1
|
Shi XC, Sun J, Yang Z, Li XX, Ji H, Li Y, Chang ZG, Du ZY, Chen LQ. Molecular characterization and nutritional regulation of carnitine palmitoyltransferase (CPT) family in grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2016; 203:11-19. [PMID: 27593560 DOI: 10.1016/j.cbpb.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
The carnitine palmitoyltransferase (CPT) gene family plays an essential role in fatty acid β-oxidation in the mitochondrion. We identified six isoforms of the CPT family in grass carp and obtained their complete coding sequences (CDS). The isoforms included CPT 1α1a, CPT 1α1b, CPT 1α2a, CPT 1α2b, CPT 1β, and CPT 2, which may have resulted from fish-specific genome duplication. Sequence analysis showed that the predicted protein structure was different among the CPT gene family members in grass carp. The N-terminal domain of grass carp CPT 1α1a, CPT 1α1b, CPT 1α2a, and CPT 1α2b contained two transmembrane region domains and two acyltransferase choActase domains that exist in human and mouse proteins also; however, only one acyltransferase choActase domain was found in grass carp CPT 1β. The grass carp CPT 2 had two acyltransferase choActase domains. The grass carp CPT 1α1b, CPT 1α2a, CPT 1α2b, and CPT 1β contained 18 coding exons, while CPT 1α1a and CPT 2 consisted of 17 coding exons and 5 coding exons, respectively. The mRNA of the six CPT isoforms was expressed in a wide range of tissues, but the mRNA abundance of each CPT showed tissue-dependent expression patterns. The expression of CPT 1α1a, CPT 1α2a, and CPT 1β at 48h post-feeding was significantly increased in the liver (P<0.01, P<0.05, and P<0.01, respectively). The diverse responses of multiple isoforms in the liver during nutritional limitation suggest that they may play different roles in fatty acid β-oxidation.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Zhou Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xue-Xian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Shen L, Xiong Y, Wang DQH, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 2013; 54:1430-8. [PMID: 23434611 DOI: 10.1194/jlr.m035907] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), a natural compound extracted from ginseng, exerts anti-obesity activity and improves insulin sensitivity in high-fat diet (HFD)-induced obese rats. The objective of the current study was to evaluate the protective effect of Rb1 on fatty liver in HFD-induced obese rats and to elucidate underlying mechanisms. After chronic intraperitoneal administration, Rb1 (10 mg/kg) significantly ameliorated hepatic fat accumulation in HFD-induced obese rats, as demonstrated by reduced liver weight, hepatic triglyceride content, and histological evaluation of liver sections by hematoxylin and eosin and Oil Red O staining. Using primary cultured rat hepatic cells, we found that the rate of fatty acid oxidation and the activity of carnitine palmitoyltransferase 1 (CPT1), a key enzyme in fatty acid β-oxidation, were significantly elevated in Rb1-treated hepatocytes compared with those of vehicle-treated cells. HPLC analysis revealed that Rb1 increased the cellular AMP/ATP ratio, which is associated with elevated activation of hepatic AMP-activated protein kinase (AMPK) and phosphorylated acetyl-CoA carboxylase. Consistent with the activation of AMPK, Rb1 stimulated the expression of genes encoding fatty acid oxidative enzymes and proteins, and suppressed the expression of genes encoding enzymes or proteins that function in lipogenesis, assessed by quantitative PCR. We conclude that Rb1 has a potent ability to reduce hepatic fat accumulation and might be useful as a therapeutic agent for fatty liver disorder.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Chen K, Lee T, Chen T, Chiou P. Effect of caponization and different exogenous androgen on hepatic lipid and β-oxidase of male chickens. Poult Sci 2009; 88:1033-9. [DOI: 10.3382/ps.2008-00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Aja S, Landree LE, Kleman AM, Medghalchi SM, Vadlamudi A, McFadden JM, Aplasca A, Hyun J, Plummer E, Daniels K, Kemm M, Townsend CA, Thupari JN, Kuhajda FP, Moran TH, Ronnett GV. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2007; 294:R352-61. [PMID: 18056987 DOI: 10.1152/ajpregu.00862.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.
