1
|
Tsai CC, Yang YN, Wang K, Chen YCE, Chen YF, Yang JC, Li ZL, Huang HM, Pedersen JZ, Incerpi S, Lee SY, Lin HY, Whang-Peng J. Progesterone modulates cell growth via integrin αvβ3-dependent pathway in progesterone receptor-negative MDA-MB-231 cells. Heliyon 2024; 10:e34006. [PMID: 39071644 PMCID: PMC11283053 DOI: 10.1016/j.heliyon.2024.e34006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Progesterone (P4) plays a pivotal role in regulating the cancer progression of various types, including breast cancer, primarily through its interaction with the P4 receptor (PR). In PR-negative breast cancer cells, P4 appears to function in mediating cancer progression, such as cell growth. However, the mechanisms underlying the roles of P4 in PR-negative breast cancer cells remain incompletely understood. This study aimed to investigate the effects of P4 on cell proliferation, gene expression, and signal transduction in PR-negative MDA-MB-231 breast cancer cells. P4-activated genes, associated with proliferation in breast cancer cells, exhibit a stimulating effect on cell growth in PR-negative MDA-MB-231 cells, while demonstrating an inhibitory impact in PR-positive MCF-7 cells. The use of arginine-glycine-aspartate (RGD) peptide successfully blocked P4-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, aligning with computational models of P4 binding to integrin αvβ3. Disrupting integrin αvβ3 binding with RGD peptide or anti-integrin αvβ3 antibody altered P4-induced expression of proliferative genes and modified P4-induced cell growth in breast cancer cells. In conclusion, integrin αvβ3 appears to mediate P4-induced ERK1/2 signal pathway to regulate proliferation via alteration of proliferation-related gene expression in PR-negative breast cancer cells.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chun E. Chen
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome 00133, Italy
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany 12203, NY, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Sprouse J, Sampath C, Gangula P. 17β-Estradiol Suppresses Gastric Inflammatory and Apoptotic Stress Responses and Restores nNOS-Mediated Gastric Emptying in Streptozotocin (STZ)-Induced Diabetic Female Mice. Antioxidants (Basel) 2023; 12:758. [PMID: 36979006 PMCID: PMC10045314 DOI: 10.3390/antiox12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Gastroparesis (Gp) is a severe complication of diabetes mellitus (DM) observed predominantly in women. It is characterized by abnormal gastric emptying (GE) without mechanical obstruction in the stomach. Nitric oxide (NO) is an inhibitory neurotransmitter produced by neuronal nitric oxide synthase (nNOS). It plays a critical role in gastrointestinal (GI) motility and stomach emptying. Here, we wanted to demonstrate the protective effects of supplemental 17β-estradiol (E2) on NO-mediated gastric function. We showed E2 supplementation to alleviate oxidative and inflammatory stress in streptozotocin (STZ)-induced diabetic female mice. Our findings suggest that daily administration of E2 at therapeutic doses is beneficial for metabolic homeostasis. This restoration occurs via regulating and modulating the expression/function of glycogen synthase kinase-3β (GSK-3β), nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), Phase II enzymes, MAPK- and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)-mediated inflammatory cytokines (IL-1β, IL-6, TNFα, IGF-1), and gastric apoptotic regulators. We also showed E2 supplementation to elevate GCH-1 protein levels in female diabetic mice. Since GCH-1 facilitates the production of tetrahydrobiopterin (BH4, cofactor for nNOS), an increase in GCH-1 protein levels in diabetic mice may improve their GE and nitrergic function. Our findings provide new insights into the impact of estrogen on gastric oxidative stress and intracellular inflammatory cascades in the context of Gp.
Collapse
Affiliation(s)
- Jeremy Sprouse
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
- Department of Endodontics, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Pandu Gangula
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
3
|
Yang C, Chen Y, Yang M, Li J, Wu Y, Fan H, Kong X, Ning C, Wang S, Xiao W, Yuan Z, Yi J, Wu J. Betulinic acid alleviates zearalenone-induced uterine injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120435. [PMID: 36257561 DOI: 10.1016/j.envpol.2022.120435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.
Collapse
Affiliation(s)
- Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Yasothamani V, Vivek R. Targeted NIR-responsive theranostic immuno-nanomedicine combined TLR7 agonist with immune checkpoint blockade for effective cancer photothermal immunotherapy. J Mater Chem B 2022; 10:6392-6403. [PMID: 35971846 DOI: 10.1039/d2tb01195f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanomedicine with immunotherapy offers opportunities to target cancer in an effective manner; however, it remains challenging. We herein report a photothermal material loaded with immune-adjuvant combined immune checkpoint blockade for efficient cancer immunotherapy to target estrogen receptor-positive (ER+) breast cancer (BC). Endoxifen (END) expressly targets ER+ breast cancer cells. As a proof of concept of a targeting ER+ agent, END/NIR-responsive polyaniline (PANi)/a toll-like-receptor-7 agonist imiqumoid (R837) activating immune response co-encapsulated nanoparticles were formed as END-PANi-PVP@R837 NPs and found to be very appropriate as an NIR-responsive photothermal platform for versatile immunogenic cell death (ICD) in combination with an immune checkpoint PD-L1 blockade for development as an immunotherapy strategy. In this study, we concentrate on the therapeutic tactic of combining anti-PD-L1 with NPs, not only ablating cancer cells upon NIR irradiation but also providing strong anti-cancer immunity to destroy tumor progression after treatment. In both in vitro and in vivo experiments it was demonstrated that NPs could efficiently activate PTT to induce an immune response and immune resistance based on the PD-L1 checkpoint to ablate the tumor and inhibit tumor recurrence. We confirm the potency of the NPs, which exhibit high photothermal conversion efficacy and stability. The results demonstrate that the NP combination suppresses tumor cell growth at the tumor margin beyond effective PTT and immunotherapy.
Collapse
Affiliation(s)
- Vellingiri Yasothamani
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CPR), Department of Zoology, School of Life Science, Bharathiar University, Coimbatore, 641 046, India.
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CPR), Department of Zoology, School of Life Science, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
5
|
Estrogen Receptors as Molecular Targets of Endocrine Therapy for Glioblastoma. Int J Mol Sci 2021; 22:ijms222212404. [PMID: 34830286 PMCID: PMC8626012 DOI: 10.3390/ijms222212404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a reduced expression of ERs as the degree of malignancy of such tumors increases, it is important to understand the role of these receptors in the progression and treatment of this disease. ERs belong to the family of nuclear receptors, although they can also be in the plasmatic membrane, cytoplasm and mitochondria. They are classified as estrogen receptors alpha and beta (ER⍺ and ERβ), each with different isoforms that have a distinct function in the organism. ERs regulate multiple physiological and pathological processes through the activation of genomic and nongenomic pathways in the cell. Nevertheless, the role of each isoform in the development and progression of glioblastoma is not completely clear. Diverse in vitro and in vivo studies have shown encouraging results for endocrine therapy as a treatment for gliomas. At the same time, many questions have arisen concerning the nature of ERs as well as the mechanism of action of the proposed drugs. Hence, the aim of the current review is to describe the drugs that could possibly be utilized in endocrine therapy for the treatment of high-grade gliomas, analyze their interaction with ERs, and explore the involvement of these drugs and receptors in resistance to standard chemotherapy.
