1
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ, Cuchel M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J Lipid Res 2022; 63:100169. [PMID: 35065092 PMCID: PMC8953693 DOI: 10.1016/j.jlr.2022.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 10/31/2022] Open
Abstract
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.
Collapse
Affiliation(s)
- Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archna Bajaj
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Nguyen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jill Schnall
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostas Stylianou
- Department of Nephrology, Heraklion University Hospital, Crete, Greece
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mercer TR, Clark MB, Andersen SB, Brunck ME, Haerty W, Crawford J, Taft RJ, Nielsen LK, Dinger ME, Mattick JS. Genome-wide discovery of human splicing branchpoints. Genome Res 2015; 25:290-303. [PMID: 25561518 PMCID: PMC4315302 DOI: 10.1101/gr.182899.114] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the splicing reaction, the 5′ intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3′ splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron–exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.
Collapse
Affiliation(s)
- Tim R Mercer
- Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Michael B Clark
- Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Stacey B Andersen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marion E Brunck
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ryan J Taft
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; Illumina, Inc., San Diego, California 92122, USA; School of Medicine and Health Services, Department of Integrated Systems Biology and Department of Pediatrics, George Washington University, Washington DC 20037, USA
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2052, Australia;
| |
Collapse
|
3
|
Gao K, Masuda A, Matsuura T, Ohno K. Human branch point consensus sequence is yUnAy. Nucleic Acids Res 2008; 36:2257-67. [PMID: 18285363 PMCID: PMC2367711 DOI: 10.1093/nar/gkn073] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/17/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast carries a strictly conserved branch point sequence (BPS) of UACUAAC, whereas the human BPS is degenerative and is less well characterized. The human consensus BPS has never been extensively explored in vitro to date. Here, we sequenced 367 clones of lariat RT-PCR products arising from 52 introns of 20 human housekeeping genes. Among the 367 clones, a misincorporated nucleotide at the branch point was observed in 181 clones, for which we can precisely pinpoint the branch point. The branch points were comprised of 92.3% A, 3.3% C, 1.7% G and 2.8% U. Our analysis revealed that the human consensus BPS is simply yUnAy, where the underlined is the branch point at position zero and the lowercase pyrimidines ('y') are not as well conserved as the uppercase U and A. We found that the branch points are located 21-34 nucleotides upstream of the 3' end of an intron in 83% clones. We also found that the polypyrimidine tract spans 4-24 nucleotides downstream of the branch point. Our analysis demonstrates that the human BPSs are more degenerative than we have expected and that the human BPSs are likely to be recognized in combination with the polypyrimidine tract and/or the other splicing cis-elements.
Collapse
Affiliation(s)
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
4
|
Dumont J, Zureik M, Bauters C, Grupposo MC, Cottel D, Montaye M, Hamon M, Ducimetière P, Amouyel P, Brousseau T. Association of OAZ1 Gene Polymorphisms With Subclinical and Clinical Vascular Events. Arterioscler Thromb Vasc Biol 2007; 27:2120-6. [PMID: 17761941 DOI: 10.1161/atvbaha.107.150458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proliferation and migration of vascular smooth muscle cells (VSMCs) are striking features shared by vascular ageing, atherosclerosis, and in-stent restenosis. VSMC biology depends in part on polyamines whose metabolism is closely regulated by ornithine decarboxylase antizyme 1 (OAZ1). Therefore, we sought for association between OAZ1 gene polymorphisms and various outcomes involving VSMC proliferation. METHODS AND RESULTS Systematic screening of the OAZ1 gene enabled to detect 21 variants. The impact of 4 selected tag polymorphisms (+849C/T, +851G/T, +1804G/A, and +2222A/G) was evaluated in 3 independent association studies. In a sample of 205 patients, the +2222G allele was associated with an increased risk of 6-month coronary in-stent restenosis (OR [95%CI]=2.1 [1.2 to 3.6]; P=0.0071). In a sample of 1001 subjects participating to the EVA study, the +2222G allele was longitudinally associated with a 4-year increase in common carotid intima-media thickness (P=0.047). In a case-control study (466 cases versus 466 controls), the risk of coronary heart disease associated with the +2222G allele was 1.3 (95%CI=[1.1 to 1.6]; P=0.026). No other significant association was consistently detected. CONCLUSIONS We identified the OAZ1+2222A/G polymorphism as a potential genetic marker of vascular events. Our findings strengthen the hypothesis that the polyamine metabolism plays a role in vascular diseases.
