with their relative in vitro affinity for vesicles and not with their affinity for heparin and heparan sulfate. 3) The rates of exogenous hIIa-PLA2-catalyzed fatty acid release from wild type CHO-K1 cells and two mutant lines, one lacking glycosaminoglycan and one lacking heparan sulfate, were similar. Thus basic residues that modulate interfacial binding are important for plasma membrane fatty acid release by exogenously added hIIa-PLA2. Binding of hIIa-PLA2 to cell surface heparan sulfate does not modulate plasma membrane phospholipid hydrolysis by exogenously added hIIa-PLA2.
Collapse
Affiliation(s)
- R S Koduri
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | | | | | |
Collapse
|