Collapse
|
6
|
Mamnoon B, Feng L, Froberg J, Choi Y, Sathish V, Taratula O, Taratula O, Mallik S. Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS OMEGA 2021; 6:27654-27667. [PMID: 34722965 PMCID: PMC8552235 DOI: 10.1021/acsomega.1c02250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Endoxifen is the primary active metabolite of tamoxifen, a nonsteroidal-selective estrogen receptor modulator (SERM) and widely used medication to treat estrogen receptor-positive (ER+) breast cancer. In this study, endoxifen was conjugated to the surface of polymeric nanoparticles (polymersomes) for targeted delivery of doxorubicin (DOX) to estrogen receptor-positive breast cancer cells (MCF7). Rapid cell growth and insufficient blood supply result in low oxygen concentration (hypoxia) within the solid breast tumors. The polymersomes developed here are prepared from amphiphilic copolymers of polylactic acid (PLA) and poly(ethylene glycol) (PEG) containing diazobenzene as the hypoxia-responsive linker. We prepared two nanoparticle formulations: DOX-encapsulated hypoxia-responsive polymersomes (DOX-HRPs) and endoxifen-conjugated, DOX-encapsulated hypoxia-responsive polymersomes (END-DOX-HRPs). Cellular internalization studies demonstrated eight times higher cytosolic and nuclear localization after incubating breast cancer cells with END-DOX-HRPs (targeted polymersomes) in contrast to DOX-HRPs (nontargeted polymersomes). Cytotoxicity studies on monolayer cell cultures exhibited that END-DOX-HRPs were three times more toxic to ER+ MCF7 cells than DOX-HRPs and free DOX in hypoxia. The cell viability studies on three-dimensional hypoxic cultures also demonstrated twice as much toxicity when the spheroids were treated with targeted polymersomes instead of nontargeted counterparts. This is the first report of surface-decorated polymeric nanoparticles with endoxifen ligands for targeted drug delivery to ER+ breast cancer microtumors. The newly designed endoxifen-conjugated, hypoxia-responsive polymersomes might have translational potential for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department
of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Venkatachalem Sathish
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| | - Oleh Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Olena Taratula
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Sanku Mallik
- Department
of Pharmaceutical Sciences, North Dakota
State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
7
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
8
|
Pinto PIS, Andrade AR, Moreira C, Zapater C, Thorne MAS, Santos S, Estêvão MD, Gomez A, Canario AVM, Power DM. Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier. J Steroid Biochem Mol Biol 2019; 195:105448. [PMID: 31421232 DOI: 10.1016/j.jsbmb.2019.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.
Collapse
Affiliation(s)
- Patricia I S Pinto
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - André R Andrade
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600 Le Havre, France.
| | - Cinta Zapater
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Michael A S Thorne
- British Antarctic Survey (BAS), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Soraia Santos
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, Edifício 1, 8005-139 Faro, Portugal.
| | - Ana Gomez
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Adelino V M Canario
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Deborah M Power
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| |
Collapse
|
9
|
Majumdar S, Rinaldi JC, Malhotra NR, Xie L, Hu DP, Gauntner TD, Grewal HS, Hu WY, Kim SH, Katzenellenbogen JA, Kasper S, Prins GS. Differential Actions of Estrogen Receptor α and β via Nongenomic Signaling in Human Prostate Stem and Progenitor Cells. Endocrinology 2019; 160:2692-2708. [PMID: 31433456 PMCID: PMC6804489 DOI: 10.1210/en.2019-00177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
Human prostate stem and progenitor cells express estrogen receptor (ER)α and ERβ and exhibit proliferative responses to estrogens. In this study, membrane-initiated estrogen signaling was interrogated in human prostate stem/progenitor cells enriched from primary epithelial cultures and stem-like cell lines from benign and cancerous prostates. Subcellular fractionation and proximity ligation assays localized ERα and ERβ to the cell membrane with caveolin-1 interactions. Exposure to 17β-estradiol (E2) for 15 to 60 minutes led to sequential phosphorylation of signaling molecules in MAPK and AKT pathways, IGF1 receptor, epidermal growth factor receptor, and ERα, thus documenting an intact membrane signalosome that activates diverse downstream cascades. Treatment with an E2-dendrimer conjugate or ICI 182,870 validated E2-mediated actions through membrane ERs. Overexpression and knockdown of ERα or ERβ in stem/progenitor cells identified pathway selectivity; ERα preferentially activated AKT, whereas ERβ selectively activated MAPK cascades. Furthermore, prostate cancer stem-like cells expressed only ERβ, and brief E2 exposure activated MAPK but not AKT cascades. A gene subset selectively regulated by nongenomic E2 signaling was identified in normal prostate progenitor cells that includes BGN, FOSB, FOXQ1, and MAF. Membrane-initiated E2 signaling rapidly modified histone methyltransferases, with MLL1 cleavage observed downstream of phosphorylated AKT and EZH2 phosphorylation downstream of MAPK signaling, which may jointly modify histones to permit rapid gene transcription. Taken together, the present findings document ERα and ERβ membrane-initiated signaling in normal and cancerous human prostate stem/progenitor cells with differential engagement of downstream effectors. These signaling pathways influence normal prostate stem/progenitor cell homeostasis and provide novel therapeutic sites to target the elusive prostate cancer stem cell population.
Collapse
Affiliation(s)
- Shyama Majumdar
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaqueline C Rinaldi
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Neha R Malhotra
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Timothy D Gauntner
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Harinder S Grewal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | | | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
10
|
Yao Y, Chang X, Wang D, Ma H, Wang H, Zhang H, Li C, Wang J. Roles of ERK1/2 and PI3K/AKT signaling pathways in mitochondria-mediated apoptosis in testes of hypothyroid rats. Toxicol Res (Camb) 2018; 7:1214-1224. [PMID: 30542605 PMCID: PMC6240896 DOI: 10.1039/c8tx00122g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/25/2018] [Indexed: 12/27/2022] Open
Abstract
The absence of the thyroid hormone (TH) could impair testicular function, but its mechanism is still rudimentary. This study aims to explore the roles of estrogen receptor (ER α, β) and G protein-coupled receptor 30 (GPR30), extracellular signal regulated kinase (ERK1/2) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in apoptosis in testes of hypothyroidism rats. Male Wistar rats were randomly divided into control (C), low-(L) and high-hypothyroidism (H) groups [1 mL per 100 g BW per day normal saline, 0.001% and 0.1% propylthiouracil (PTU), respectively] by intragastrical gavage for 60 days. The levels of triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) in serum were measured. Expressions of ERα, ERβ and GPR30, pathway related protein expressions of ERK1/2 and PI3 K/AKT and apoptosis were detected in testicular homogenates. The results showed that T3 and T4 levels were decreased, and the TSH level was increased significantly in the H group. Protein expressions of ERα, ERβ and GPR30 decreased significantly in the H group. Significantly decreased protein expressions of p-ERK1/2, p-PI3K p85, p-AKT Ser473, Ras, p-Raf-1 Ser259, p-Raf-1 Ser338 and cyclin D1 in L and H groups as well PI3K p85, p-AKT and Thr308 in the H group were observed. Moreover, there was a significant increase in the Bad protein expression in L and H groups. In addition, there was a significant increase in the expression of Bax/Bcl-2, caspase 9 and cleaved caspase 3 and a significant decrease in the total caspase 3 protein expression in the H group. These results suggested that ERK1/2 and PI3K/AKT signaling pathways could be suppressed by hypothyroidism via inhibiting the expressions of ERs and could finally induce apoptosis in testes.
Collapse
Affiliation(s)
- Yueli Yao
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Xiaoru Chang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Dong Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Haitao Ma
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology , Gansu Provincial Maternity and Child-care Hospital , Lanzhou , 730050 , China
| | - Haojun Zhang
- Department of Hospital Infection , Gansu Provincial Hospital , Lanzhou , 730000 , China
| | - Chengyun Li
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Junling Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| |
Collapse
|
11
|
Ahmad N, Chen S, Wang W, Kapila S. 17β-estradiol Induces MMP-9 and MMP-13 in TMJ Fibrochondrocytes via Estrogen Receptor α. J Dent Res 2018; 97:1023-1030. [PMID: 29621430 DOI: 10.1177/0022034518767108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) disorders, including degenerative TMJ disease, occur primarily in women of reproductive age. Previous studies showed elevated estrogen levels in subjects with TMJ disorders relative to controls and the presence of estrogen receptors α and β (ERα and ERβ) in TMJ fibrocartilage. Additionally, estrogen-induced overexpression of specific matrix metalloproteinases (MMPs), including MMP-9 and MMP-13, in TMJ fibrocartilage is accompanied by loss of extracellular matrices. However, the contribution of ERα and ERβ in estrogen-mediated induction of MMP-9 and MMP-13 and the signaling cascade leading to the upregulation of these MMPs have not been elucidated. Here, we show that specific siRNAs and selective ER antagonists effectively block ERα or ERβ expression in primary mouse TMJ fibrochondrocytes, but that only blockage of ERα suppresses MMP-9 and MMP-13 levels induced by 17β-estradiol (E2). Overexpression of ERα but not ERβ enhances E2-induced MMP-9. Using the same loss-of-function and gain-of-function approaches, we demonstrate that E2 stimulates ERK activation through ERα and that inhibition of ERK phosphorylation reduces E2-induced MMP-9. Furthermore, we reveal that E2 promotes NF-κB and ELK-1 activation through ERα/ERK signaling and that knockdown of either one decreases the respective activity of these signaling mediators and MMP-9 expression induced by E2, indicating that both contribute to E2/ERα/ERK-mediated MMP-9 upregulation. This is supported by findings in which mutated binding sites of either NF-κB or ELK-1 in the MMP-9 promoter lead to a significant reduction of E2-stimulated promoter activity. Our findings provide novel molecular mechanisms for the understanding of E2-mediated upregulation of MMPs, having implications to pathophysiologic TMJ cartilage matrix turnover that may yield therapeutic intervention targets for TMJ disorders.