Collapse
Affiliation(s)
- Susan Aja
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kerner J, Distler AM, Minkler P, Parland W, Peterman SM, Hoppel CL. Phosphorylation of rat liver mitochondrial carnitine palmitoyltransferase-I: effect on the kinetic properties of the enzyme. J Biol Chem 2004; 279:41104-13. [PMID: 15247243 DOI: 10.1074/jbc.m406570200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic carnitine palmitoyltransferase-I (CPT-IL) isolated from mitochondrial outer membranes obtained in the presence of protein phosphatase inhibitors is readily recognized by phosphoamino acid antibodies. Mass spectrometric analysis of CPT-IL tryptic digests revealed the presence of three phosphopeptides including one with a protein kinase CKII (CKII) consensus site. Incubation of dephosphorylated outer membranes with protein kinases and [gamma-32P]ATP resulted in radiolabeling of CPT-I only by CKII. Using mass spectrometry, only one region of phosphorylation was detected in CPT-I isolated from CKII-treated mitochondria. The sequence of the peptide and position of phosphorylated amino acids have been determined unequivocally as FpSSPETDpSHRFGK (residues 740-752). Furthermore, incubation of dephosphorylated outer membranes with CKII and unlabeled ATP led to increased catalytic activity and rendered malonyl-CoA inhibition of CPT-I from competitive to uncompetitive. These observations identify a new mechanism for regulation of hepatic CPT-I by phosphorylation.
Collapse
Affiliation(s)
- Janos Kerner
- Department of Nutrition, Biochemistry, and Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
6
|
Jin YJ, Li SZ, Zhao ZS, An JJ, Kim RY, Kim YM, Baik JH, Lim SK. Carnitine palmitoyltransferase-1 (CPT-1) activity stimulation by cerulenin via sympathetic nervous system activation overrides cerulenin's peripheral effect. Endocrinology 2004; 145:3197-204. [PMID: 15044358 DOI: 10.1210/en.2004-0039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To clarify the paradoxic effects of cerulenin, namely its in vitro inhibitory effects on fat catabolism and its in vivo reduction of fat mass, we studied the in vivo and in vitro effects of cerulenin on carnitine palmitoyltransferase-1 (CPT-1) activity, the rate-limiting enzyme of fatty acid oxidation. A single ip injection of cerulenin significantly reduced body weight and increased core temperature without significantly reducing food intake. In situ hybridization study revealed that a single injection of cerulenin did not affect the expression of orexigenic neuropeptide mRNA. Cerulenin's effect on CPT-1 activity was biphasic in the liver and muscle: early suppression during the first 1 h and late stimulation in the 3-5 h after ip treatment. In vitro cerulenin treatment reduced CPT-1 activity, which was overcome by cotreating with catecholamine. Intracerebroventricular injection of cerulenin increased CPT-1 activity significantly in soleus muscle, and this effect was sustained for up to 3 h. Pretreatment with alpha-methyl-p-tyrosine inhibited the cerulenin-induced increase in core temperature and the late-phase stimulating effect of cerulenin on CPT-1 activity. In adrenalectomized mice, cerulenin also increased the activity. In vivo cerulenin treatment enhanced muscle CPT-1 activity in monosodium glutamate-treated arcuate nucleus lesioned mice but not in gold thioglucose-treated ventromedial hypothalamus lesioned mice. These findings suggest that cerulenin-induced late-phase stimulating effects on CPT-1 activity and energy expenditure is mediated by the activation of innervated sympathetic nervous system neurons through the firing of undefined neurons of the ventromedial hypothalamus, rather than the arcuate nucleus.