Collapse
Affiliation(s)
- Julie Dumont
- Inserm, U744, Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245, F-59019 Lille cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The branch point sequence (BPS) is a conserved splicing signal important for spliceosome assembly and lariat intron formation. BPS mutations may result in aberrant pre-mRNA splicing and genetic disorders, but their phenotypic consequences have been difficult to predict, largely due to a highly degenerate nature of the BPS consensus. Here, we have examined the splicing pattern of nine reporter pre-mRNAs that have previously been shown to give rise to human hereditary diseases as a result of single-nucleotide substitutions in the predicted BPS. Increased exon skipping and intron retention observed in vivo were recapitulated for each mutated pre-mRNA, but the reproducibility of cryptic splice site activation was lower. BP mutations in reporter pre-mRNAs frequently induced aberrant 3' splice sites and also activated a cryptic 5' splice site. Systematic mutagenesis of BP adenosines showed that in most pre-mRNAs, the expression of canonical transcripts was lower for BP transitions than BP transversions. Differential splicing outcome for transitions vs. transversions was abrogated or reduced if introns were truncated to 200 nt or less, suggesting that the nature of the BP residue is less critical for interactions across very short introns. Together, these results improve prediction of phenotypic consequences of point mutations upstream of splice acceptor sites and suggest that the overrepresentation of disease-causing adenosine-to-guanosine BP substitutions observed in Mendelian disorders is due to more profound defects of gene expression at the level of pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, School of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
6
|
Evans RD, Jones J, Taylor C, Watt FM. Sequence variation in the I-like domain of the beta1 integrin subunit in human oral squamous cell carcinomas. Cancer Lett 2004; 213:189-94. [PMID: 15327834 DOI: 10.1016/j.canlet.2004.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/12/2004] [Accepted: 05/15/2004] [Indexed: 11/17/2022]
Abstract
We recently identified a heterozygous mutation in the beta1 integrin subunit of a squamous cell carcinoma (SCC) that maps to the I-like domain and activates ligand binding. To investigate the frequency of such mutations we screened 124 human oral SCCs. We identified six single nucleotide changes, all of which were also present in normal tissue, suggestive of polymorphisms. Two were in non-coding intronic sequences. Three were silent changes in exons. One caused a change in amino acid (A239V) that is unlikely to disturb integrin structure. We conclude that mutations in the beta1 I-like domain are uncommon in SCCs. However, population based studies of the polymorphisms we found may reveal an association with SCC development or prognosis.
Collapse
Affiliation(s)
- Richard D Evans
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX, UK
| | | | | | | |
Collapse
|
7
|
Li M, Pritchard PH. Characterization of the effects of mutations in the putative branchpoint sequence of intron 4 on the splicing within the human lecithin:cholesterol acyltransferase gene. J Biol Chem 2000; 275:18079-84. [PMID: 10849435 DOI: 10.1074/jbc.m910197199] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified a point mutation (intervening sequence (IVS) 4: T --> C) in the branchpoint consensus sequence of intron 4 of the lecithin:cholesterol acyltransferase (LCAT) gene in patients with fish-eye disease. To investigate the possible mechanisms responsible for the defective splicing, we made a series of mutations in the branchpoint sequence and expressed these mutants in HEK-293 cells followed by the analysis of pre-mRNA splicing using reverse transcriptase-polymerase chain reaction as well as LCAT activity assay. The results reveal that 1) the mutation of the branchpoint adenosine to any other nucleotide completely abolishes splicing; 2) the insertion of a normal branch site into the intronic sequence of the natural (IVS4-22c) or the branchpoint (IVS4-20t) mutant completely restores splicing; 3) the natural mutation can be partially rescued by making a single nucleotide change (G --> A) within the branchpoint consensus sequence; and 4) other single base changes, particularly around the branchpoint adenosine residue, significantly decrease the efficiency of splicing and thus enzyme activity. Surprisingly, the nucleotide transversion at the last position of the branchpoint sequence (i.e. IVS4-25a or -25g) results in a 2.7-fold increase in splicing efficiency. Therefore, these observations clearly establish the functional significance of the branchpoint sequence of intron 4 for the splicing of the human LCAT mRNA precursors.
Collapse
Affiliation(s)
- M Li
- Atherosclerosis Specialty Laboratory, Department of Pathology, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, V6Z 1Y6 Canada
| | | |
Collapse
|