Collapse
Affiliation(s)
- N Ahmad
- 1 Biology Department, Henry Ford College, Dearborn, MI, USA.,2 Wayne County Community College, Detroit, MI, USA
| | - S Chen
- 3 Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - W Wang
- 4 Private Practice, Ann Arbor, MI, USA
| | - S Kapila
- 3 Division of Orthodontics, Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Miller MM, McMullen PD, Andersen ME, Clewell RA. Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts. Crit Rev Toxicol 2017; 47:564-580. [DOI: 10.1080/10408444.2017.1289150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Bi RY, Meng Z, Zhang P, Wang XD, Ding Y, Gan YH. Estradiol upregulates voltage-gated sodium channel 1.7 in trigeminal ganglion contributing to hyperalgesia of inflamed TMJ. PLoS One 2017; 12:e0178589. [PMID: 28582470 PMCID: PMC5459440 DOI: 10.1371/journal.pone.0178589] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Temporomandibular disorders (TMDs) have the highest prevalence in women of reproductive age. The role of estrogen in TMDs and especially in TMDs related pain is not fully elucidated. Voltage-gated sodium channel 1.7 (Nav1.7) plays a prominent role in pain perception and Nav1.7 in trigeminal ganglion (TG) is involved in the hyperalgesia of inflamed Temporomandibular joint (TMJ). Whether estrogen could upregulate trigeminal ganglionic Nav1.7 expression to enhance hyperalgesia of inflamed TMJ remains to be explored. METHODS Estrous cycle and plasma levels of 17β-estradiol in female rats were evaluated with vaginal smear and enzyme linked immunosorbent assay, respectively. Female rats were ovariectomized and treated with 17β-estradiol at 0 μg, 20 μg and 80 μg, respectively, for 10 days. TMJ inflammation was induced using complete Freund's adjuvant. Head withdrawal thresholds and food intake were measured to evaluate the TMJ nociceptive responses. The expression of Nav1.7 in TG was examined using real-time PCR and western blot. The activity of Nav1.7 promoter was examined using luciferase reporter assay. The locations of estrogen receptors (ERα and ERβ), the G protein coupled estrogen receptor (GPR30), and Nav1.7 in TG were examined using immunohistofluorescence. RESULTS Upregulation of Nav1.7 in TG and decrease in head withdrawal threshold were observed with the highest plasma 17β-estradiol in the proestrus of female rats. Ovariectomized rats treated with 80 μg 17β-estradiol showed upregulation of Nav1.7 in TG and decrease in head withdrawal threshold as compared with that of the control or ovariectomized rats treated with 0 μg or 20 μg. Moreover, 17β-estradiol dose-dependently potentiated TMJ inflammation-induced upregulation of Nav1.7 in TG and also enhanced TMJ inflammation-induced decrease of head withdrawal threshold in ovariectomized rats. In addition, the estrogen receptor antagonist, ICI 182,780, partially blocked the 17β-estradiol effect on Nav1.7 expression and head withdrawal threshold in ovariectomized rats. ERα and ERβ, but not GPR30, were mostly co-localized with Nav1.7 in neurons in TG. In the nerve growth factor-induced and ERα-transfected PC12 cells, 17β-estradiol dose-dependently enhanced Nav1.7 promoter activity, whereas mutations of the estrogen response element at -1269/-1282 and -1214/-1227 in the promoter completely abolished its effect on the promoter activity. CONCLUSION Estradiol could upregulate trigeminal ganglionic Nav1.7 expression to contribute to hyperalgesia of inflamed TMJ.
Collapse
Affiliation(s)
- Rui-Yun Bi
- The Third Dental Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Zhen Meng
- Central laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Peng Zhang
- Central laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- Center for Temporomandibular Disorders & Orofacial Pain, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Xue-Dong Wang
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Yun Ding
- The Third Dental Center, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- * E-mail: (YD); (YHG)
| | - Ye-Hua Gan
- Central laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- Center for Temporomandibular Disorders & Orofacial Pain, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
- * E-mail: (YD); (YHG)
| |
Collapse
|
14
|
Chakraborty A, Hatzis C, DiGiovanna MP. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease. Breast Cancer Res Treat 2017; 163:37-50. [PMID: 28236033 DOI: 10.1007/s10549-017-4169-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). METHODS Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. RESULTS Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. CONCLUSIONS Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.
Collapse
Affiliation(s)
- Ashok Chakraborty
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA
| | - Christos Hatzis
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA
| | - Michael P DiGiovanna
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Differences in GPR30 Regulation by Chlorotriazine Herbicides in Human Breast Cells. Biochem Res Int 2016; 2016:2984081. [PMID: 26955487 PMCID: PMC4756223 DOI: 10.1155/2016/2984081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/15/2015] [Accepted: 01/10/2016] [Indexed: 12/28/2022] Open
Abstract
Over 200,000 cases of invasive breast cancer are diagnosed annually; herbicide contaminants in local water sources may contribute to the growth of these cancers. GPR30, a G protein coupled receptor, was identified as a potential orphan receptor that may interact with triazine herbicides such as atrazine, one of the most commonly utilized chlorotriazines in agricultural practices in the United States. Our goal was to identify whether chlorotriazines affected the expression of GPR30. Two breast cancer cell lines, MDA-MB-231 and MCF-7, as well as one normal breast cell line, MCF-10A, were treated with a 100-fold range of atrazine, cyanazine, or simazine, with levels flanking the EPA safe level for each compound. Using real-time PCR, we assessed changes in GPR30 mRNA compared to a GAPDH control. Our results indicate that GPR30 expression increased in breast cancer cells at levels lower than the US EPA drinking water contamination limit. During this treatment, the viability of cells was unaltered. In contrast, treatment with chlorotriazines reduced the expression of GPR30 in noncancerous MCF-10A cells. Thus, our results indicate that cell milieu and potential to metastasize may play a role in the extent of GPR30 response to pesticide exposure.
Collapse
|
16
|
Menazza S, Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 2016; 118:994-1007. [PMID: 26838792 DOI: 10.1161/circresaha.115.305376] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.