Collapse
Affiliation(s)
- Yong-Jun Jin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, and Brain Korea 21 Project for Medical Sciences, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN, Connolly EC, Huganir RL, Richardson C, Witters LA, Kuhajda FP, Ronnett GV. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem 2003; 279:3817-27. [PMID: 14615481 DOI: 10.1074/jbc.m310991200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.
Collapse
Affiliation(s)
- Leslie E Landree
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abu-Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A 2003; 100:10207-12. [PMID: 12920182 PMCID: PMC193540 DOI: 10.1073/pnas.1733877100] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malonyl-CoA, generated by acetyl-CoA carboxylases ACC1 and ACC2, is a key metabolite in the control of fatty acid synthesis and oxidation in response to dietary changes. ACC2 is associated to the mitochondria, and Acc2-/- mice have a normal lifespan and higher fatty acid oxidation rate and accumulate less fat. Mutant mice fed high-fat/high-carbohydrate diets weighed less than their WT cohorts, accumulated less fat, and maintained normal levels of insulin and glucose, whereas the WT mice became type-2 diabetic with hyperglycemic and hyperinsulinemic status. Fatty acid oxidation rates in the soleus muscle and in hepatocytes of Acc2-/- mice were significantly higher than those of WT cohorts and were not affected by the addition of insulin. mRNA levels of uncoupling proteins (UCPs) were significantly higher in adipose, heart (UCP2), and muscle (UCP3) tissues of mutant mice compared with those of the WT. The increase in the UCP levels along with increased fatty acid oxidation may play an essential role in the regulation of energy expenditure. Lowering intracellular fatty acid accumulation in the mutant relative to that of the WT mice may thus impact glucose transport by higher GLUT4 activity and insulin sensitivity. These results suggest that ACC2 plays an essential role in controlling fatty acid oxidation and is a potential target in therapy against obesity and related diseases.
Collapse
Affiliation(s)
- Lutfi Abu-Elheiga
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
Holness MJ, Bulmer K, Smith ND, Sugden MC. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone. Biochem J 2003; 369:687-95. [PMID: 12435272 PMCID: PMC1223128 DOI: 10.1042/bj20021509] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 11/07/2002] [Accepted: 11/18/2002] [Indexed: 12/31/2022]
Abstract
Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or TR with the RXR receptor and that effects of PPARalpha activation on hepatic PDK2 and PDK4 expression favour a switch towards preferential expression of PDK4.
Collapse
Affiliation(s)
- Mark J Holness
- Department of Diabetes and Metabolic Medicine, Division of General and Developmental Medicine, Barts and the London, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | | | | | | |
Collapse
|
10
|
Thupari JN, Landree LE, Ronnett GV, Kuhajda FP. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc Natl Acad Sci U S A 2002; 99:9498-502. [PMID: 12060712 PMCID: PMC123169 DOI: 10.1073/pnas.132128899] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C75, a known inhibitor of fatty acid synthase is postulated to cause significant weight loss through decreased hypothalamic neuropeptide Y (NPY) production. Peripherally, C75, an alpha-methylene-gamma-butyrolactone, reduces adipose tissue and fatty liver, despite high levels of malonyl-CoA. To investigate this paradox, we studied the effect of C75 on fatty acid oxidation and energy production in diet-induced obese (DIO) mice and cellular models. Whole-animal calorimetry showed that C75-treated DIO mice had a 50% greater weight loss, and a 32.9% increased production of energy because of fatty acid oxidation, compared with paired-fed controls. Etomoxir, an inhibitor of carnitine O-palmitoyltransferase-1 (CPT-1), reversed the increased energy expenditure in DIO mice by inhibiting fatty acid oxidation. C75 treatment of rodent adipocytes and hepatocytes and human breast cancer cells increased fatty acid oxidation and ATP levels by increasing CPT-1 activity, even in the presence of elevated concentrations of malonyl-CoA. Studies in human cancer cells showed that C75 competed with malonyl-CoA, as measured by CPT-1 activity assays. Thus, C75 acts both centrally to reduce food intake and peripherally to increase fatty acid oxidation, leading to rapid and profound weight loss, loss of adipose mass, and resolution of fatty liver. The pharmacological stimulation of CPT-1 activity is a novel finding. The dual action of the C75 class of compounds as fatty acid synthase inhibitors and CPT-1 agonists has therapeutic implications in the treatment of obesity and type II diabetes.