Collapse
Affiliation(s)
- Sara Menazza
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Elizabeth Murphy
- From the Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Wiebe JP, Pawlak KJ, Kwok A. Mechanism of action of the breast cancer-promoter hormone, 5α-dihydroprogesterone (5αP), involves plasma membrane-associated receptors and MAPK activation. J Steroid Biochem Mol Biol 2016; 155:166-76. [PMID: 26519986 DOI: 10.1016/j.jsbmb.2015.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that breast tissues and breast cell lines can convert progesterone to 5α-pregnane-3,20-dione (5aP), and that 5αP stimulates breast cell proliferation and detachment in vitro, and tumor formation in vivo, regardless of presence or absence of receptors for progesterone (PR) or estrogen (ER). Recently it was demonstrated, both in vitro and in vivo, that pro-cancer actions attributed to administered progesterone are due to the in situ produced 5αP. Because of the significant role of 5αP in breast cancers, it is important to understand its molecular mechanisms of action. The aims of the current studies were to identify 5αP binding sites and to determine if the mechanisms of action of 5αP involve the mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases (ERK1/2) pathway. Binding studies, using tritium-labeled 5αP ([(3)H]5αP), carried out on membrane, cytosol and nuclear fractions from human breast cells (MCF-7, PR/ER-positive; MDA-MB-231, PR/ER-negative) and on highly enriched membrane fractions, identified the plasma membrane as the site of ligand specific 5αP receptors. Localization of 5αP receptors to the cell membrane was confirmed visually with fluorescently labeled conjugate (5αP-BSA-FITC). Treatment of cells with either 5αP or membrane-impermeable 5αP-BSA resulted in significant increases in cell proliferation and detachment. 5αP and 5αP-BSA equally activated the MAPK/ERK1/2 pathway as evidenced by phosphorylation of ERK1/2. Inhibitors (PD98059, mevastatin and genistein) of specific sites along the Ras/Raf/MEK/ERK signaling pathway, blocked the phosphorylation and concomitantly inhibited 5αP-induced stimulation of cell proliferation and detachment. The study has identified high affinity, stereo-specific binding sites for 5αP that have the characteristics of a functional membrane 5αP receptor, and has shown that the cancer-promoter actions of 5αP are mediated from the liganded receptor via the MAPK/ERK1/2 signaling cascade. The findings enhance our understanding of the role of the progesterone metabolite 5αP in breast cancer and should promote new approaches to the development of breast cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Kevin J Pawlak
- Department of Physiology, School of Medicine, Zirve University, Gaziantep, Turkey
| | - Arthur Kwok
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
18
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
19
|
Jain AS, Goel PN, Shah SM, Dhawan VV, Nikam Y, Gude RP, Nagarsenker MS. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation. Biomed Pharmacother 2014; 68:429-38. [PMID: 24721327 DOI: 10.1016/j.biopha.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022] Open
Abstract
Tamoxifen (TMX), an estrogen receptor (ER) antagonist, incorporated at surface of liposomes loaded with Doxorubicin (DOX), was hypothesized to serve as ligand for targeting overexpressed ERs on surface and cytosol of breast cancer cells, in addition to its synergism with DOX in killing MCF-7 cells. The TMX-DOX liposomes demonstrated mean size of 188.8±2.2nm and positive potential of+47mV, both suitable for better cellular interaction. TMX-DOX liposomes sustained DOX release in vitro (25.9%) in pH 7.4 at 48h, in comparison with 64.5% DOX release at pH 5.5. In vitro cell line studies demonstrated that TMX-DOX liposomes were more cytotoxic to ER+ve MCF-7 cells as compared to DOX liposomes, DOX solution and TMX-DOX solution (P<0.05). However, there was no statistical difference in cyto-toxicity of TMX-DOX liposomes and DOX liposomes towards ER-ve MDA-MB-231 cells. Flow cytometry and confocal studies in MCF-7 cells revealed greater cell and nuclear uptake of DOX, with TMX guided liposomes as compared to DOX liposomes and DOX solution. TMX-DOX liposomes demonstrated significantly increased inhibition of MCF-7 cell based tumor growth in nude mice (P<0.05) in comparison to DOX solution and DOX liposomes, indicative of target specificity and higher DOX accumulation at tumor site.
Collapse
Affiliation(s)
- Ankitkumar S Jain
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Peeyush N Goel
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanket M Shah
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Vivek V Dhawan
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Yuvraj Nikam
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Rajiv P Gude
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Mangal S Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
20
|
Chun J, Han L, Xu MY, Wang B, Cheng MS, Kim YS. The induction of apoptosis by a newly synthesized diosgenyl saponin through the suppression of estrogen receptor-α in MCF-7 human breast cancer cells. Arch Pharm Res 2013; 37:1477-86. [DOI: 10.1007/s12272-013-0279-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
|
21
|
Wang J, Liu X, Zhang X, Liu J, Ye S, Xiao S, Chen H, Wang H. Induction of apoptosis by c9, t11-CLA in human endometrial cancer RL 95-2 cells via ERα-mediated pathway. Chem Phys Lipids 2013; 175-176:27-32. [PMID: 23954748 DOI: 10.1016/j.chemphyslip.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/20/2013] [Accepted: 07/25/2013] [Indexed: 01/22/2023]
Abstract
Numerous studies have shown that conjugated linoleic acid (CLA) can inhibit cancer cells growth and induce apoptosis in vitro and in vivo. The aim of the present study was to investigate the effects of CLA, including cis9, trans11-conjugated linoleic acid (c9, t11-CLA) and trans10, cis12-conjugated linoleic acid (t10, c12-CLA), on apoptosis of human endometrial cancer RL 95-2 cells and its related mechanisms. The MTT analysis was used to evaluate the effect of CLA isomers on the viability of endometrial cancer RL 95-2 cells. We then estimated the apoptosis by Morphological observation and Annexin V-FITC/PI staining and flow cytometry. We also used Western blot analysis to assess the expression of caspase-3, Bax, Bcl-2 proteins and the activation of Akt/p-Akt and ERα/p-ERα. Propylpyrazole-triol (PPT), a selective ERα agonist was used to confirm the induction of apoptosis by c9, t11 CLA may relate to ERα-mediated pathway. In CLA-treated RL 95-2 cells, we found that c9, t11-CLA inhibited viability and trigged apoptosis, as judged from nuclear morphology and flow cytometric analysis. The expression of caspase-3 and the ratio of Bax/Bcl-2 were significant increased, but no obvious change was observed about Akt and p-Akt in c9, t11-CLA-treated cells. However, the expression of total ERα level in RL 95-2 cells-treated with c9, t11-CLA was unchanged, while in the concentration of 80 mM, c9, t11-CLA down-regulated the protein expression level of p-ERα. Then PPT has the antagonistic action on growth inhibitory effect in RL 95-2 cells incubated with c9, t11-CLA. This study demonstrated that c9, t11- CLA could induce apoptosis in RL 95-2 cells, and may involve in ERα-mediated pathway. These results indicated that c9, t11- CLA could induce apoptosis of endometrial cancer cells and may be potential agents for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Jihui Wang
- Liaoning Key Laboratory of Food Biological Technology, School of Food Science and Technology, Dalian Polytechnic University, 116034 Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu KC, Ge W. Evidence for gating roles of protein kinase A and protein kinase C in estradiol-induced luteinizing hormone receptor (lhcgr) expression in zebrafish ovarian follicle cells. PLoS One 2013; 8:e62524. [PMID: 23658740 PMCID: PMC3643932 DOI: 10.1371/journal.pone.0062524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
Estradiol (E2) stimulates luteinizing hormone receptor (lhcgr) expression in zebrafish follicle cells via nuclear estrogen receptors (nERs) that are likely expressed on the membrane, and lhcgr responds to E2 in a biphasic manner during 24-h treatment. These observations raise an interesting question on the signaling mechanism underlying E2 regulation, in particular the biphasic response of lhcgr expression. In the present study, we demonstrated that E2 regulation of lhcgr was significantly influenced by the activity of cAMP-PKA pathway. Activation of cAMP-PKA pathway by forskolin or db-cAMP suppressed E2-stimulated lhcgr expression in short-term (3 h) but enhanced its effect in long-term (24 h), suggesting differential roles of PKA at these two phases of lhcgr response. PKA inhibitor H89 showed reversed effects. In contrast, PKC pathway had consistent permissive effect on E2-induced lhcgr expression as evidenced by strong inhibition of E2 effect by PKC inhibitors GF109203X and Ro-31-8220 at both 3 and 24 h. One of the mechanisms by which PKA and PKC gated E2 effect might be through regulating nERs, particularly esr2a. Despite the strong influence of PKA and PKC, our data did not suggest direct mediating roles for these two pathways in E2 stimulation of lhcgr expression; yet they likely play critical gating roles in E2 signal transduction. As a follow-up study to our previous report on E2 regulation of gonadotropin receptors in the zebrafish ovary, the present study provides further evidence for the involvement of classical intracellular signal transduction pathways in E2 stimulation of lhcgr expression in the follicle cells.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
23
|
Gintzler AR, Liu NJ. Importance of sex to pain and its amelioration; relevance of spinal estrogens and its membrane receptors. Front Neuroendocrinol 2012; 33:412-24. [PMID: 23036438 PMCID: PMC3778676 DOI: 10.1016/j.yfrne.2012.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Estrogens have a multitude of effects on opioid systems and are thought to play a key role in sexually dimorphic nociception and opioid antinociception. Heretofore, classical genomic actions of estrogens are largely thought to be responsible for the effects of these steroids on nociception and opioid antinociception. The recent discovery that estrogens can also activate estrogen receptors that are located in the plasma membrane, the effects of which are manifest in seconds to minutes instead of hours to days has revolutionized our thinking concerning the ways in which estrogens are likely to modulate pain responsiveness and the dynamic nature of that modulation. This review summarizes parameters of opioid functionality and nociception that are subject to modulation by estrogens, underscoring the added dimensions of such modulation that accrues from rapid membrane estrogen receptor signaling. Implications of this mode of signaling regarding putative sources of estrogens and its degradation are also discussed.
Collapse
Affiliation(s)
- Alan R Gintzler
- State University of New York, Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
24
|
Zhan Y, Zhang Y, Liu C, Zhang J, Smith WW, Wang N, Chen Y, Zheng L, He L. A Novel Taspine Derivative, HMQ1611, Inhibits Breast Cancer Cell Growth via Estrogen Receptor α and EGF Receptor Signaling Pathways. Cancer Prev Res (Phila) 2012; 5:864-73. [DOI: 10.1158/1940-6207.capr-11-0575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Ho SM, Lee MT, Lam HM, Leung YK. Estrogens and prostate cancer: etiology, mediators, prevention, and management. Endocrinol Metab Clin North Am 2011; 40:591-614, ix. [PMID: 21889723 PMCID: PMC3167093 DOI: 10.1016/j.ecl.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mainstay targets for hormonal prostate cancer (PCa) therapies are based on negating androgen action. Recent epidemiologic and experimental data have pinpointed the key roles of estrogens in PCa development and progression. Racial and geographic differences, as well as age-associated changes, in estrogen synthesis and metabolism contribute significantly to the etiology. This article summarizes how different estrogens/antiestrogens/estrogen mimics contribute to prostate carcinogenesis, the roles of the different mediators of estrogen in the process, and the potentials of new estrogenic/antiestrogenic compounds for prevention and treatment of PCa.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, Center for Environmental Genetics, and the Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ming-tsung Lee
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Hung-Ming Lam
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-0595, Fax 513-558-0071,
| | - Yuet-Kin Leung
- Department of Environmental Health, Center for Environmental Genetics, and The Cancer Institute, College of Medicine, University of Cincinnati, Cincinnati, Ohio. Telephone 513-558-5181, Fax 513-558-0071,
| |
Collapse
|
26
|
Burns KA, Li Y, Arao Y, Petrovich RM, Korach KS. Selective mutations in estrogen receptor alpha D-domain alters nuclear translocation and non-estrogen response element gene regulatory mechanisms. J Biol Chem 2011; 286:12640-9. [PMID: 21285458 PMCID: PMC3069464 DOI: 10.1074/jbc.m110.187773] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/28/2011] [Indexed: 01/05/2023] Open
Abstract
The three main mechanisms of ERα action are: 1) nuclear, genomic, direct DNA binding, 2) nuclear, genomic, "tethered"-mediated, protein-protein interactions, and 3) non-nuclear, non-genomic, rapid action responses. Reports suggest the D-domain or hinge region of ERα plays an important role in mechanisms 1 and 2 above. Studies demonstrating the functionality of the ERα hinge region have resected the full D-domain; therefore, site directed mutations were made to attribute precise sequence functionality to this domain. This study focuses on the characterization and properties of three novel site directed ERα- D-domain mutants. The Hinge 1 (H1) ERα mutant has disrupted nuclear localization, can no longer perform tethered mediated responses and has lost interaction with c-Jun, but retains estrogen response element (ERE)-mediated functions as demonstrated by confocal microscopy, reporter assays, endogenous gene expression and co-immunoprecipitation. The H2 ERα mutant is non-nuclear, but translocates to the nucleus with estradiol (E2) treatment and maintains ERE-mediated functionality. The H2+NES ERα mutant does not maintain nuclear translocation with hormone binding, no longer activates ERE-target genes, functions in ERE- or tethered-mediated luciferase assays, but does retain the non-genomic, non-nuclear, rapid action response. These studies reveal the sequence(s) in the ERα hinge region that are involved in tethered-mediated actions as well as nuclear localization and attribute important functionality to this region of the receptor. In addition, the properties of these ERα mutants will allow future studies to further dissect and characterize the three main ERα mechanisms of action and determine the mechanistic role each action has in estrogen hormone regulation.
Collapse
Affiliation(s)
- Katherine A. Burns
- From Receptor Biology, Laboratory of Reproductive and Developmental Toxicology and
| | - Yin Li
- From Receptor Biology, Laboratory of Reproductive and Developmental Toxicology and
| | - Yukitomo Arao
- From Receptor Biology, Laboratory of Reproductive and Developmental Toxicology and
| | - Robert M. Petrovich
- Protein Expression Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kenneth S. Korach
- From Receptor Biology, Laboratory of Reproductive and Developmental Toxicology and
| |
Collapse
|
27
|
Tong JS, Zhang QH, Wang ZB, Li S, Yang CR, Fu XQ, Hou Y, Wang ZY, Sheng J, Sun QY. ER-α36, a novel variant of ER-α, mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCδ/ERK pathway. PLoS One 2010; 5:e15408. [PMID: 21079811 PMCID: PMC2973969 DOI: 10.1371/journal.pone.0015408] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/09/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Recently, a variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates non-genomic estrogen signaling. The purpose of this study was to investigate the function and the underlying mechanisms of ER-α36 in growth regulation of endometrial Ishikawa cancer cells. METHODS The cellular localization of ER-α36 and ER-α66 were determined by immunofluorescence in the Ishikawa cells. Ishikawa endometrial cancer control cells transfected with an empty expression vector, Ishikawa cells with shRNA knockdown of ER-α36 (Ishikawa/RNAiER36) and Ishikawa cells with shRNA knockdown of ER-α66 (Ishikawa/RNAiER66) were treated with E2 and E2-conjugated to bovine serum albumin (E2-BSA, membrane impermeable) in the absence and presence of different kinase inhibitors HBDDE, bisindolylmaleimide, rottlerin, H89 and U0126. The phosphorylation levels of signaling molecules and cyclin D1/cdk4 expression were examined with Western blot analysis and cell growth was monitored with the MTT assay. RESULTS Immunofluorescence staining of Ishikawa cells demonstrated that ER-α36 was expressed mainly on the plasma membrane and in the cytoplasm, while ER-α66 was predominantly localized in the cell nucleus. Both E2 and E2-BSA rapidly activated PKCδ not PKCα in Ishikawa cells, which could be abrogated by ER-α36 shRNA expression. E2-and E2-BSA-induced ERK phosphorylation required ER-α36 and PKCδ. However, only E2 was able to induce Camp-dependent protein kinase A (PKA) phosphorylation. Furthermore, E2 enhances cyclin D1/cdk4 expression via ER-α36. CONCLUSION E2 activates the PKCδ/ERK pathway and enhances cyclin D1/cdk4 expression via the membrane-initiated signaling pathways mediated by ER-α36, suggesting a possible involvement of ER-α36 in E2-dependent growth-promoting effects in endometrial cancer cells.