Collapse
Affiliation(s)
- Jagan N Thupari
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
11
|
Thupari JN, Pinn ML, Kuhajda FP. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun 2001; 285:217-23. [PMID: 11444828 DOI: 10.1006/bbrc.2001.5146] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy.
Collapse
Affiliation(s)
- J N Thupari
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
12
|
Bremer J. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects. Prog Lipid Res 2001; 40:231-68. [PMID: 11412891 DOI: 10.1016/s0163-7827(01)00004-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A selection of amphipatic hyper- and hypolipidemic fatty acid derivatives (fibrates, thia- and branched chain fatty acids) are reviewed. They are probably all ligands for the peroxisome proliferation activation receptor (PPARalpha) which has a low selectivity for its ligands. These compounds give hyper- or hypolipidemic responses depending on their ability to inhibit or stimulate mitochondrial fatty acid oxidation in the liver. The hypolipidemic response is explained by the following metabolic effects: Lipoprotein lipase is induced in liver where it is normally not expressed. Apolipoprotein CIII is downregulated. These two effects in liver lead to a facilitated (re)uptake of chylomicrons and VLDL, thus creating a direct transport of fatty acids from the gut to the liver. Fatty acid metabolizing enzymes in the liver (CPT-I and II, peroxisomal and mitochondrial beta-oxidation enzymes, enzymes of ketogenesis, and omega-oxidation enzymes) are induced and create an increased capacity for fatty acid oxidation. The increased oxidation of fatty acids "drains" fatty acids from the body, reduces VLDL formation, and ultimately explains the antiadiposity and improved insulin sensitivity observed after administration of peroxisome proliferators.
Collapse
Affiliation(s)
- J Bremer
- Institute of Medical Biochemistry, University of Oslo, Pb 1112 Blindern, 0317, Oslo, Norway
| |
Collapse
|
13
|
Abstract
The mitochondrial carnitine system plays an obligatory role in beta-oxidation of long-chain fatty acids by catalyzing their transport into the mitochondrial matrix. This transport system consists of the malonyl-CoA sensitive carnitine palmitoyltransferase I (CPT-I) localized in the mitochondrial outer membrane, the carnitine:acylcarnitine translocase, an integral inner membrane protein, and carnitine palmitoyltransferase II localized on the matrix side of the inner membrane. Carnitine palmitoyltransferase I is subject to regulation at the transcriptional level and to acute control by malonyl-CoA. The N-terminal domain of CPT-I is essential for malonyl-CoA inhibition. In liver CPT-I activity is also regulated by changes in the enzyme's sensitivity to malonyl-CoA. As fluctuations in tissue malonyl-CoA content are parallel with changes in acetyl-CoA carboxylase activity, which in turn is under the control of 5'-AMP-activated protein kinase, the CPT-I/malonyl-CoA system is part of a fuel sensing gauge, turning off and on fatty acid oxidation depending on the tissue's energy demand. Additional mechanism(s) of short-term control of CPT-I activity are emerging. One proposed mechanism involves phosphorylation/dephosphorylation dependent direct interaction of cytoskeletal components with the mitochondrial outer membrane or CPT-I. We have proposed that contact sites between the outer and inner mitochondrial membranes form a microenvironment which facilitates the carnitine transport system. In addition, this system includes the long-chain acyl-CoA synthetase and porin as components.
Collapse
Affiliation(s)
- J Kerner
- Department of Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|