Collapse
Affiliation(s)
- Jing-Shan Tong
- College of Life Sciences, Jilin University, Changchun, China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Hua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sen Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Rong Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Fu
- College of Life Sciences, Jilin University, Changchun, China
| | - Yi Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Yi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska, United States of America
| | - Jun Sheng
- College of Life Sciences, Jilin University, Changchun, China
- Yunnan Agricultural University, Kunming, China
- * E-mail: (JS); (Q-YS)
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JS); (Q-YS)
| |
Collapse
|
28
|
Bottino MC, Cerliani JP, Rojas P, Giulianelli S, Soldati R, Mondillo C, Gorostiaga MA, Pignataro OP, Calvo JC, Gutkind JS, Panomwat Amornphimoltham, Molinolo AA, Lüthy IA, Lanari C. Classical membrane progesterone receptors in murine mammary carcinomas: agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res Treat 2010; 126:621-36. [DOI: 10.1007/s10549-010-0971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
|
29
|
Zhou Q, Shaw PG, Davidson NE. Epigenetics meets estrogen receptor: regulation of estrogen receptor by direct lysine methylation. Endocr Relat Cancer 2009; 16:319-23. [PMID: 19208734 PMCID: PMC3901989 DOI: 10.1677/erc-08-0305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear hormone receptor estrogen receptor α (ERα) promotes cellular growth through ligand-dependent activation of specific target genes, a process which is targeted in the treatment of ERα-expressing breast cancers. ERα activity is regulated at the protein level by post-translational modifications including phosphorylation and acetylation. A study now shows that ERα can also be directly methylated at lysine 302 (K302) by SET7, a histone methyltransferase that is known to monomethylate H3K4 and is associated with transcriptional activation. It was shown that K302 methylation stabilizes ERα protein and is suggested to increase sensitivity of ERα to estrogens, enhancing transcription of estrogen response elements. Furthermore, SET7 methylation of K302 is enhanced by a breast cancer-associated mutation at K303 (K303R) in vitro. These findings provide an additional mechanism of SET7 mediated transcriptional activation, as well as potential insight into the complex regulation of ERα stability and ligand sensitivity.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
30
|
Chen JQ, Brown TR, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1128-43. [PMID: 19348861 DOI: 10.1016/j.bbamcr.2009.03.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The prevalence of obesity among children, adolescents and adults has been dramatically increasing worldwide during the last several decades. The obesity epidemic has been recognized as one of the major global health problems, because its health hazard is linked to a number of common diseases including breast and prostate cancers. Obesity is caused by combination of genetic and environmental factors. While genetic contribution to obesity has been known to be significant, the genetic factors remain relatively unchanged. Recent studies have highlighted the involvement of environmental "obesogens", i.e. the xenobiotic chemicals that can disrupt the normal development and homeostatic control over adipogenesis and energy balance. Several lines of evidence suggest that increasing exposure to chemicals with endocrine-disrupting activities (endocrine-disrupting chemicals, EDCs) contributes to the increased obesity. The cellular and molecular mechanisms underlying obesogen-associated obesity are just now being appreciated. In this paper, we comprehensively reviewed current knowledge about the role of estrogen receptors alpha and beta (ERalpha and ERbeta) in regulation of energy metabolism pathways, including glucose transport, glycolysis, tricarboxylic acid (TCA) cycle, mitochondrial respiratory chain (MRC), adenosine nucleotide translocator (ANT) and fatty acid beta-oxidation and synthesis, by estrogens; and then examined the disturbance of E(2)/ER-mediated energy metabolism pathways by environmental obesogens; and finally, we discussed the potential implications of disturbance of energy metabolism pathways by obesogens in obesity and pointed out several key aspects of this area that need to be further explored. A better understanding of the cellular and molecular mechanisms underlying obesogen-associated obesity will lead to new approaches for slow down and/or prevention of the increased trend of obesity associated with exposure to obesogens.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | |
Collapse
|
31
|
Chakraborty AK, Welsh A, Digiovanna MP. Co-targeting the insulin-like growth factor I receptor enhances growth-inhibitory and pro-apoptotic effects of anti-estrogens in human breast cancer cell lines. Breast Cancer Res Treat 2009; 120:327-35. [PMID: 19337828 DOI: 10.1007/s10549-009-0382-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 11/25/2022]
Abstract
The insulin-like growth factor I receptor (IGF1R) interacts with estrogen receptor-alpha (ERalpha) and HER2. We examined the effect of combinations of IGF1R antagonists (alpha-IR3, AG1024) and anti-estrogens (4-hydroxy tamoxifen, fulvestrant) in two human ER+ breast cancer cell lines: BT474 (HER2 overexpressing, IGF1R low) and MCF7 (HER2 non-overexpressing, IGF1R high). In BT474 cells, growth was inhibited by anti-estrogens, but not by IGF1R antagonists; however, adding IGF1R inhibitors to anti-estrogens enhanced growth inhibition. In MCF7 cells, growth was inhibited by IGF1R and ER antagonists and more so by their combination. In both cell lines, no single agents could induce apoptosis, but combining IGF1R inhibitors with anti-estrogens induced dramatic levels of apoptosis. IGF1R antagonists enhanced the ability of the anti-estrogens to inhibit ER transcriptional activity in BT474 cells, but not in MCF7 cells. The drug combination synergistically inhibited ER and IGF1R activity. Such combinations may be useful therapy for breast cancer.
Collapse
Affiliation(s)
- Ashok K Chakraborty
- Departments of Internal Medicine (Section of Medical Oncology) and Pharmacology, and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, Room WWW217, New Haven, CT 06510, USA
| | | | | |
Collapse
|
32
|
Kilić A, Javadov S, Karmazyn M. Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 2009; 46:360-9. [DOI: 10.1016/j.yjmcc.2008.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
33
|
Gintzler AR, Schnell SA, Gupta DS, Liu NJ, Wessendorf MW. Relationship of Spinal Dynorphin Neurons to δ-Opioid Receptors and Estrogen Receptor α: Anatomical Basis for Ovarian Sex Steroid Opioid Antinociception. J Pharmacol Exp Ther 2008; 326:725-31. [DOI: 10.1124/jpet.108.139816] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Zhang Z, Duan L, Du X, Ma H, Park I, Lee C, Zhang J, Shi J. The proliferative effect of estradiol on human prostate stromal cells is mediated through activation of ERK. Prostate 2008; 68:508-16. [PMID: 18213633 DOI: 10.1002/pros.20722] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Estrogen is involved in the development and progression of benign prostatic hyperplasia (BPH). It can stimulate proliferation of prostate stromal cells (PrSCs). However, the exact mechanism remains unclear. METHODS We used the primary cultured human PrSCs and a prostate stromal cell line, WPMY-1, to examine the signaling pathways involved in estrogen-mediated proliferation of PrSCs. Cells were treated with 17beta-estradiol (E(2)) or BSA-E(2). Cell proliferation was assessed by the MTT assay and by cell counting. Western blot analysis was used to determine the status of activation of ERK1/2. RESULTS Results indicated that both E(2) and BSA-E(2) stimulated proliferation of primary PrSCs and WPMY-1 cells. ERK was rapidly activated by E(2) and BSA-E(2). PD98059, which is a selective ERK inhibitor, significantly inhibited estrogen-induced cell proliferation. PrSCs expressed estrogen receptor alpha (ERalpha) and GPR30 but not ERbeta. Small hairpin RNA (shRNA) to ERalpha, but not to GPR30, blocked estrogen-mediated ERK activation and cell proliferation. CONCLUSIONS The results indicated that estrogen could activate ERK pathway through the non-genomic ERalpha pathway, leading to proliferation of PrSCs.
Collapse
Affiliation(s)
- Zhisong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sheldahl LC, Shapiro RA, Bryant DN, Koerner IP, Dorsa DM. Estrogen induces rapid translocation of estrogen receptor beta, but not estrogen receptor alpha, to the neuronal plasma membrane. Neuroscience 2008; 153:751-61. [PMID: 18406537 DOI: 10.1016/j.neuroscience.2008.02.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/28/2008] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
Abstract
Estrogen receptors can activate transcription in the nucleus, and activate rapid signal transduction cascades in the cytosol. Multiple reports identify estrogen receptors at the plasma membrane, while others document the dynamic responses of estrogen receptor to ligand binding. However, the function and identity of membrane estrogen receptors remain controversial. We have used confocal microscopy and cell fractionation on the murine hippocampus-derived HT22 cell line and rat primary cortical neurons transfected with estrogen receptor-green fluorescent protein constructs to address the membrane localization of these receptors. We observe translocation of estrogen receptor beta (beta) to the plasma membrane 5 min after exposure to 17beta-estradiol, whereas estrogen receptor alpha (alpha) localization remains unchanged. Membrane localization of estrogen receptor beta is transient, selective for 17beta-estradiol, and is not blocked by ICI182,780. Inhibition of the mitogen-activated protein kinase pathway does not block estrogen-mediated estrogen receptor beta membrane translocation, and in fact prolongs membrane localization. These data suggest that while both estrogen receptor alpha and estrogen receptor beta can be present at the neuronal membrane, their presence is differentially regulated.
Collapse
Affiliation(s)
- L C Sheldahl
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
36
|
Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat 2007; 108:351-61. [PMID: 17592774 DOI: 10.1007/s10549-007-9618-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/09/2007] [Indexed: 12/31/2022]
Abstract
The estrogen receptor (ER) is the single most powerful predictor of breast cancer prognosis as well as an important contributor to the biology of carcinogenesis. In addition, endocrine therapy targeting ER directly (SERMS) or indirectly (aromatase inhibitors) forms the mainstay of adjuant therapy. Traditionally, human tumors are scored for the amount and presence of ER. However, this has centered on the population of ER found in the transformed epithelial cell nucleus. Over the last 40 years, it has been appreciated that additional cellular ER pools exist, in cytoplasm and at the plasma membrane. In this review, we discuss the important functions of extra-nuclear ER in breast cancer, including integration of function with nuclear ER.
Collapse
Affiliation(s)
- Ellis R Levin
- University of California, Irvine/VA Long Beach Healthcare System, VALBHS, Long Beach, CA, USA.
| | | |
Collapse
|
37
|
Chen JQ, Russo PA, Cooke C, Russo IH, Russo J. ERbeta shifts from mitochondria to nucleus during estrogen-induced neoplastic transformation of human breast epithelial cells and is involved in estrogen-induced synthesis of mitochondrial respiratory chain proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1732-46. [PMID: 17604135 DOI: 10.1016/j.bbamcr.2007.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/28/2007] [Accepted: 05/10/2007] [Indexed: 02/06/2023]
Abstract
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | |
Collapse
|
38
|
Jaubert AM, Mehebik-Mojaat N, Lacasa D, Sabourault D, Giudicelli Y, Ribière C. Nongenomic estrogen effects on nitric oxide synthase activity in rat adipocytes. Endocrinology 2007; 148:2444-52. [PMID: 17303666 DOI: 10.1210/en.2006-1329] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Estrogens exert multiple genomic effects on adipose tissue through binding to nuclear estrogen receptors. However, there is evidence for additional nongenomic mechanisms whereby estrogens may exert their control on adipose tissue metabolism through rapid activation of various membrane-initiated kinase cascades. Here, we tested rapid effects of estrogens on nitric oxide production in white adipose tissue using 17-beta estradiol (E2) and its membrane impermeant albumin conjugated form (17-beta estradiol hemisuccinate BSA, E2-BSA). We found that both E2 and E2-BSA stimulate nitric oxide synthase (NOS) activity in adipocytes. These effects were abolished by 1) ICI 182-780, a selective estrogen receptor antagonist; 2) wortmannin, an inhibitor of phosphatidylinositol 3-kinase; and 3) N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89) an inhibitor of protein kinase A. In contrast to NOS activation by E2, E2-BSA-induced NOS activity was abolished by UO126, an inhibitor of MAPK kinase/ERK (p42/p44 MAPKs). Immunoblotting studies have shown that both estrogens phosphorylate endothelial NOS (NOS III) on Ser(1179), an effect that is prevented by wortmannin and H89, suggesting that NOS III is the target for estrogen-induced NOS activity. Furthermore, only the E2-BSA-induced NOS III phosphorylation on Ser(1179) was totally abolished by UO126. These results indicate that the signaling cascades involved in adipocyte NOS stimulation by estrogens are different depending on whether estrogens are free or conjugated to albumin and therefore underline the importance of estrogen receptor locations in the nongenomic actions of estrogens in these cells.
Collapse
Affiliation(s)
- Anne-Marie Jaubert
- Départment de Biochimie et de Biologie Moléculaire, Université de Versailles Saint-Quentine en Yuelines, Versailles, France
| | | | | | | | | | | |
Collapse
|
39
|
Ciesielska A, Joniec I, Kurkowska-Jastrzebska I, Przybyłkowski A, Gromadzka G, Członkowska A, Członkowski A. Influence of age and gender on cytokine expression in a murine model of Parkinson's disease. Neuroimmunomodulation 2007; 14:255-65. [PMID: 18196934 DOI: 10.1159/000113432] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/10/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The neuroinflammatory reaction has been linked with Parkinson's disease. One of the hypotheses to explain the significance of age and gender (male predominance) effects on neurodegeneration in Parkinson's disease may result from a link between these risk factors and the inflammatory processes. Here, we investigated the expression of inflammatory mediators in relation to 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine (MPTP)-induced neurodegenerative processes in nigrostriatal pathway in young and aged male and female mice. METHODS AND RESULTS We simultaneously assessed striatal tyrosine hydroxylase (TH) protein concentrations (Western blotting) and cytokine (TNFalpha, IFNgamma, IL-1beta, IL-6 and TGFbeta(1)) mRNA levels (RT-PCR) in young and aged (2- and 12-month-old) C57BL/6 male and female mice after 6 h, 1, 3, 7, 14, 21 days after MPTP intoxication. Western blotting analysis showed that at the early time points, males showed a greater reduction in striatal TH versus females. Additionally, in contrast to the aged mice, in young males and females the TH concentration gradually increased between the 7th and the 21st day after intoxication. The increases in TNFalpha, IL-1beta and IFNgamma after intoxication were faster in both young and aged males than females. In males (both ages), we observed an increase in TGFbeta(1) at the early time points. In contrast, in females (both ages) TGFbeta(1) was elevated at later time points. MPTP caused an increase in IL-6 in males and females, but this increase was significantly higher in females. CONCLUSIONS A gender and age skewing of the cytokine gene expression in the striatum after intoxication may be related to the greater susceptibility in males as well as older animals to the detrimental effects of MPTP.
Collapse
Affiliation(s)
- Agnieszka Ciesielska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
41
|
Abstract
Recent research has focused on effects of the estrogen receptor acting at the level of the cell membrane in breast cancer. In this review we describe 17beta-estradiol (E2)-initiated membrane signaling pathways involving the activation of several kinases that contribute to the regulation of cell proliferation and prevention of apoptosis. Although classical concepts had assigned priority to the nuclear actions of estrogen receptor, recent studies document the additional importance of estrogen receptor residing in or near the plasma membrane. A small fraction of estrogen receptor is associated with the cell membrane and mediates the rapid effects of E2. Unlike classical growth factor receptors, such as insulin-like growth factor 1 receptor (IGF1R) and epidermal growth factor receptor (EGFR), estrogen receptor has no transmembrane and kinase domains and is known to initiate E2 rapid signals by forming a protein complex with many signaling molecules. The formation of the protein complex is a critical step, leading to the activation of the MAPK1/3 (also known as MAP kinase) and AKT1 (also known as Akt) pathways. A full understanding of the mechanisms underlying these relationships, with the ultimate aim of abrogating specific steps, should lead to more-targeted strategies for treatment of hormone dependent-breast cancer.
Collapse
Affiliation(s)
- Robert X-D Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA.
| | | |
Collapse
|
42
|
Mahmoodzadeh S, Eder S, Nordmeyer J, Ehler E, Huber O, Martus P, Weiske J, Pregla R, Hetzer R, Regitz-Zagrosek V. Estrogen receptor alpha up‐regulation and redistribution in human heart failure. FASEB J 2006; 20:926-34. [PMID: 16675850 DOI: 10.1096/fj.05-5148com] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clinical and animal studies suggest that estrogen receptors are involved in the development of myocardial hypertrophy and heart failure. In this study, we investigated whether human myocardial estrogen receptor alpha (ERalpha) expression, localization, and association with structural proteins was altered in end stage-failing hearts. We found a 1.8-fold increase in ERalpha mRNA and protein in end-stage human dilated cardiomyopathy (DCM, n=41), as compared with controls (n=25). ERalpha was visualized by confocal immunofluorescence microscopy and localized to the cytoplasm, sarcolemma, intercalated discs and nuclei of cardiomyocytes. Immunofluorescence studies demonstrated colocalization of ERalpha with beta-catenin at the intercalated disc in control hearts and immunoprecipitation studies confirmed complex formation of both proteins. Interestingly, the ERalpha/beta-catenin colocalization was lost at the intercalated disc in DCM hearts. Thus, the ERalpha/beta-catenin colocalization in the intercalated disc may be of functional relevance and a loss of this association may play a role in the progression of heart failure. The increase of total ERalpha expression may represent a compensatory process to contribute to the stability of cardiac intercalated discs.
Collapse
|
43
|
Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 2006; 20:1996-2009. [PMID: 16645038 DOI: 10.1210/me.2005-0525] [Citation(s) in RCA: 391] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | |
Collapse
|
44
|
Członkowska A, Ciesielska A, Gromadzka G, Kurkowska-Jastrzebska I. Gender differences in neurological disease: role of estrogens and cytokines. Endocrine 2006; 29:243-56. [PMID: 16785600 DOI: 10.1385/endo:29:2:243] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/30/1999] [Accepted: 10/24/2005] [Indexed: 11/11/2022]
Abstract
Increasing evidence suggests that inflammatory response may be a critical component of different brain pathologies. However, the role played by this reaction is not fully understood. The present findings suggest that neuroinflammtory mediators such as cytokines may be involved in a number of key steps in the pathological cascade of events leading to neuronal injury. This hypothesis is strongly supported by experimental and clinical observations indicating that inhibition of the inflammatory reaction correlates with less neuronal damage. Estrogens are thought to play a role in the sex difference observed in many neurological diseases with inflammatory components including stroke, Alzheimer's and Parkinson's diseases, multiple sclerosis, or amyotrophic lateral sclerosis. Clinical and experimental studies have established estrogen as a neuroprotective hormone in these diseases. However, the exact mechanisms involved in the neuroprotective effects of estrogens are still unclear. It is possible that the beneficial effects of these hormones may be dependent on their inhibitory activity on the inflammatory reaction associated with the above-mentioned brain pathologies. Here, we review the current clinical and experimental evidence with respect to the inflammation-modulating effects of estrogens as one potential explanatory factor for sexual dimorzphism in the prevalence of numerous neurological diseases.
Collapse
Affiliation(s)
- Anna Członkowska
- Institute of Psychiatry and Neurology, Second Department of Neurology, Warsaw, Poland.
| | | | | | | |
Collapse
|
45
|
Thomas W, Coen N, Faherty S, Flatharta CO, Harvey BJ. Estrogen induces phospholipase A2 activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids 2006; 71:256-65. [PMID: 16375935 DOI: 10.1016/j.steroids.2005.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/05/2005] [Accepted: 10/31/2005] [Indexed: 12/29/2022]
Abstract
The principal secreted estrogen, 17beta-estradiol rapidly activates signaling cascades that regulate important physiological processes including ion transport across membranes, cytosolic pH and cell proliferation. These effects have been extensively studied in the MCF-7 estrogen-responsive human breast carcinoma cell line. Here, we demonstrate that a physiological concentration of 17beta-estradiol caused a rapid, synchronous and transient increase in intracellular calcium concentration in a confluent monolayer of MCF-7 cells 2-3 min after treatment. This response was abolished when cells were pre-incubated with the phospholipase A(2) (PLA(2)) inhibitor quinacrine or with the cyclooxygenase inhibitor indomethacin. The translocation of GFP-cPLA(2)alpha to perinuclear membranes occurred 1-2 min after 17beta-estradiol treatment; this translocation was concurrent with the transient phosphorylation of cPLA(2)alpha at serine residue 505. The phosphorylation and translocation of cPLA(2) were sensitive to inhibition of the extracellular signal regulated kinase (ERK) signaling cascade and occurred simultaneously with a transient activation of ERK. The phosphorylation of cPLA(2) could be stimulated by membrane impermeable 17beta-estradiol conjugated to bovine serum albumen and was blocked by an antagonist of the classical estrogen receptor. Here we show, for the first time, that PLA(2) and the eicosanoid biosynthetic pathway are involved in the 17beta-estradiol induced rapid calcium responses of breast cancer cells.
Collapse
Affiliation(s)
- Warren Thomas
- Charitable Infirmary Trust Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
46
|
Jacob J, Sebastian KS, Devassy S, Priyadarsini L, Farook MF, Shameem A, Mathew D, Sreeja S, Thampan RV. Membrane estrogen receptors: genomic actions and post transcriptional regulation. Mol Cell Endocrinol 2006; 246:34-41. [PMID: 16423448 DOI: 10.1016/j.mce.2005.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta.
Collapse
Affiliation(s)
- Julie Jacob
- Division of Molecular Endocrinology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen JQ, Contreras RG, Wang R, Fernandez SV, Shoshani L, Russo IH, Cereijido M, Russo J. Sodium/potasium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti- breast cancer drugs? Breast Cancer Res Treat 2005; 96:1-15. [PMID: 16322895 DOI: 10.1007/s10549-005-9053-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 11/30/2022]
Abstract
Prolonged exposure to 17beta-estradiol (E2) is a key etiological factor for human breast cancer. The biological effects and carcinogenic effects of E2 are mediated via estrogen receptors (ERs), ERalpha and ERbeta. Anti-estrogens, e.g. tamoxifen, and aromatase inhibitors have been used to treat ER-positive breast cancer. While anti-estrogen therapy is initially successful, a major problem is that most tumors develop resistance and the disease ultimately progresses, pointing to the need of developing alternative drugs targeting to other critical targets in breast cancer cells. We have identified that Na+, K+-ATPase, a plasma membrane ion pump, has unique/valuable properties that could be used as a potentially important target for breast cancer treatment: (a) it is a key player of cell adhesion and is involved in cancer progression; (b) it serves as a versatile signal transducer and is a target for a number of hormones including estrogens and (d) its aberrant expression and activity are implicated in the development and progression of breast cancer. There are several lines of evidence indicating that ouabain and related digitalis (the potent inhibitors of Na+, K+-ATPase) possess potent anti-breast cancer activity. While it is not clear how the suggested anti-cancer activity of these drugs work, several observations point to ouabain and digitalis as being potential ER antagonists. We critically reviewed many lines of evidence and postulated a novel concept that Na+, K+-ATPase in combination with ERs could be important targets of anti-breast cancer drugs. Modulators, e.g. ouabain and related digitalis could be useful to develop valuable anti-breast cancer drugs as both Na+, K+-ATPase inhibitors and ER antagonists.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 2005; 23:7721-35. [PMID: 16234531 DOI: 10.1200/jco.2005.09.004] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The response to endocrine therapy in breast cancer correlates with estrogen receptor (ER) and progesterone receptor (PR) status. ER-positive/PR-negative breast cancers respond less well to selective ER modulator (SERM) therapy than ER-positive/PR-positive tumors. The predictive value of PR has long been attributed to the dependence of PR expression on ER activity, with the absence of PR reflecting a nonfunctional ER and resistance to hormonal therapy. However, recent clinical and laboratory evidence suggests that ER-positive/PR-negative breast cancers may be specifically resistant to SERMs, whereas they may be less resistant to estrogen withdrawal therapy with aromatase inhibitors, which is a result inconsistent with the nonfunctional ER theory. Novel alternative molecular mechanisms potentially explaining SERM resistance in ER-positive/PR-negative tumors have been suggested by recent experimental indications that growth factors may downregulate PR levels. Thus, the absence of PR may not simply indicate a lack of ER activity, but rather may reflect hyperactive cross talk between ER and growth factor signaling pathways that downregulate PR even as they activate other ER functions. Therefore, ER-positive/PR-negative breast tumors might best be treated by completely blocking ER action via estrogen withdrawal with aromatase inhibitors, by targeted ER degradation, or by combined therapy targeting both ER and growth factor signaling pathways. In this review, we will discuss the biology and etiology of ER-positive/PR-negative breast cancer, highlighting recent data on molecular cross talk between ER and growth factor signaling pathways and demonstrating how PR might be a useful marker of these activities. Finally, we will consider the clinical implications of these observations.
Collapse
Affiliation(s)
- Xiaojiang Cui
- Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Heberden C, Reine F, Grosse B, Henry C, Zagar Y, Chaumaz G, Lieberherr M. Detection of a raft-located estrogen receptor-like protein distinct from ER alpha. Int J Biochem Cell Biol 2005; 38:376-91. [PMID: 16263324 DOI: 10.1016/j.biocel.2005.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/30/2005] [Accepted: 09/08/2005] [Indexed: 11/20/2022]
Abstract
17Beta-estradiol (17beta-E2) elicits at the cell membrane rapid actions that remain insensitive to the inhibitory effect of ICI 182,780, a pure estrogen antagonist, and therefore cannot be attributed to the classic nuclear receptors. We addressed the question of the identity of the protein involved in these rapid actions. We first examined the responses of several cell lines for intracellular calcium mobilization, an effect not inhibited by ICI 182,780, tamoxifen and raloxifen. We then demonstrated the presence of binding sites in the membranes, by incubating them with antibodies directed against different domains of ER alpha, and by flow cytometry analysis. The membrane proteins were eluted by affinity chromatography using E2 conjugated to bovine serum albumin as a ligand. Western blots of the elution fractions using an antibody directed against the ligand binding site of ER alpha showed the existence of a protein of approximately 50 kDa. The protein was concentrated in the lipid rafts, together with another heavier form of approximately 66 kDa. The 50 kDa protein was immunoprecipitable, and co-immunoprecipitation experiments showed that it was associated with the Gbeta(1-4) protein, but not with caveolin-1. The protein was expressed in ER alpha-null cells, like HO-23 and Cos-7 cells. Therefore, in the lipid rafts, there exists a protein, similar to, but molecularly distinct from ER alpha.
Collapse
Affiliation(s)
- Christine Heberden
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Song RXD, Zhang Z, Santen RJ. Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 2005; 16:347-53. [PMID: 16126407 DOI: 10.1016/j.tem.2005.06.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/27/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
This review provides insight into biomolecular knowledge regarding the non-genomic actions of estrogen in hormone-dependent breast cancer, particularly its role in the rapid stimulation of pathways that transmit signals to increase cell division or decrease programmed cell death. Until recently, attention to estrogenic effects focused primarily on events in the nucleus, where most estrogen receptors (ERalpha and beta) reside. However, a fraction of ERalpha associated with the cell membrane also participates in rapid estrogen-induced cell membrane-mediated events via formation of a protein complex with many signaling molecules, leading to activation of the mitogen-activated protein kinase and Akt signaling pathways. Understanding the mechanisms underlying these relationships, with the aim of abrogating specific steps, should lead to more targeted strategies to treat hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Robert X-D Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA.
| | | | | |
Collapse
|